广义反投影方法在三维电阻抗成像中的研究及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电阻抗成像(Electrical Impedance Tomography, EIT)技术作为电学层析成像技术的一种,以无创以及功能成像的特点成为生物电磁成像中的重要研究课题之一。由于其响应速度快、结构简单、成本低廉等特点,在许多领域备受关注,尤其是医学诊断和临床监护等方面。作为一类图像重建的逆问题,电阻抗成像问题具有欠定、非线性以及病态特性,因此重建图像在精确度、稳定性、分辨率等方面距离临床应用的要求还有一定差距。本文以反投影类方法为基础,提出了广义反投影方法,通过建立虚拟节点或虚拟单元拓展计算域,增加了重建图像信息量,降低了问题的欠定性,经仿真及物理模型实验验证了算法的有效性。
     本文研究内容得到国家自然科学基金重点项目《人体活性组织介电特性与表征方法研究》(项目编号:50937005)和《参数化重建方法在心脏腔内电阻抗成像中的研究》(项目编号:51077040)的支持和资助。主要研究内容如下:
     1.在节点反投影方法的基础上,提出广义反投影方法。通过建立虚拟节点,可以计算区域内任意处信息,使重建图像信息更为丰富。通过仿真实验和物理模型实验,验证了算法在三维重建中的适用性,其重建图像效果较传统反投影方法有明显提高。
     2.提出基于线性敏感矩阵的广义反投影方法。通过在区域内建立虚拟单元,可以计算三维区域内任意部分的信息,获取区域内更为详尽的阻抗分布信息。针对算法对电极层间信息重建效果欠佳的问题,进一步提出改进的广义反投影方法。通过建立虚拟平面,使求解区域内的待求点与边界电压分布之间建立空间对应关系,进一步提高投影信息准确性,提高重建图像质量。将算法从二维层析成像推广为真正的三维成像。并由仿真与物理模型实验对算法进行了验证。
     3.提出将广义反投影方法和牛顿迭代算法相结合的混合算法。由广义反投影方法结果作为牛顿迭代算法的初始值,使得电阻率初始分布情况接近真实分布。不仅避免了以往通过经验选择初始值,降低了初始误差,而且加快了每步迭代中的误差下降速度,节省了重建时间。
     4.提出用于评价EIT重建图像效果的四个量化指标:位置误差、分辨率、形状应变、信息熵,并对成像算法进行了客观评价。通过四个指标量化,广义反投影方法的重建图像效果要优于传统反投影方法和节点反投影方法,而改进的广义反投影方法的重建图像效果又有进一步的提高。混合算法的重建图像比牛顿迭代算法在相同迭代步数下效果更好。
Electrical Impedance Tomography (EIT), as a kind of electrical tomography techniques, is one of the significant research projects with the features of non-invasive and functional imaging. EIT attracts much concern from many areas, especially on medical diagnosis and clinical monitoring, since it has many advantages in response speed, simple structure and cost. However, this inverse problem on image reconstruction processes an underdetermined, non-linear and ill-posed nature. The reconstructed images are far from clinical requirements in the aspects of accuracy, stability and resolution. In this dissertation a novel approach of EIT reconstruction algorithm named generalized back projection algorithm is proposed with the purpose of reducing underdetermined conduction, which establishes imaginary node or imaginary element to extend computation range. The algorithm is verified effectiveness by numerical and real experiments.
     This work was supported in part by the National Natural Science Foundation of China under Grant No. 50937005 and No. 51077040. The main works and results are following.
     1. Generalized back projection algorithm is proposed based on node back projection algorithm. The information of arbitrary node can be calculated by establishing imaginary node, so that the reconstructed images contain more information. The results of numerical experiments and real experiments verify the applicability of the method for improvement of reconstructed images effect compared with conventional back projection algorithm.
     2. Based on linearised sensitivity matrix, generalize back projection algorithm is proposed. The imaginary elements are established in the region, so that the information of arbitrary part can be computed to reconstruct more detailed conductivity distribution information in the region. For the reconstructed images between adjacent electrode sections are less effective, further improved generalize back projection algorithm is proposed, which establishes a mapping of solving projection positions of the inner nodes by boundary voltages through imaginary planes. Since the accuracy of projection information is improved, the reconstructed images get better quality. The method is 3-dimentions reconstruction algorithm rather than 2-dimentions tomography algorithm, and is verified by numerical and real experiments.
     3. A mixed method is presented that generalized back projection algorithm and Newton-type iterative algorithm is combined. The initial value of Newton-type iterative algorithm is estimated from generalized back projection algorithm, so that the initial distribution approximate to real condition. The initial selection strategy prevents empirical selection, and reduces initial error and iterative error at every step, so that computation time is saved.
