面向复杂产品的工业CT图像重建与分析技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像二、三维重建与分析技术,可以使人们在不损坏被测对象的前提下,借助穿越物体的X射线等投影数据获得其内部信息,建立物体的二维断面图像及三维模型,并进一步实现对其内部结构的分析和理解。该技术最早出现于医疗诊断领域,是CT(Computerized Tomography,计算机断层摄影)及MRI(Magnetic Resonance Imaging,核磁共振成像)等设备的技术基础,目前更广泛应用到工业产品反求及无损检测、地质勘探、文物考古等各个领域。
     工业应用领域研究的复杂产品多属装配体,具有大体积或多分支的特征,因此在基于工业CT的复杂产品图像重建与分析过程中,面临着大体积产品的切片获取、分叉结构处理、复杂配合关系分割等关键问题;加之工业产品本身复杂多样,无法获取类似医学上人体模板的统一模型,使得面向复杂产品的工业图像重建研究充满挑战。本文针对航空航天领域复杂装配体或大尺寸产品无损检测及产品反求的需要,讨论其中的关键环节和阻碍这项技术进一步工程化的难点。论文的主要研究内容和成果如下:
     1.二维CT图像重建及仿真
     实现面向装配体的投影数据仿真生成:传统的ICT仿真大都是针对单个零件的,论文针对航空航天领域大量的装配体产品,分析其“多零件、多材质”的特点,采用面向对象的仿真建模思想和方法对ICT系统进行系统仿真建模,有效而完整地实现了装配体建模,最后实现了专门面向装配体产品的投影仿真系统,可以获得任意扫描方式、任意角度的投影图像及数据文件,方便地为图像重建与分析提供丰富的基础研究数据,为后续章节的研究奠定基础。
     提出并实现不完全投影条件下的切片图像重建算法:针对固体火箭发动机等大体积产品无法实现完全投影的问题,论文首先分析切片图像的重建原理,并根据不完全投影的产生原因,将其分解为中空型、稀疏视角型和限制视角型三类,针对不同的不完全投影类型,分别提出射线补充法、两层级联神经网络法、遗传重建算法三种算法,实现了各种投影条件下,由不完全投影到切片图像的重建,最后分析算法的重建效果及效率,提出复合型不完全投影的重建方法,从而实现不完全投影情况下的二维CT图像获取。
     2.基于CT切片的三维重建与结构分析
     提出并实现面向目标零件的装配体分解及零件间装配关系识别方法:针对装配体切片重构过程中存在的各零件相互干扰而难以直接进行匹配重构的问题,论文提出进行装配体零件分解的思路,首先建立灰度轮廓树及轮廓森林,并通过灰度阈值及连通体生长与聚合分解出各个组成零件,在零件分解的基础上建立各零件的轮廓森林,为零件的三维重构做好准备,并进一步利用轮
In virtue of 2D and 3D image reconstruction from X-ray projections, people can get the interior information of an object in a non-destructive way and carry out the inner structure interpretation and analysis. Appeared firstly in the medicine field, 2D and 3D image reconstruction technology is the basic of the modern instruments such as CT and MRI and is widely applied in various domains including reverse engineering, non-destructive test, geology exploration and archaeology.However, there are still many key problems unsolved, especially in the ICT based industrial image reconstruction aspect because of some characteristic of industrial products such as the complex part structure, huge volume and multiple styles etc. Aiming at the non-destructive test and reverse engineering on complex assemblies and huge products in the field of aviation and astronomy, this thesis discusses some key and difficult issuses in 2D and 3D image reconstruction process to promote the development of CT technology. The main research contents and contributions in the thesis are as follows:Projection simulation for assembly products: Simulation technology is introduced to the image reconstruction and an assembly-oriented projection simulation system is developed to provide abundant research data for following image reconstruction. Different from traditional ICT simulation systems which are single part oriented, we studied the characteristics of multi-part and multi-material case for ICT simulation of assembly product, and realize system modeling by using objected-oriented modeling method. At last, the assembly is well modeled and the simulation system is realized for assemblies, projection data can be got by arbitrary scan style and in arbitrary projection angle.Slice image reconstruction from incomplete projections: Slice reconstruction theory is analyzed firstly, and three kinds of incomplete projection, hollow in center region and sparse viewing angle and limited projection angle range, are considered respectively according to the projection style. The projection rays supplement approach, joint two-grade neural network approach and genetic reconstruction algorithm are proposed respectively for above three cases to realize slice reconstruction from incomplete projections. The reconstruction effect and efficiency are analyzed, and the reconstruction for compound incomplete projection case is also studied.Parts-oriented decomposing and assembly relation recognition for assemblies: 3D reconstruction from slices for an assembly is a difficult task because the parts in it interfere with each other and the contours in adjacent slices can't be
