节理岩体抗剪强度参数研究及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国经济社会的持续快速健康发展以及西部大开发战略的持续实施,我国特别是西部地区、西南地区涉及岩石力学的基础设施工程建设越来越多,投资额也越来越大,与此同时,工程界对于岩石力学的研究还不够深入,还有诸多问题有待研究,以解决工程实际问题,比如如何合理的考虑节理裂隙对岩体的力学性质的影响问题,就有很多课题需要深入研究。国内外发生的多起涉及由于未考虑节理裂隙对岩体的力学性质的不利影响而发生的重大工程事故表明,研究节理裂隙对于岩体的力学性质的影响并用于解决工程实际问题显得迫在眉睫。
     现代计算机技术的发展为岩石力学的研究工作提供了强有力的工具和全新的思路,使原本不可能实现的科学实验在计算机里成为现实。节理裂隙岩体的力学性质研究往往不可能由实验就可以独立完成,本文采用计算机数值模拟的方法模拟了节理裂隙对于岩体力学性质的影响,得到工程岩体综合力学参数的计算方法,并将各向异性的力学材料参数开发为程序应用于有限元法分析实际问题中。本文主要工作如下:
     (1)根据节理裂隙岩体的统计几何和力学参数,基于蒙特卡洛(Monte-Carlo)方法编制出程序模拟出结构面网络图样本,并按照节理裂隙岩体力学连通率的假设计算了节理裂隙岩体的力学连通率,在此基础上得到节理裂隙岩体具有各向异性的综合力学参数。
     (2)对于计算节理裂隙岩体力学连通率的各个关键的输入参数如:模型尺寸大小、重复模拟次数、投影带宽度、假设平均正应力等进行计算分析,得出计算节理裂隙岩体力学连通率所需要的参数的确定方法和原则,为计算结果的可靠性提供了保证。
     (3)基于大型通用有限元软件ABAQUS的用户材料子程序模块(UMAT)编制了基于修正各向异性摩尔库伦(Mohr-Coulomb)屈服准则的用户材料子程序,从而使上述节理裂隙岩体各向异性的综合力学参数能应用于实际工程的有限元问题分析中,建立了各向异性综合抗剪强度参数与实际岩体工程问题之间的桥梁。
     (4)将上述成果应用于实际节理裂隙岩体边坡工程的强震分析中,验证了程序的可行性和实际意义。
As China's economy and society sustained continuous, rapid and healthy development and the continuous implementation of the great western development strategy, in China, especially in the west and the southwest area of China, rock mechanics problem involved in the infrastructure construction is more and more, investment is becoming stronger and stronger, at the same time, academic circles have not yet prepared for solving the numerous problems in the rock mechanics and engineering, such as how to reasonably consider the influence of the joints and fissures to the mechanical properties of the jointed rock mass etc, there are still a lot of issues that we need to study on. Many times of accidents occurred at home and abroad because of no considering the influence of joints and fissures to the mechanical properties of the jointed rock mass show that it is urgent for studying the properties of the jointed rock mass, and using the technologies for solving the engineering problems.
     The introduction of contemporary computational mechanics has brought many new ideas and tools for the study of rock mechanics, it makes the once impossible to achieve scientific experiments to become realities. The research of the properties of the jointed rock mass is often impossible to be completed by experiments. This paper uses the methods computer simulation to study the influence of the joints and fissures to the mechanical properties of the jointed rock mass, gains the calculation methods for the shear strength parameters of the engineering jointed rock mass, farther more, the anisotropic shear strength parameters are used to program a code to solve practical engineering FEM problems. The main work of this paper is as follows:
     (1) According to the statistical geometry and mechanical parameters of the jointed rock mass and the Monte-Carlo method, program the FORTRAN code to simulate the sample of the joint net work, according to the assumes of calculating the mechanical persistence ratio of the jointed rock mass, get the persistence ratio parameters, on this basis, get the anisotropic shear strength parameters of the jointed rock mass.
