虚拟CT系统成像过程仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟CT系统能够设计和优化系统的装配性能参数,辅助硬件系统的设计和优化,同时对实际实验中的参数预设提供了一个指导性的意见,为重建精度和质量分析提供先进的CT非接触无损检测手段和关键技术,因此其仿真技术逐渐成为学者们研究的热点。本文正是以虚拟CT系统为研究对象,对虚拟CT系统成像过程的物理特性进行深入挖掘刻画,并将其融入CT成像过程仿真中,建立更能逼真反映实际CT成像过程的仿真模型,进而为虚拟CT系统研究提供可靠的数据支撑,提升虚拟CT系统的实际应用性。
     首先,在分析CT成像与仿真的原理基础上,对X射线产生过程进行了仿真;并以此为基础,分析CT成像系统中X射线的连续谱分布、材料衰减系数与射线的能量之间的关系、射线源焦点尺寸等物理因素对投影过程的影响,并将此类物理因素融入投影过程仿真模型,提出了基于连续X射线谱的投影仿真算法。在投影仿真模型的实现过程中采用了自适应辛普生能谱抽样技术,该技术可以根据X射线的谱分布的走势自适应离散求和,从而在仿真精度及速度上有较大提高。
     其次,在X射线CT成像过程中,由于散射影响,其图像的对比度降低,边缘模糊,为此在虚拟CT系统中应融合散射仿真模块,以便更逼真地反应实际CT系统的成像过程。本文根据X射线与物质相互作用与否以及散射对CT图像的影响,提出了一种脱离投影过程的简便有效的散射过程仿真技术——基于ICA图像融合的虚拟CT系统散射仿真技术。该技术是利用ICA图像融合技术,实现无散射CT图像和根据先验信息以及散射退化模型所确立的散射图像之间的融合,进而实现虚拟CT系统散射过程仿真。
     最后,通过仿真实验对上述仿真方法进行验证。实验表明:上述X射线产生过程、投影过程以及散射过程的仿真方法具有一定的可行性,能逼真地反映真实CT成像过程,进而为整个虚拟CT系统研究提供了可靠数据支撑。
Virtual CT (Computed Tomography) simulation system become research focus, because it can design and optimize assembly performance parameter of the CT system, help design and optimize the hardware system, provide instructive suggestions for parameter hypothesis in the actual experiment, provide the method and key techniques of non-contact CT detection for the reconstruction precision and quality analysis. By taking virtual CT system as research object, this paper extracts and depicts the physical properties for virtual CT system imaging process. Then this paper integrates these physical properties into the procession simulation of virtual CT imaging, and establishes the simulation model which realistically reflect the actual the process of CT imaging. This model can provide the credible data for the research of visual CT system, and upgrade the applicability of virtual CT system.
     Firstly, based on analyzing the principle of CT imaging and simulation, the emission process of X-ray is simulated. By taking this simulation result as basic, some physical factors of CT imaging system are analyzed and integrated into the simulation model of projection process, which are the distribution of X-ray spectrum, the interaction with material’s attenuation coefficient and the X-ray energy, the influence of radiation source focus size in radiography, and so on. Then the simulation algorithm, based on consecutive spectrum, is presented. In the realization process of projection simulation, the method of spectrum sampling is adopted based on adaptive Simpson. This method can adaptive add the spectrum according to the uptrend of energy spectrum distribution. So it can improve the precision and speed of simulation.
     Secondly, in the process of X-ray CT imaging, because of the impact of scatter, the contrast of CT image becomes low, the edge of CT image blur. So in the visual CT system, it is necessary that scatter is simulated, which can realistically reflect the actual the actual CT imaging system. This paper offer a handy and effective scatter process simulation method, which is the method of scatter simulation about virtual CT system, based on images fusion using ICA (Independent Component Analysis), according to the interaction with substances and X-ray and scatter impact for CT image. This method use ICA image fusion to realize images fusion, which are scatter-free image and scatter image, which are established by prior information and the model of scatter degradation. So the scatter process simulation about virtual CT system is realized.
     At last, the above simulation method is validated by simulation experiment. The results show the simulation method of X-ray emission, projection process and scatter process is viable. It realistically reflects the actual CT imaging system, and offers the credible data for the research of visual CT system.