    matched and tiled directly. This thesis studies this issues in detail. Firstly the contour tree with gray level for a slice and the contour forest for whole slices are established, and then based of them, all the parts are decomposed and contour forests for each part are set up to prepare for part reconstruction, at last the assembly relations between parts are recognized through contour tree and constructional relation figure is generated.> Part's 3D surface reconstruction from slices based on the part slice tree: Aiming at the matching problem caused by multi-branch, distortion or high complexity of the industrial product, we proposed a series of algorithms including global matching using ellipse parameter, local matching for contour segment, branch disposal through slice projection and post-matching based on area relations to implement matching between slices and part's 3D reconstruction.> Knowledge based 3D-feture recognition and representation: one of the differences between industrial part and human organ is that the former often contains a lot of 3D geometry features and could be described in total. So some common features and their corresponding slice contour as well as contour series are summarized as knowledge in the thesis, and a knowledge base is set up. By knowledge-based feature recognition, the relationships among all features are analyzed and a feature tree for the part is formed. To facilitate the data exchange among different applying systems, XML is utilized to represent parts instead of traditional triangle surface representation method.> Prototype system design for 2D and 3D industrial image reconstruction and analyze: By using dynamic library technology and VTK (visualization tool kit), a prototype system named ICT-SliceVolume is designed and implanted, the system integrates not only most research results but also some necessary algorithms for industrial image reconstruction to validate the key technologies proposed in this thesis.This research work is sponsored by the two funds of China Aeronautical Foundation Science Funds& Astronautical Innovation Funds (99H53111 and 2001 [181]), and it reflects the author's main research results since Mar. 2000.
引文
[1] 管伟光,体视化技术及其应用,电子工业出版社,1998.04
    [2] 王广,基于ICT的装配体产品反求,西北工业大学博士论文,1999.06
    [3] 蔡青、高光焘,CAD/CAM系统的可视化、集成化、智能化、网络化,西北工业大学出版社,1996.11
    [4] 谢红,基于ICT的CAD建模技术研究,西北工业大学博士论文,1997.05
    [5] 陈剑红,一种基于断层测量的快速反求系统关键技术研究,西安交通大学博士论文,2000.03
    [6] 康晓东,现代医学影像技术,天津科技翻译出版社,1999,08
    [7] 秦绪佳,医学图像三维重建及可视化技术研究,大连理工大学,2001
    [8] 强玉俊,蒋大真,工业CT研制进展,核物理动态,1994,11(4):64-66
    [9] 肖双九,反求工程中三角网格划分及其应用的关键算法研究,西北工业大学博士论文,2002.06
    [10] M. Kroning, Th. Jentschl, et al, Non-destructive Testing and Process Control Using X-ray Methods and Radioisotopes, National Association for Applications of Radioisotopes and Radiation in Industry, 1998: 21-24
    [11] M. Defrise, A short reader's guide to 3D tomographic reconstruction, Computerized Medical Imaging and Graphics, 2001, 25(2): 113-116
    [12] T. Todd Elvins, A Survey of Algorithms for Volume Visualization, ACM SIGGRAPH Computer Graphics, 1992 (3): 194-201
    [13] Center for Nondestructive Evaluation Iowa State University, XRSIM USERS MANUAL, http://www.cnde.iastate.edu/ncce/RT_CC/Sec.6.5/Manua1499.PDF
    [14] 杨振勃,我国固体火箭发动机整体无损检测技术国际一流,2003.6.23:5版
    [15] The Visible Human Project, http://www.nlm.nih.gov/research/visible/visible_human.html
    [16] Chandrajit L. Bajaj, Edward J. Coyle, et al, Arbitrary Topology Shape Reconstruction from Planar Cross Sections, Graphical Model and Image Processing, 1996, 58 (6): 524-543
    [17] Chandrajit L. Bajaj, S. Cutchin, Web based Collaborative Visualization of Distributed and Parallel Simulation, Symposium on Solid Modeling and Applications, 1999: 326-327
    [18] Xiaoyu Zhang, Chandrajit L. Bajaj, et al, Scalable Isosurface Visualization of Massive Datasets on COTS Clusters, IEEE Computer Society Press, 2001(5): 51-58.