     (2) Study the needed input parameters used to calculate the mechanical persistence ratio such as the length of the study model, the repeated calculation times in order to get good results, the projection bandwidth, the assumed average normal stress etc, in order to understand how to input these parameters to get good, stable, reliable results.
     (3) Based on the user defined materials (UMAT) module of the large-scale general purpose finite element method software ABAQUS, programmed the UMAT code based on the corrected anisotropic Mohr-Coulomb yield criterion, makes the application of the anisotropic shear strength parameters in practical engineering possible, established a bridge between them.
     (4) Applied the above mentioned achievements in the earthquake analysis of the actual jointed rock slope engineering, verified the feasibility and practical significance of the program and the results above.
引文
[1]陶振宇.试论岩石力学的最新进展[J].力学进展,1992(2):161-172.
    [2]杨志法.关于岩石力学当前发展战略的一些看法[J].岩土工程学报,1994(1):112-113.
    [3]傅冰骏.国际岩石力学发展动向[J].岩石力学与工程学报,1997(2):100-101.
    [4]杨蕾,周昌慧,刘梓松.有关岩石力学系统研究的新进展[J].煤,2007(11):42-44.
    [5]Ulam W. Metropolis And S. Monte Carlo method[J]. J. Amer. Stat. Ass,1949(44):335-341.
    [6]方涛,柴军瑞,胡海浪,徐文彬.Monte Carlo方法在岩体裂隙结构面模拟中的应用[J].露天采矿技术,2007(1):7-9.
    [7]张志刚,乔春生,刘勇.节理岩体强度特征研究综述[J].煤田地质与勘探,2006(5):38-41.
    [8]Priest Stephen D. Discontinuity analysis for rock engineering[M]. London:Chapman & Hall,1993.
    [9]尹彦波,李爱兵,袁节平,刘国文.岩体结构面二维网络模拟的计算机辅助技术研究[J].采矿技术,2006(4):19-22.
    [10]潘别桐,杜时贵.JRC-JCS模型在工程实践中预测能力回顾,武汉,1992[C].
    [11]D Priest S., A Hudson J. Estimation of discontinuity spacing and trace length using scanline surveys[J]. Int. J. Rock Mech. Min. Sci.& Geomech Abstr.,1981(18):183-197.
    [12]A Hudson J., D Priest S. Discontinuity frequency in rock masses[J]. Int. J. Rock Mech. Min. Sci.& Geomech Abstr.,1983,20:73-89.
    [13]D Priest S., A Hudson J. Discontinuity spacing in Rock[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,1976,13:335-348.
    [14]A Hudson J., D Priest S. Discontinuities and rock mass geometry[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,1979,16:339-362.
    [15]向文飞,周创兵.裂隙岩体表征单元体研究进展[J].岩石力学与工程学报,2005(S2):5686-5692.
    [16]荣冠,周创兵,朱焕春,刘佑荣.三峡水库某库段岩体裂隙网络模拟研究[J].岩土力学,2004(7):1122-1126.
    [17]魏安.岩体裂隙网络的计算机模拟及其应用[J].西南交通大学学报,1995(2):200-205.
    [18]张发明,汪小刚,贾志欣,弥宏亮,陈祖煜.3D裂隙网络随机模拟及其工程应用研究[J].现代地质,2002,16(1):100-103.
    [19]贾洪彪,马淑芝,唐辉明,刘佑荣.岩体结构面网络三维模拟的工程应用研究[J].岩石力学与工程学报,2002(7):976-979.
    [20]陈剑平.岩体随机不连续面三维网络数值模拟技术[J].岩土工程学报,2001(4):397-402.
    [21]李新强,杨松青,汪小刚.岩体随机结构面三维网络的生成和可视化技术[J].岩石力学与工程学报,2007(12):2564-2569.