引文
[1] A.B.Della Rocca, S.Ferriani, L.La Porta. Radiographic Process Simulation by Integration of Boltzmann Equation on SIMD Architecture[J]. HPCN Europe, 1996: 460-466.
    [2] H.Ikeda, N.Hayashi. Three-dimensional image synthesis of MRI and CT angiography on an image-guided neurosu rgical simulation system[J]. Clinical Neurology and Neurosur gery, 1997, 99(SI):S221-S222.
    [3]卢照金, X射线数字图像降质因素分析[D],中北大学硕士学位论文, 2006:4-5.
    [4]王国权,虚拟试验测试技术[M],北京:电子工业出版社, 2004:15-16.
    [5] Kevin M.Rosenberg. CTSim: The Open Source Computed Tomography Simulator [DB/OL]. http://www.ctorg.com, 2004.
    [6] Center for Nondestructive Evaluation Iowa State University. XRSIM USERS MANUAL [DB/OL]. http://www.cnde.iastate.edulncce/RT CC/Sec.6.5/Manual499.PDF.
    [7] Feyzi Inanc. ANALYSIS OF X-RAY AND GAMMA RAY SCATTERING THROUGH COMPUTATIONAL EXPERIMENTS[J]. Iowa State University Center for Nondestruc- tive Evaluation, 2002,18:1311-1322.
    [8] Feyzi Inanc. A CT Image based deterministic approach to dosimerty and radiography simulation[J]. Phys.Med. Biol, 2002(47): 3351-3368.
    [9] Feyzi Inane. Scattering and its role in radiography simulations. NDT&E International[J],2002, 35(8): 581-593.
    [10] G.R.Tillack, C.Bellon, C.Nockemann. Computer Simulation of Radiographic Process-A Study of Complex Component and Defect Geometry[DB/OL]. http://www.cnde.instate. edu/qnde/data/basel Vol.14A/p0665-06'I2.html.
    [11] A P Colijn, W Zbijewski, A Sasov, et al. Experimental Validation of a Rapid Monte Carlo Based Micro-CT Simulator[J]. Phys. Med. Biol, 2004, 49 (18): 4321-4333.
    [12] D.W.O.Rogers. Monte Carlo Techniques in Radiotherapy[J]. Physics in Canada Medical Physics Special Issue, 2002, 58(2):63-70.
    [13] Alexander Flisch Joachim Wirth, Robert Zanini, et al. Industrial Computed Tomography in Reverse Engineering Applications[J]. Computerized Tomography for Industrial Appli- cations and Image Processing in Radio 1999, Berlin, Germany, 189-192.
    [14] P Hugonnard, A Gliere, X-Ray simulation and applications[J]. Computerized Tomogra- phy for Industrial Applications and Image Processing in Radiology, 1999:220-227.
    [15] MR AY, S Sarkar, M Shahriari, et al. MCNP4C-based Monte Carlo simulator for fan- and cone-beam X-Ray CT:development and experimental validation[J]. Phys. Med. Biol.2005, 50 (20):4863-4885.
    [16] Claire McCann, CT Simulation and Hamideh Alasti[J]. Comparative Evaluation of Image Quality from Three Scanners. J. Annlied Clinical Medical Physics. 2004, 5(4): 55-70.
    [17] WR Nelson, H Hirayama and LDWO Rogers. The EGS4 Code System[DB/OL]. http:// www.slae. stanford.edu lpubs/slacreports/slat-r-265.htmf.
    [18] JM Merbach. Simulation of X-ray Projections for Experimental 3D Tomography[D]. Link Oping University, 1996:230-237.
    [19] C Cagnon, M Mcnitt-Gray. Simulation of C'I Scanner Geometry and Physics using Monte Carlo Methods[DB/OL]. http://www.medphysics.ucla.eduiresearch. California University.
    [20]康克军,毛希平,刘亚强.在一维和三维CT图像重建理论方法的研究工作及新进展[J]. CT理论与应用研究. 1997, 6(2):48-51.
    [21]秦中元,牟轩沁,王平等.一种通用的X射线锥形束投影生成算法[J].西安交通大学学报. 2002, 36(2):160-164.
    [22]杨民,路宏年,张莉.分层层析成像中典型构件数字投影计算机仿真[J].兵工字报. 2003, 24(2):180-183.