    [19] Chandrajit L. Bajaj, Jindon Chen, et al, Interactive Shape Control and Rapid Display of A-patches, ACM Trans. Graph, 1995 (2): 103-133
    [20] Fausto Bernardini, Chandrajit L. Bajaj, et al, Automatic Reconstruction of 3D CAD Models from Digital Scans, Int. J. Comput. Geometry Appl, 1999(4/5): 327-369
    [21] Pre-Operative Planning Using Virtual Reality, http://www.vr.clemson.edu/vr/bioe/bioe.html
    [22] Wang J., Dooley R. L., et al, Automated 3-D reconstruction of 2-D medical images: Application to biomedical modeling, Proc in 17th Southem Biomedical Engineering Conference, San Antonio, TX, 1998(2)
    [23] Volume Visualization, http://www.uke.uni-hamburg.de/zentren/experimentelle_medizin
    [24] Karl Heinz Hohne, The Virtual Human Body: State of the Art and Visions for Medicine, Proc. Int. Symp., 2002
    [25] 钟世镇.原林,“虚拟中国人”切片建模技术的研究进展,解剖学报,2002(5):462
    [26] 原林,黄文华,虚拟中国人关键技术的研究,解剖学报,2003(3):225-230
    [27] 康克军,毛希平,在二维和三维CT图象重建理论方法的研究工作及新进展,CT理论与应用研究,1997(2):48-51
    [28] 康克军,王石,环形移位悬浮存储器体系并行CT图象重建系统,清华大学学报(自然科学版),1996(6):161-167
    [29] 林丽华,卢清萍,面向RP的CT图象反求技术,计算机辅助设计与制造,1998(9):48-50
    [30] 王学武,程建平,CT辅助敏捷制造的应用研究,核电子学与探测技术,2000(6):472-476
    [31] 陈剑虹,刘振凯,乔志林,卢秉恒,基于神经网络的反求测量系统的标定,机械设计与制造工程,1999(3):51-54
    [32] 惠延波,冯兰芳,卢秉恒,基于物体轮廓森林的结构识别,21世纪新产品开发技术,2000.04
    [33] 李维诗,基于医学断层轮廓数据的反求CAD建模理论与方法研究,浙江大学博士论文,2001.08
    [34] 杨学恒,苏显素,一类γ射线工业CT系统设计的研究,重庆大学学报(自然科学版),1994(6):67-70
    [35] 先武,李时光,最佳无损检测手段—工业CT技术的发展,光电工程,1995(4):51-58
    [36] 全渝娟,李时光,不完全投影数据的最大熵再投影图象重建,重庆大学学报(自然科学版),1998(1):77-81
    [37] 吕红,李时光,不完全扇形投影数据的图象重建算法研究,重庆大学学报(自然科学版),1997(5):39-44
    [38] 傅健,路宏年,扇束工业CT重建算法速度优化,CT理论与应用研究,2002(3):16-19
    [39] 杨民,路宏年,基于卷积反投影CT重建的一种新型实用滤波函数,CT理论与应用研究,2000(S1):29-32
    [40] 杨加,吴祈耀等,几种图像分割算法在CT图像分割上的实现和比较,北京理工大学学,2000(6):720-724
    [41] 杨文海,何得吕等,γ射线工业CT技术在高能炸药密度检测中的应用,火炸药学报,2001(3):33-34
    [42] 朱经纬,蒙培生,基于MC算法的螺旋CT扫描数据的三维重建,华中科技大学学报(自然科学版),2002(3):74-76
    [43] 陈兵,蒙培生,基于Dividing Cubes的算法实现螺旋CT数据的三维重建,计算机应用研究,2003(4):63-77
    [44] 纪凤欣.秦绪佳,一种基于CT图像反求技术的实体几何造型方法,机械科学与技术,2002(1):165-168
    [45] 欧宗瑛,宋涛,基于CT、MRI断层图像的人体三维建模,焦作大学学报,2003(2):55-58
    [46] 纪凤欣,秦绪佳等,基于CT图像反求技术的实体几何造型,计算机应用,2000(s1):32-36
    [47] 徐昊,庄天戈,体积CT的研究与进展,中国医疗器械杂志,2001(4):230-133
    [48] 吕东辉,庄天戈,体积CT中的图象重建算法研究综述,CT理论与应用研究,2000(4):12-18
    [49] 骆建华,姚敏,X-CT有限角投影图像重建的截断奇异函数分析法,电子学报,2000(7):70-73
    [50] 徐昊,庄天戈,基于倒置结构的直接体积CT,上海交通大学学报,2001(9):1346-1349
    [51] 吕东辉,谌飚,倒置结构断层CT的重建算法,上海交通大学学报,1999(9):1131-1136
    [52] 陆仁枝,宋志坚,CT序列图像分割的实现及分割结果的重建,计算机工程,2003(13):152-154
    [53] 姚振强,王成焘,从股骨横截面CT片获取股骨纵向剖面轮廓,医用生物力学,1997(3):138-142
    [54] 黎明,王厚枢,三维CT图象自动分割法,南京航空航天大学学报,1996(3):413-418
    [55] 顾本立,陆李,极少投影的CT成象研究,CT理论与应用研究,1994(2):14-17
    [56] 孙中原,张继武等,一种基于形态学方法优化的种子填充算法及其在脑组织CT影像自动分割中的应用,中国临床医学影像杂志,2002(6):384-432
    [57] 谢红,张树生,张定华,杨彭基,一种基于ICT的工件模型三维重建方法,航空学报,1997,18(5):599-602
    [58] 王广,张树生,王健,张定华,基于ICT图像的实体建模研究,制造业自动化,1999,21(3):20-23
    [59] 谢红,张定华,张树生,杨彭基,基于ICT和RP&M的计算机辅助产品快速仿制系统研究,西北工业大学学报,1997,15(4):11-14
    [60] 汪鹏,面向装配体的ICT计算机仿真及相关技术研究,西北工业大学硕士论文,2003.04
    [61] 宋学医,CT仿真软件的算法分析与计算机实现,西北工业大学学士论文,2000.07