     4. To evaluate EIT reconstructed images, four quantitative metrics is presented: position error, resolution, shape deformation and information entropy. The four metrics conduct to evaluate reconstruction algorithms objectively. Compared with conventional back projection algorithm and node back projection algorithm, the images reconstructed by generalized back projection algorithm are more accurate in terms of the four metrics, and the results of improved generalized back projection algorithm are further raised. Compared with conventional Newton-type iterative algorithm, the combination method provides reconstructed images with better effect at the same iterative step.
引文
[1] Engl Heinz W, Hanke Martin and Neubauer Andreas. Regularization of Inverse Problems. Dordrecht: Kluwer Academic Publishers, 2000
    [2] Jossinet A Jacques,Matias A. Image reconstruction for the selection of electrode patterns in Electrical Impedance Endotomography. IFMBE Proceedings-13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography 2007 (ICEBI 2007), Graz, Austria, August 29-September 2, 2007. 420-423
    [3] Jossinet Jacques, Marry Emmanuel, Matias Adrien. Electrical impedance endotomography. Physics in Medicine and Biology, 2002, 47(13): 2189-2202
    [4] Ahlfors S, Ilmoniemi R J. Magnetic imaging of conductivity. Proceedings-14th International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBS 1992), Paris, France, October 29-November 1, 1992. 1717-1718
    [5] Tozer J C, Ireland R H, Barber D C, Barker A T. Magnetic Impedance Tomography. Annals of the New York Academy of Sciences, 1999, 873: 353–359
    [6] Borcea Liliana. Electrical impedance tomography. Inverse Problems, 2002, 18: R99–R136
    [7] Cheney Margaret, Isaacson David, Newell Jonathan C. Electrical impedance tomography. Society for Industrial and Applied Mathematics (SIAM) Review, 1999, 41(1): 85-101
    [8] Saulnier G J, Blue R S, Newell J C, Isaacson D, Edic P M. Electrical impedance tomography. IEEE Signal Processing Magazine, 2002, 18(6): 31-43
    [9] Zhang Lifeng, Tian Pei, Jin Xiuzhang, Tong Weiguo. Numerical simulation of forward problem for electrical capacitance tomography using element-free Galerkin method. Engineering Analysis with Boundary Elements, 2010, 34(5): 477-482
    [10] Yang W Q, Spink D M, York T A and McCann H. An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography. Measurement Science and Technology, 1999, 10: 1065-1069
    [11] Yang W Q, Lihui Peng. Image reconstruction algorithms for electrical capacitance tomography. Measurement Science and Technology, 2003, 14: R1-R13
    [12] Machida M, Scarlett B. Process tomography system by electrostatic charge carried by particles. IEEE Sensors Journal, 2005, 5(2): 251-259
    [13]周宾,杨道业,谢利成,王式民.利用ECT信息改进EST图像重建.东南大学学报, 2010, 40(1): 69-74
    [14]高鹤明,许传龙,付飞飞,王式民.迭代正则化修正的电荷层析成像算法.中国电机工程学报, 2010, 30(35): 61-64
    [15] Mariappan Leo, Li Xu, He Bin. B-scan based acoustic source reconstruction for magnetoacoustictomography with magnetic induction (MAT-MI). IEEE Transactions on Biomedical Engineering, 2011, 58(1): 713-720
    [16] Hu Gang, Cressman Erik, He Bin. Magnetoacoustic imaging of human liver tumor with magnetic induction. Applied Physics Letters, 2011, 98(2): 023703(3)
    [17] Li Xu, Mariappan Leo, He Bin. Three-dimensional multiexcitation magnetoacoustic tomography with magnetic induction. Journal of Applied Physics, 2010, 108(12): 124702(11)
    [18] He W, Luo H J, Song X D, Xu Z. Numerical calculation of the eddy current problem in magnetic induction tomography for brain edema. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(1-2): 743-750
    [19] Shima H, Sakayama T. Resistivity Tomography: An Approach to 2D Resistivity Inverse Problems. 57th SEG, Expand Abstracts, 1987. 204-207
    [20]张海峰,王丰华,金之俭,孙宇辉.地下金属管道对变电站接地网接地电阻及其测量的影响.电网技术, 2011, 35(1): 134-140
    [21]曹立斌,孟永良,周建兰.电阻率层析成像技术的回顾与展望.勘探地球物理进展, 2004, 27(3): 170-173
    [22]李清松,潘和平,赵卫平.井间电阻率层析成像技术进展.工程地球物理学报, 2005, 2(5): 374-379
    [23] Ramirez Abelardo, Daily William, Binley Andrew, LaBrecque Douglas, Roelant David. Detection of Leaks in underground storage tanks using electrical resistance methods, Journal of Environmental and Engineering Geophysics, 1996, 1(3): 189-203