    [22]Z Lajtai E. Strength of discontinuous rocks in shear[J]. Geotechnique,1969,19(2):218-233.
    [23]Barton N., Choubey V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics And Rock Engineering,1977,10(1):1.
    [24]E Hoek. J Bray. Rock Slope Engineering[M]. London:The Institute of Mining and Metallurgy,1977.
    [25]Einstein H. H., Baecher G. B. Probabilistic and Statistical Methods in Engineering Geology Specific Methods and Examples Part I:Exploration[J]. Rock Mechanics And Rock Engineering, 1983,16:39-72.
    [26]H Einstein H., D Venieziano, B Baecher G., J O'Reilly K. The effect of discontinuity persistence on rock slope stability[J]. int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,1983,20:227-236.
    [27]张伟,周国庆,张海波,张勇.倾角对裂隙岩体力学特性影响试验模拟研究[J].中国矿业大学学报,2009(1):30-33.
    [28]汪小刚,陈祖煜,刘文松.应用蒙特卡洛法确定节理岩体的连通率和综合抗剪强度指标[J].岩石力学与工程学报,1992(4):345-355.
    [29]汪小刚,贾志欣,陈祖煜.岩石结构面网络模拟原理在节理岩体连通率研究中的应用[J].水利水电技术,1998(10):43-47.
    [30]张斌,聂德新.利用岩石结构面网络模拟计算岩体带宽连通率及岩体强度参数[J].中国地质灾害与防治学报,2003(4):93-96.
    [31]杜景灿,汪小刚,陈祖煜.结构面倾角对节理岩体的连通特性和综合抗剪强度的影响[J].水利学报,2002(5):4146.
    [32]杜景灿,陈祖煜,汪小刚.寻优方法在岩体结构面连通特性和综合抗剪强度研究中的应用[J].岩石力学与工程学报,2003(9):1441-1447.
    [33]贾志欣,汪小刚.包含定位长大裂隙的节理岩体连通率的计算及应用[J].岩石力学与工程学报,2001(4):457-461.
    [34]武雄,贾志欣,陈祖煜,汪小刚,杨健.工程岩体抗剪强度确定综合方法--GMEM研究[J].岩石力学与工程学报,2005,24(2):246-251.
    [35]马平,孙强.亚碧罗地区结构面连通率研究[J].金属矿山,2010(8):108-111.
    [36]肖建勋,程远帆,王利丰.岩体结构面连通率研究进展及应用[J].地下空间与工程学报,2006(2):325-328.
    [37]杜景灿,陈祖煜,周家骢.节理岩体二维和三维连通特性的对比分析[J].岩石力学与工程学报,2004(11):1824-1831.
    [38]张发明,汪小刚,贾志欣,陈祖煜.三维结构面连通率的随机模拟计算[J].岩石力学与工程学报,2004(9):1486-1490.
    [39]杜景灿,陈祖煜,弥宏亮,汪小刚,周家骢.三维条件下应用遗传算法与Monte-Carlo法确定节理岩体的综合抗剪强度[J].岩石力学与工程学报,2004(13):2157-2163.
    [40]范留明,黄润秋.岩体结构面连通率估计的概率模型及其工程应用[J].岩石力学与工程学报,2003(5):723-727.
    [41]黄国明,黄润秋.用窗口法估计不连续面的连通率[J].水文地质工程地质,1998(6):29-32.
    [42]徐卫亚,张贵科.正交各向异性剪切屈服准则研究及其数值实现[J].岩土力学2008(5):1164-1168.
    [43]徐干成,郑颖人.岩石工程中屈服准则应用的研究[J].岩土工程学报,1990(2):93-99.
    [44]史述昭,杨光华.岩体常用屈服函数的改进[J].岩土工程学报,1987(4):60-69.
    [45]贾善坡,陈卫忠,杨建平,陈培帅.基于修正Mohr-Coulomb准则的弹塑性本构模型及其数值实施[J].岩土力学,2010(7):2051-2058.