    [62] A.B.Della Rocca, S.Ferriani, L.La Porta, Radiographic Process Simulation by Integration of Boltzmann Equation on SIMD Architecture, HPCN Europe, 1996:460-466
    [63] A.Bonin, B.Chalmond, et al, Monte-Carlo simulation of industrial radiography images and experimental designs, NDT&E International, 2002, 35(8): 503-510
    [64] H. Ikeda, N. Hayashi, Three-dimensional image synthesis of MRI and CT angiography on an image-guided neurosurgical simulation system, Clinical Neurology and Neurosurgery, 1997, 99(S1): S221-S222
    [65] Avinash C. Kak, Malcolm Slaney, Principles of Computerized Tomographic Imaging, IEEE PRESS, 1987
    [66] Feyzi Inanc, ANALYSIS OF X-RAY AND GAMMA RAY SCATTERING THROUGH COMPUTATIONAL EXPERIMENTS, Iowa State University Center for Nondestructive Evaluation
    [67] Feyzi Inanc, A CT Image based deterministic approach to dosimerty and radiography simulation, Phys.Med.Biol, 2002(47): 3351-3368
    [68] Feyzi Inanc, Scattering and its role in radiography simulations, NDT&E International, 2002, 35(8): 581-593
    [69] G.R.Tillack, C.Bellon, C.Nockemann, Computer Simulation of Radiographic Process-A Study of Complex Component and Defect Geometry, http://www.cnde.iastate.edu/qnde/database/Vol.14A/p0665-0672.html
    [70] Alexander Flisch, Joachim Wirth, Robert Zanini, et al, Industrial Computed Tomography in Reverse Engineering Applications, Computerized Tomography for Industrial Applications and Image Processing in Radiology, 1999, Berlin, Germany
    [71] N.Schuhmann, H.Okruch, Industrial application of Computerized Tomography, Computerized Tomography for Industrial Applications and Image Processing in Radiology, 1999, Berlin, Germany
    [72] D.Dastarac, Industrial Computed Tomography at TOMO ADOUR: Control and digitizing, Computerized Tomography for Industrial Applications and Image Processing in Radiology, 1999, Berlin, Germany
    [73] D.W.O.Rogers, Monte Carlo Techniques in Radiotherapy, Physics in Canada Medical Physics Special Issue, 2002, 58(2):63-70
    [74] James M.Galvin, Colin Sims, et al, The use of digitally reconstructed radiographs for three-dimensional treatment planning and CT-simulation, Int.J.Radiation Oncology Biol.Phys, 1995, 31(4): 935-942
    [75] Jose Baruchel, Jean-Yves, et al, X-Ray Tomography in Material Science, HERMES Science Publications, Paris, 2000
    [76] Mattew Nguyen, A Simulation of a Proposed Technique for Medical Imaging, http://www.slac.stanford.edu/grp/th/erulf-sise/1999/nguyen/nguyen.pdf
    [77] 吴维敏,曾建潮,一种面向对象的混合动态系统的仿真环境,系统仿真学报,2000,12(3):178-181
    [78] 王正中,复杂系统仿真方法及应用,计算机仿真,2001,18(1):3-6
    [79] 谢黎明,孙元涛,面向对象仿真与建模特点,甘肃工业大学学报,2002,28(1):35-38
    [80] Chun-Li Lin, Huey-Er Lee, Chau-Hsiang Wang, Keng-Hua Chang, CAD system and finite element method to investigate interfacial stresses of resin-bonded prosthesis, Computer Methods and Programs in Biomedicine, 2002
    [81] M.B.Aufderheide, H.Vantine, X-ray imaging and reconstruction of a detonation front, Nuclear Instruments and Methods in Physics Research, 1999, 422(1):704-708
    [82] D.Lazos, Z.Kolitsi, A Software Data Generator for Radiographic Imaging, IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2000, 4(1):76-79