    [24] Daily W, Ramirez A. The role of electrical resistance tomography in the US nuclear waste site characterization program. 1st World Congress on Industrial Process Tomography, Buxton, UK, April 14-17, 1999. 2-5
    [25] Binley Andrew, Daily William, Ramirez Abelardo. Detecting leaks from waste storage ponds using electrical tomographic methods. 1st World Congress on Industrial Process Tomography, Buxton, UK, April 14-17, 1999. 6-13
    [26] Williams Richard A. Landmarks in the application of electrical tomography in particle science and technology. Particuology, 2010, 8(6): 493-497
    [27] Zhang Lifeng, Wang Huaxiang. Identification of oil-gas two-phase flow pattern based on SVM and electrical capacitance tomography technique. Flow Measurement and Instrumentation, 2010, 21(1): 20-24
    [28] Wang Qi, Wang Huaxiang. A modified conjugate gradient method based on the Tikhonov system for computerized tomography (CT). ISA Transactions, 2011, 50(2): 256-261
    [29] Borcea Liliana. Electrical Impedance Tomography. Inverse Problems, 2002, 18(6): R99-R136
    [30] Brown B H. Medical impedance tomography and process impedance tomography: A brief review. Measurement Science and Technology. 2001, 12(8): 991-996
    [31] Brown B H. Electrical impedance tomography (EIT): A review. Journal of Medical Engineering and Technology. 2003, 27(3): 97-108
    [32] Lionheart William R B. EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiological Measurement, 2004, 25(1): 125-142
    [33] Geddes L A, Baker L E. The specific resistance of biological material - A compendium of data for the biomedical engineer and physiologist. Medical and Biological Engineering and Computing, 1967, 5(3): 271-293
    [34] Plonsey Robert. Quantitive Formulations of Electrophysiological Sources of Potential Fields in Volume Conductor. IEEE Transactions on Biomedical Engineering, 1984, 31(12): 868-872
    [35]徐桂芝,李颖,等.生物医学电阻抗成像技术.北京:机械工业出版社, 2010
    [36] Adler Andy, Arnold John H, Bayford Richard, et al. GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiological Measurement, 2009, 30(6): S35-S55
    [37]徐遥远.电阻层析成像边界重建问题的研究: [博士学位论文].天津:天津大学, 2010
    [38] Pethig R. Dielectric Properties of Body Tissues. Clinical Physics and Physiological Measurement, 1987, 8(Supplement A): 5-12
    [39] Plonsey R. Bioelectric Phenomena. New York: McGraw Hill, 1969
    [40] Duck F A. Physical Properties of Tissue - A Comprehensive Reference Book. London: Academic Press, 1990. 167 - 223
    [41] Brown B H. Tissue Impedance Methods. Progress in Medical and Environmental Physics, 1983, 2: 85-110
    [42] Pethig R, Kell D B. The Passive Electrical Properties of Biological Systems: Their Significance in Physiology, Biophysics and Biotechnology. Physics in Medicine and Biology, 1987, 32(8): 933-970
    [43] Schwan H P. Electrical Properties of Tissue and Cell Suspensions. Advances in Biological and Medical Physics, 1957, 5: 147-209
    [44] Smith Susan Rae, Foster Kenneth R, Wolf Gerald L. Dielectric Properties of VX-2 Carcinoma Versus Normal Liver Tissue. IEEE Transactions on Biomedical Engineering, 1986, BME-33(5): 522-524
    [45] Schwan Herman P, Kay Calvin F. Specific resistance of body tissues. Circulation Research, 1956, 4(6): 664-670
    [46] Rush Stanley, Abildskov J A, McFee Richard. Resistivity of body tissues at low frequencies. Circulation Research, 1963, 12: 40-50
    [47] Rush S, Driscoll D A. EEG-electrode sensitivity - An application of reciprocity. IEEE Transactions on Biomedical Engineering, 1969, BME-16(1): 15-22
    [48] Geddes L A, Sadler C. The specific resistance of blood at body temperature. Medical and Biological Engineering and Computing, 1973, 11(3): 336-339
    [49] Geddes L A, Kidder H. Specific resistance of blood at body temperature II. Medical and Biological Engineering and Computing, 1976, 14(2): 180-185
    [50] Epstein B R, Foster K R. Anisotropy in the dielectric properties of skeletal muscle. Medical and Biological Engineering and Computing, 1983, 21(1): 51-55
    [51] Barber D C, Brown B H. Applied potential tomography. Journal of Physics E: Scientific Instruments, 1984, 17(9): 723-733