    [46]高智伟,赵吉东,姚仰平.岩土材料的各向异性强度准则[J].岩土力学,2011(S1):15-19.
    [47]陈健云,范书立,徐强,李静.考虑岩体节理分布特性的各向异性强度准则研究[J].岩石力学与工程学报,2011(2):313-319.
    [48]陈健云,范书立,李静,涂运伟.考虑节理岩体强度各向异性的最危险滑动面搜索[J].人民长江,2011(11):83-86.
    [49]涂运伟.节理岩体各向异性屈服准则的研究及应用[D].大连:大连理工大学建设工程学部,2010.
    [50]刘社豪.节理岩体等效本构关系研究及其工程应用[D].大连:大连理工大学建设工程学部,2011.
    [51]张坤勇.考虑应力各向异性土体本构模型及其应用研究[D].河海大学,2004.
    [52]张志刚.节理岩体强度确定方法及其各向异性特征研究[D].北京交通大学,2007.
    [53]王建锋,陈祖煜,张基泰.各向异性非线性强度条件下的边坡稳定性[J].力学与实践,2004(5):22-26.
    [54]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [55]唐广慧,刘发祥,唐升贵,宋旭,伍锡举.当前岩石力学数值计算方法应用探讨[J].西部探矿工程,2007(12):25-29.
    [56]周维垣,杨强.岩石力学数值计算方法[M].北京:中国电力出版社,2005.
    [57]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [58]贾洪彪,唐辉明,刘佑荣,马淑芝.岩体结构面三维网络模拟理论与工程应用[M].北京:科学出版社,2008.
    [59]陈祖煜,汪小刚,杨健,贾志欣,王玉杰.岩质边坡稳定分析——原理方法程序[M].北京:中国水利水电出版社,2005.
    [60]D Priest S., A Samaniego J. A model for the analysis of discontinuity characteristics in two dimensions:Proe.5th ISRM Congress, Melbourne, Australia,1983[C].
    [61]武雄,贾志欣,陈祖煜,汪小刚,杨健.工程岩体抗剪强度确定综合方法--GMEM研究[J].岩石力学与工程学报,2005,24(2):246-251.
    [62]余卫平,杨健,汪小刚,贾志欣.峡谷地区大型地下洞室群岩体初始地应力场反演分析[J].水文地质工程地质,2007(2):20-24.
    [63]张发明,汪小刚,贾志欣,陈祖煜.三维结构面连通率的随机模拟计算[J].岩石力学与工程学报,2004(9):1486-1490.
    [64]刘明,章青,刘仲秋.基于ABAQUS的弹脆塑性本构模型二次开发及其应用[J].红水河,2010(1):47-51.
    [65]滕军,李祚华,王孝锋,和雪峰.基于ABAQUS的混凝土材料子程序开发与应用[J].建筑结构学报,2009(S1):218-223.
    [66]杨曼娟ABAQUS用户材料子程序开发及应用[D].华中科技大学,2005.
    [67]庄茁,张帆,岑松,由小川,于旭光,牟全臣,徐明,白锐.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [68]费康,张建伟ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010.
    [69]朱以文,蔡元奇,徐晗ABAQUS与岩土工程分析[M].香港:中国图书出版社,2005.
    [70]郑颖人,孔亮.岩石塑性力学[M].北京:中国建筑工业出版社,2010.
    [71]邓楚键,何国杰,郑颖人.基于M-C准则的D-P系列准则在岩土工程中的应用研究[J].岩土工程学报,2006,28(6):735-739.
    [72]贾善坡Boom Clay泥岩渗流应力损伤耦合流变模型、参数反演与工程应用[D].中国科学院研究生院(武汉岩土力学研究所)岩土工程,2009.
    [73]王金昌,陈页开ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [74]王词安.三峡工程永久船闸高边坡稳定性的评价与分析[D].武汉理工大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700