    [83] F.Inanc, J.N.Gray, Human body radiography simulations: development of a virtual radiography environment, Proceedings of the SPIE Conference on physics of Medical Imaging, 1998, Vol.3336
    [84] A.B.Della Rocca, S,Ferriani, Computer simulation of the radiographic image forming process: implementation and applications, NDT&E International, 1995, 28(3): 163-170
    [85] A.Gli e re, SINDBAD: From Cad Model to Synthetic Radiographs, http://www.cnde.isatate.edu/qnde/database/tmp-qnde17a/SINDBAD.htm
    [86] Conway Yee ScD, Software to Understand Image Reconstruction in Computerized Tomography, http://www.ctsim.org/CompTomo.pdf
    [87] N.Schuhmann, H.Okruch, Industrial application of Computerized Tomography, Computerized Tomography for Industrial Applications and Image Processing in Radiology, 1999, Berlin, Germany
    [88] Nicolas Freud, Philippe Duvauchelle, Daniel Babot, Simulation of X-Ray NDT Imaging Techniques, 15th World Conference on Non-Destructive Testing, 2000, Rome
    [89] P.Hammersberg, M. Nangard, Optimal Computerized Tomography Performance, Computerized Tomography for Industrial Applications and Image Processing in Radiology, 1999, Berlin, Germany
    [90] P.Hugonnard, A.Gliere, X-ray simulation and applications, Computerized Tomography for Industrial Applications and Image Processing in Radiology, 1999, Berlin, Germany
    [91] Paul S.Cho, Karen L.Lindsley, et al, Digital radiotherapy simulator, Computerized Medical Imaging and Graphics, 1998, 22(1): 1-7
    [92] Philippe Duvauchelle, Nicolas Freud, et al, A computer code to simulate X-ray imaging techniques, Nuclear Instruments and Methods in Physics Research B, 2000, 170(1):245-258
    [93] T.Grassler, K.-E.Wirth, X-ray Computed Tomography in Mechanical Engineering-A Non-intrusive Technique to Characterize Vertical Multiphase Flows, Computerized Tomography for Industrial Application and Image Processing in Radiology, 1999, Berlin, Germany
    [94] 王召巴,基于面阵CCD相机的高能X射线工业CT技术研究,南京理工大学博士学位论文,2001.01
    [95] 张江平,吕俊芳,面向对象仿真建模的研究,航空计测技术,2001,21(6):1-16
    [96] Marjolein van der Glas, Principles of Computerized Tomographic Imaging, http://www.ph.tn.tudelft.nl/~marlein/pdf/CT.pdf
    [97] Fath El Alem F. Al I, Zensho Nakao et al, Two new neural network approaches to two-dimensional CT image reconstruction, Fuzzy Sets and Systems 103(1999): 295-302
    [98] Zhao Yongjie The Research Report on the Industrial CT(ICT), CT Theory and Applications, 2002(S9):95-99
    [99] 吴胜勇,多层螺旋CT的技术概况,GE《医疗杂志》,2000(4)
    [100] 张杨中,中国航天用固体火箭发动机简介(一~六),中国航天,1999(4-9)
    [101] Kenneth M. Hanson, George W. Wecksung, Bayesian approach to limited-angle reconstruction in computed tomography, Journal of the Optical Society of America, 1983 (73): 1501-1509
    [102] A.V.Likhachov, V.V.Pickalov, et al, Development of Iterative Algorithms for Industrial Tomography, 1st World Congress on Industrial Process Tomography, 1999,
    [103] R.M. Rangayyan, R. Gordon, Streak preventive image reconstruction with ART and adaptive filtering, IEEE Trans. Med. Imag., 1982(1): 173-178
    [104] Klaus Mueller, Roni Yagel, The Weighted Distance Scheme: A Globally Optimizing Projection Ordering Method for ART, Transactions on Medical Image, 1997(2): 1-14