    [23]江鹏.面向装配体的CT计算机仿真及相关技术研究[D].西北工业大学硕士学位论文. 2003:38-42.
    [24]宋学医. CT仿真软件的算法分析与计算机实现[D].西北工业大学硕士学位论文. 2000,42-45.
    [25]湛飘,庄天戈.锥形束X线直接体积成像的理论研究[J].上海交通大学学报. 1997, 31(4):72-76.
    [26]张丰收,张定华,赵散波,等.航空发动机涡轮叶片CBVCT系统的设计[J].机床与液压. 2005,5(3):32-34.
    [27]张定华, Ruola Ning,卜昆等.体积CT系统中的平板探测器校正方法[J].仪器仪表学报. 2005,26( 2 ):157-163.
    [28]毛海鹏,张定华,梁亮等.一种基于PC的快速三维图像重建方法[J].系统仿真学报. 2004, 16(11):2486-2489.
    [29]程云勇,张定华,赵欲波等.涡轮叶片锥束体积CT检测系统软件原型[J].中国机械工程. 2005,16(20):1835-1839.
    [30] Merbach J M. Simulation of X-ray projections for experimental 3D tomography[R]. Link, Sweden: Image Processing Lab, Dept of Electrical Engineering 1996.
    [31]秦中元,牟轩沁,王平等.一种通用的X射线锥束投影生成算法[J].西安交通大学学报. 2002, 36(2): 160-164.
    [32]黄魁东,锥束CT仿真系统关键技术研究[D],西北工业大学硕士学位论文,2006, 14-17.
    [33] D.Lazos, Z.Kolitsi. A Software Data Generator for Radiographic Imaging[J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2000, 4(1):76-77.
    [34]汤少杰,牟轩沁,闫浩.基于医学X射线成像物理模型的模体投影仿真计算[J].西安交通大学学报. 2006, 40(8): 901-905.
    [35]黄魁东.锥束CT仿真系统关键技术研究[D].西北工业大学硕士学位论文. 2006:14-17.
    [36] (美)无损检测学会编.美国无损检测手册射线卷.上海:世界图书出版公司. 1992: 15-16.
    [37]刘德镇.现代射线检测技术[M].北京:中国标准出版社. 1999:52-109.
    [38]李家伟,陈积慰.无损检测手册,北京:机械工业出版社. 2002:20-22.
    [39] Avinash C.Kak, Malcolm Slaney. Principles of computerized tomography imaging[J]. IEEE PRESS, 1988:15-20.
    [40] Wang Yanping, Li Han, ea al. A new iterative method with histogram equalizationconstraint for reconstructing image from phase. IEEE ICASSP, 1997:1191-1194.
    [41] LA Feldkamp, LC Davis and JW Kress. Practical Cone-beam Algorithm. J. Opt. Soc. Am. A. 1984, 1(6):612-619.
    [42]张江平,吕俊芳.面向对象仿真建模的研究[J].航空计测技术. 2001, 21(6):1-16.
    [43]中国机械工程学会无损检测分会编.射线检测[M].北京:机械工业出版社. 1997: 220-227.
    [44] Halmshaw. Industrial Radiography, Theory and practice, Applied Science[M]. 2000: 300-313.
    [45] Bonin A, Chalmond B. Moderato: a Monte Carlo radiographic simulation[J]. Rev Prog Quantitative Non Destruct Eval. 1999,19:66-71.
    [46] ICRP ( The International Commission on Radiological Protection ) [DB/OL]. ICRP 51: Data For Use in Protection Against External Radiation. March. 1987.
    [47]中华人民共和国国家军用标准.工业射线层析成像(CT)检测[M].北京:国防科学技术工业委员会. 2000:132-139.
    [48] J. M. Boone and J. A. Seibert. An accurate method for computer-generating tungsten anode x-ray spectra from 30 to140 kV[J]. Med Phys. 1997, 24:1661-1670.
    [49] D. M. Tucker, G. T. Barnes, and D. P. Chakraborty. Semi-empirical model for generating tungsten target x-ray spectra[J], Med Phys. 1991,18:211-218.
    [50] M. R. Ay, M. Shahriari, S. Sarkar, M. Adib, and H. Zaidi. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C[J], Phys Med Biol, 2004,49:4897-4917.