    [105] Kenneth M. Hanson, On the Optimality of the Filtered Backprojection Algorithm, Journal of Computer Assisted Tomography, 1980 (3):361-363
    [106] A. Filiz Baytas, The projection map interpolation in parallel beam gamma-ray computed tomography, Applied Radiation and Isotopes, 1999 (51): 717-724
    [107] 钟至刚,梅雁诚,不完全投影数据的最大熵重建,武汉大学学报,1992(3):48-54
    [108] Gerald Minerbo, MENT: A Maximum Entropy Algorithm for Reconstruction a Source from Projection Data, Computer Graphics and Image Processing, 1979(10): 48-68
    [109] 陈韶华,少数投影最大熵重建的数值模拟,量子学报,2000(6):557-561
    [110] 王延平,钟志刚等,图像重建中规定直方图约束与最大熵方法比较,武汉大学学报,1993(3):35-41
    [111] Wang Yanping, Li Han, et al, A new iterative method with histogram equalization constraint for reconstructing image from phase, IEEE ICASSP, 1987:1191-1194
    [112] Tian J. Wang, T.W. Sze, The image moment method for the limited range CT image reconstruction and pattern recognition, Pattem Recognition 34 (2001): 2145-2154
    [113] S. Iwasaki, S. Odanaka et al, New CT Image Reconstruction based on Bayes Estimation, Nuclear Instruments and Methods in Physics Research A 449(2000): 366-377
    [114] 邹国辉,袁保宗,基于双代数的物体投影重建方法,北方交通大学学报,2000(3):9-13
    [115] 于至伟,汪元美,最大熵重建的迭代凸Ⅰ投影算法,电子学报,1997(4):59-62
    [116] 龙永新,王洪玉,基于神经优化的图像重建算法,浙江大学学报,1999(5):534-531
    [117] Xiao Feng Ma, Makoto Fukuhara, et al, Neural network CT image reconstruction method for small amount of projection data, Nuclear Instruments and Methods in Physics Research A 449 (2000): 366-377
    [118] G.T.Herman, Image Reconstruction from Projections, Real-Time Imaging, 1995(1):3-18
    [119] 张庆治,战术导弹用火箭发动机近期发展动向,弹箭技术,1994:25-32
    [120] 隋玉堂,杨兴根,火箭发动机界面脱粘分析与检测新方法,飞航导弹,2001(1):43-46
    [121] 李孝安,张晓奎,神经网络与神经计算机导论,西北工业大学出版社,1994.10
    [122] Edzard S. Gelsema, Laveen N. Kanal, Pattern recognition and artificial intelligence, proceedings of an international workshop held in Amsterdam, May 18-20, 1988
    [123] Henry Markram, Misha Tsodyks, The Information Content of Action Potential Trains-A Synaptic Basis, Proceedings of Int. Conference on Artificial Neural Networks, 1997:13-23
    [124] K.D. Kihm, K. Okamoto, Adoption of a genetic algorithm (GA) for tomographic reconstruction of line-of-sight optical images, Experiments in Fluids, 1996 (22): 137-143
    [125] Peter Knoll, S. Mirzaei, Validation of a parallel genetic algorithm for image reconstruction from projections, Journal of Parallel and Distributed Computing, 2003 (63): 356-359
    [126] Catrinel-Octavia Turcanu, Teddy Craciunescu, A genetic approach to limited data tomographic reconstruction of time-resolved energy spectrum of short-pulsed neutron sources, Pattern Recognition Letters, 2002(23): 967-976
    [127] Shuangbao Wang, Jim X. Chen, Genetic Algorithm and Data Visualization,
    [128] Khaled Rasheed, Haym Hirsh, Guided Crossover: A New Operator for Genetic Algorithm Based Optimization, Proceedings of the Congress on Evolutionary Computation, 19970:
    [129] Michalewicz, Z., Genetic Algorithms+Data Structures=Evolution , Programs. Springer, 1996, Berlin.
    [130] Hartmut Pohlheim, GEATbx: Genetic and Evolutionary Algorithm Toolbox for use with MATLAB, Version 1.91, July 1997
    [131] H.M.Hamdan, E.E.Hemayed, A Fast 3D Object Reconstruction Using Trinocular Vision and Structure Light, Proc. of SPIE, 1998(3522):414-423
    [132] Wenjian Wang, William G. Wee, et al, Volume Segmentation of the Visible Human CT Data Set,
    [133] Matthieu Ferrant, Physics-based Deformable Modeling of Volumes and Surfaces for Medical Image Registration: Segmentation and Visualization, doctor degree thesis in Universit_e catholique de Louvain, 2001.04
    [134] Matthieu Ferrant, Simon K. Warfieldl, 3D Image Matching Using a Finite Element Based Elastic Deformation Model,
    [135] Olivier CUISENAIRE, Distance Transformations: Fast Algorithms and Applications to Medical Image Processing, doctor degree thesis in Universit_e catholique de Louvain, 1999.10
    [136] Alex Noort, Geoffry F.M. Hock, et al, INTEGRATING FEATURE-BASED PART AND ASSEMBLY MODELLING
    [137] 潘东,张申生,步丰林,基于装配的并行设计辅助系统,计算机辅助设计与制造,1996,(7):41~45
    [138] M. Ferrant, S.K. Warfield, et al, 3D Finite Element Based Elastic matching, 1998
    [139] Karl Heinz Hohne, William A. Hanson, Interactive 3D Segmentation of MRI and CT Volumes using Morphological Operations, Journal of Compter Assisted Tomography, 16(2):285-294
    [140] Thomas Schiemann, Michael Bomans, Interactive 3D-Segmentation, Visualization in Biomedical Computing Ⅱ, 1992
    [141] Otto-Carl Marte, Patrick Marais, Model-based Segmentation of CT Images,
    [142] Ruzica Maksimovic, Srdjan Stankovic, Computed tomography image analyzer: 3D reconstruction and segmentation applying active contour models—'snakes', International Journal of Medical Informatics, 2000 (58): 29-37
    [143] Yao Lin, Jie Tian, et al, Image Segmentation via Fuzzy object extraction and Edge Detection and its Medical Application, Journal of X-ray Science and Technology, 2001, 10( 1-2): 95-106
    [144] 王广,张树生等,装配体ICT图像的内外边界识别研究,机械科学与技术,1999(4):620-622
    [145] Lee K, Gossard D C, A hierarchical data structure for representing assemblies: part 1, CAD, 1985(1): 15-19
    [146] Lee K, Andrews G. Inference of the positions of components in an assembly: part 2. CAD, 1985(1): 20-24
    [147] Kim S H, Lee K. An assembly modeling system for dynamic and kinematics analysis. CAD, 1989(1): 2-12
    [148] Shah J J, Tadepalli R. Feature based assembly modeling. Computer engineering, 1992, (1): 253-160
    [149] Shah J J, Rogers M T. Assembly modeling as an extension of feature-based design. Res Engineering, 1993 (5): 218-237
    [150] Anantha Ram, Kramer Glenn A, Crawford Richard H. Assembly modeling by geometric constraint satisfaction. CAD, 1996 (9): 707-722
    [151] Sodhi Rajneet, Turner Joshua U. Towards modeling of assemblies for product design. CAD, 1994(2): 85-97
    [152] 宋玉银,蔡复之等,面向并行工程的产品装配模型,清华大学学报,1999(4):49-52
    [153] 庄晓,周雄辉,虚拟环境下的产品快速装配建模,虚拟制造技术,
    [154] 基于数学形态学的边缘检测和图像分割方法,http://www.jicheng.net.cn/solution/auto_news/wenjiaokeyan/1001753.html
    [155] Marko, Subasic, Sven Loncaricl, Shape-Specific Adaptations for Level-Set Deformable Model-Based Segmentation,
    [156] Darryl N. Davis, Kalyan Natarajan, Object demarcation in CT and MRI images of the brain,
    [157] J.C. Carr, R. K. Beatson, et al, Reconstruction and Representation of 3D Objects with Radial Basis Functions
    [158] 谢红,张定华等,基于ICT的CAD建模技术中切片采样问题的探讨,机械科学与 技术,1998(1):145-147
    [159] Y. Bresler et al., A Bayesian approach to reconstruction from incomplete projection of a multiple object 3D domain, IEEE Trans. on Patt. Anal. Match. Intel., Vol. 11, No.8, 1989
    [160] D.Meyers, S. Skiner, K. Sloan, Surfaces from contours, ACM Trans. Graphics, Vol.11, No. 3: 228-258, 1992
    [161] B.I. Soroka, Generalized cones from serial sections, 1981
    [162] Y.F. Wang and J.K, Aggarwal, Surface reconstruction and representation of 3D scenes, Pattern Recognition, Vol. 19, No.3, 197-207, 1986
    [163] 王静,产品层析图像的轮廓匹配技术研究,西北工业大学硕士论文,2001.04
    [164] H.N. Christiansen and T.W. Sederberg, Conversion of complex contour line definitions into polygonal element mosaics, Computer Graphics, Vol. 12, 1978
    [165] M. Shantz, Surface definition for branching contour-definition objects, Computer Graphics, Vol. 15, No.2, 1981