    [51] F. Salvat and J. M. Fernandez-Varea. Nucl Instrum[J]. Methods Phys. 1992, 63:255-259.
    [52] Salvat, F, Ferna′ndez-Varea, J.M. Semi-empirical cross-sections for the simulation of the energy loss of electrons and positrons in matter[J]. Nucl. Instrum. Meth. 1992, 63:255- 269.
    [53] Salvat, F, Fernandez-Varea, J.Sempau, X.Llovet. Monte Carlo simulation of bremsstrah- lung emission by electrons[J]. Radiation Physics and Chemistry. 2006,75:1201-1219.
    [54] Walter R. Nelson et al. The EGS4 Code System[R], SLAC-265, UC-32(E/I/A), 1985.
    [55]黄昆.固体物理学[M].北京:人民教育出版社,1979:325-337.
    [56]姚允龙.数学分析[M].上海:复旦大学出版社. 2002: 195-199.
    [57] D.Lazos, Z.Kolitsi. A Software Data Generator for Radiographic Imaging[J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2000, 4(1):76-77.
    [58]王国荣,俞耀明,徐兆亮.数值分析[M].北京:机械工业出版社. 2005:405-406.
    [59]谢忠信,赵宗铃等. X射线光谱分析[M].北京:科学出版社. 1982:49-51.
    [60]王建邦.大学物理学(第二卷近代工程物理)[M].北京:机械工业出版社. 2003: 141-143.
    [61]日本无损检测协会著,李衍译.射线探伤B[M],北京:机械工业出版社, 1988
    [62]任大海,尤政,孙长库,叶声华.射线成像检测中射线源焦点的影响及修正[J].光学技术. 1999,11(6):48-50.
    [63]谷建伟,张丽,陈志强等.基于投影的CT图像金属伪影非线性权重校正[J].清华大学学报(自然科学版), 2006,6(19):122-129.
    [64] Dyson.N.A. X-rays in Atomic and Nuclear Physics[M], 2nd Edition, Cambridge University Press, New York, 1990:39-45.
    [65] Daphne. F. Jackson and Albelrt. Macovski. Energy-selective Reconstructions in X-ray Computerized Tomography[J]. Phys.Med.Biol. 1976, 21(5):733-744.
    [66] John M. Boone:Scatter correction algorithm for digitally acquired radiographs: Theory and result[J]. Med.Phys. 1986,13(3):319-328.
    [67] L. A. Love and R. A. Kruger. Scatter estimation for digital radiographic system using convolution filtering[J]. Med.Phys. 1987,14: 178-185.
    [68] J.H.Siewerdsen and D.A.Jaffray. Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter[J]. Med. Phys. 2001, 28(2):220-331.
    [69] G.H.Glover. Compton scatter effects in CT reconstruction[J]. Med. Phys.1982,9: 860-867.
    [70] Jiang Hsieh著,张朝宗等译.计算机断层成像技术原理、设计、伪像和进展[M].北京:科学出版社, 2006:236-245.
    [71]杨福生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社. 2006:128-139.
    [72]马建仓,牛奕龙,陈海洋.盲信号处理[M].北京:国防工业出版社. 2006:223-235.
    [73] Hyvarinen, Erkki Oja. Independent component analysis: algorithm and applications[J]. Neural Networks. 2000, 13(45):411-430.
    [74] M. E. Davies, C. J. James. Source separation using single channel ICA[J]. Signal Process. 2007, 10:1016-1020.
    [75]李小春,陈鲸.基于变化检测的多时相图像的融合算法[J].计算机应用. 2005,25(6): 1310 -1315.
    [76]李可,闰镇,单保慈.功能磁共振图像处理的ICA方法综述[J].中国图像图形学报. 2005, 10(5): 561-566.
    [77] Liu.M.B, Liu.G.R and Lam.K.Y. Constructing smoothing functions in smoothed particle hydrodynamics with applications[J]. J. Comput. Appl. Math. 2003,155:263-84.
    [78] Hengyong Yu, Shiying Zhao and Ge Wang. A differentiable Shepp-Logan phantom and its applications in exact cone-beam CT[J]. Phys.Med.Biol. 2005, 50:5583-5595.
    [79] Canny J. A Computational Approach to Edge Detection[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1986, 6:679-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700