    [166] Fausto Bernardini, Chandrajit L. Bajaj, et al, Automatic Reconstruction of 3D CAD Models from Digital Scans,
    [167] Chandrajit L. Bajaj, Guoliang Xu, MODELING SCATTERED FUNCTION DATA ON CURVED SURFACES
    [168] Thomas W. Sederberg, Krzysztof S. Klimaszewski, and Mu Hong, Triangulation of Branching Contours using Area Minimization, International Journal of Computational Geometry&Applications, 1997:1-17
    [169] Tatiana Surazhsky, et al, Blending Polygonal Shapes With Different Topologies, Computers and Graphics, 2001, 25(1): 13-27
    [170] E.Keppel, Approximating Complex Surfaces by Triangulation of Contour Lines, IBM J.Res.Dev, Vol. 19.1975
    [171] H. Fuchs, Z.M.Kedem and S.P. Uselton, Optimal surface reconstruction from planar contours, Communications of the ACM, Vol.20, No. 10, 1977
    [172] K.R. Sloan and J. Painter, Pessimal guesses may be optimal: a counterintuitive search result, IEEE Trans. on Part. Anal. Mach. Intell., Vol.10, No.6, 1988
    [173] Y. Shinagawa and T. L. Kunii, The homotopy model: a generalized model smooth surface generation from cross sectional data, The Visual Computer, Vol.7, 1991
    [174] N. Covavisaruch , T. Tanatipanond, Deformable Contour for Brain MR Images by Genetic Algorithm: From Rigid to Training Approaches, Image and Vision Computing New Zealand 1999 (IVCNZ '99): 7-12
    [175] N. Kehtarnavaz, L. R. Simar, et al, A syntactic/semantic technique for surface reconstruction from cross-sectional contours, 1988(42):399-409
    [176] A.B. Ekoule, F. C. Peyrin, et al, A triangulation algorithm from arbitrary shaped multiple planar contours, ACM Trans, Graphics, 1991(2):182-199
    [177] S. Ganapathy and T. G. Dennehy, A new general triangulation method for planar contours, Computer Graphics, Vol. 16, 1982
    [178] G. Barequet, M. Sharir, Piecewise-linear interpolation between polygonal slices, Proc. 10th Annu, ACM Sympos, Comput. Geom,1994:93-102
    [179] C. Gitlin, J. O'Rourke, et al, On reconstruction of polyhedra from parallel slices, International Journal of Computational Geometry & Applications, 1996 (6): 103-122
    [180] C.L. Bajaj, Edward, Tetrahedral Meshes From Plannar Cross Section
    [181] 格雷厄姆,人工智能使机器“思维”,机械工业出版社,1985.4
    [182] Jason Wood, Ken Brodlie, et al, Visualization Over The WWW And Its Application To Environmental Data,
    [183] Jason Wood, Helen Wright, et al, Collaborative Visualization,
    [184] Nuha H.El-Khalili, Surgical Training on the World Wide Web,
    [185] Daniel M. Gaines, Caroline C. Hayes, Custom-Cut: a customizable feature recognizer, Computer-Aided Design 1999 (31): 85-100
    [186] J.J. Shah, D.S. Nau, Multi-view feature modeling for design and assembly, Advances in Feature Based Manufacturing, Chapter 14, 315-330
    [187] 许颖原,俞金寿,知识自动获取技术中知识库的操作和维护,计算机应用,2000(5):43-46
    [188] 陈正鸣,高曙名,基于局部特征识别的特征有效性维护方法,2002(4):552-560
    [189] 李洪磊,基于数据库的专家系统建设,计算机系统应用,2000(2):16-18
    [190] Laszlo G..Nyul, Alexander X.Falcao, Fuzzy-connected 3D image recognition, Graphical Models, 2003 (64): 259-281
    [191] Roberto S.U.RossoJr, R.D.Allen, Feature Issures for CAD/CAM and Intellegent CNC Manufacture,
    [192] 王波,宋长新,自动特征识别的新方法,西安交通大学学报,2002(8):806-809
    [193] 黄玉雄,机械产品,物资出版社,1985
    [194] 余志豪,王祖铭,机械产品造型设计,机械工业出版社,1992
    [195] 孙宏伟,XML与RDB多层次双向数据集成技术研究,西北工业大学博士论文,2003.07
    [196] W.C. Lin and S.Y. Chen, A new surface interpolation technique for reconstruction 3D objects from serial cross-section, 1989
    [197] Reinhard Klein, Andreas Schilling, et al, Reconstruction and simplification of surfaces from contours, http://www.gris.uni-tuebingen.de
    [198] Sakari Alenius, Reconstruction from projections, DIGITAL IMAGE PROCESSING Ⅲ, 2002
    [199] Klaus Muellerl, Roni Yagel, The Weighted Distance Scheme: A Globally Optimizing Projection Ordering Method forART, Transactions on Medical Image, 1997 (2): 1-14
    [200] William J. Schroeder, Kenneth M. Martin, et al The Design and Implementation Of An Object-Oriented Toolkit For 3D Graphics And Visualization, GE Corporate Research & Development, 2000:1-9
    [201] W.J. Schroeder, W. E. Lorensen, et al, VISAGE: An Object-Oriented Visualization System., Proc. of Visualization, 1992:219-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700