    [52] Saha S, Williams P A. Electric and dielectric properties of wet human cortical bone as a function of frequency. IEEE Transactions on Biomedical Engineering, 1992, 39(12): 1298-1304
    [53] Burger H C, van Dongen R, Specific Electric Resistance of Body Tissues. Physics in Medicine andBiology, 1961, 5(4): 431-448
    [54] Zheng E, Shao S, Webster J G. Impedance of Skeletal Muscle from 1 Hz to 1 MHz. IEEE Transactions on Biomedical Engineering, 1984, BME-31 (6): 477-481
    [55] Grant J P, Spyrou N M. Complex permittivity differences between normal and pathological tissues: mechanisms and medical significance. J. of Bioelectricity, 1985, 4(2): 419-458
    [56] Visser K R. Electric Properties of Flowing Blood and Impedance Cardiography. Annals of Biomedical Engineering, 1989, 17: 463-473
    [57] Nopp P, Rapp E, Pfutzner H, Nakesch H, Rusham C. Dielectric properties of lung tissue as a function of air content. Physics in Medicine and Biology, 1993, 38(6): 699-716
    [58] Holder D S, Temple A J. Effectiveness of the Sheffield EIT system in distinguish patients with pulmonary pathology from a series of normal subject. (In: Holder DS eds.) Clinical and Physiological Applications of Electrical Impedance Tomography. London: University College London Press, 1993. 277-298
    [59] Boone K, Barber D, Brown B. Imaging with electricity: report of the European Concerted Action on Impedance Tomography. Journal of Medical Engineering and Technology, 1997, 21(6): 201-232
    [60] Suroweic A J, Stanislaw S S, Barr J R, et al. Dielectric Properties of Breast carcinoma and the surrounding tissues. IEEE Trans. Biomed. Eng., 1988, 35(4): 257-263
    [61] Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine and Biology, 1996, 41(11): 2231-2250
    [62] Gabriel S, Lau R W, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 1996, 41(11): 2251-2270
    [63] Cheng Kuo-Sheng, Isaacson D, Newell J C, Gisser D G. Electrode models for electric current computed tomography. IEEE Transactions on Biomedical Engineering, 1989, 36(9): 918-924
    [64] Isaacson David, Cheney Margaret. Effects of measurement precision and finite numbers of electrodes on linear impedance imaging algorithms. SIAM Journal on Applied Mathematics, 1991, 51(6): 1705-1731
    [65] Somersalo Erkki, Cheney Margaret, Isaacson David. Existence and uniqueness for electrode models for electric current computed tomography. SIAM Journal on Applied Mathematics, 1992, 52(4): 1023-1040
    [66] Cheney Margaret, Isaacson David, Newell Jonathan C. Electrical impedance tomography. SIAM Review, Society for Industrial and Applied Mathematics, 1999, 41(1): 85-101
    [67] Calderon A P. On an inverse boundary value problem. Seminar on Numerical Analysis and its Applications to Continuum Physics. Rio de Janeiro: Society Brasileira de Matematica, 1980. 65-73
    [68] Kohn R V, Vogelius M. Determining conductivity by boundary measurements II. Interior results. Communications on Pure and Applied Mathematics, 1985, 38(5): 643-667
    [69] Sylvester John, Uhlmann Gunther. A global uniqueness theorem for an inverse boundary value problem. Annals of Mathematics, 1987, 125(1): 153-169
    [70] Nachman Adrian I. Reconstructions from boundary measurements. Annals of Mathematics, 1988, 128(3): 531-576
    [71] Nachman Adrian I. Global uniqueness for a two-dimensional inverse boundary value problem. Annals of Mathematics, 1996, 143(1): 71-96
    [72] Brown Russell M, Uhlmann Gunther A. Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions. Communications in Partial Differential Equations, 1997, 22(5&6): 1009-1027
    [73] BarcelóJuan Antonio, BarcelóTomeu, Ruiz Alberto. Stability of the inverse conductivity problem in the plane for less regular conductivities. Journal of Differential Equations, 2001, 173(2): 231-270
    [74] Astala Kari, Paivarinta Lassi. Calderón’s inverse conductivity problem in the plane. Annals of Mathematics. 2006, 163: 265-299
    [75] Imanuvilov Oleg Yu, Uhlmann Gunther, Yamamoto Masahiro. The Calderon problem with partial data in two dimensions. Journal of the American Mathematical Society, 2010, 23(3): 655-691
    [76] Friedman Avner, Gustafsson Bj?rn. Identification of the conductivity coefficient in an elliptic equation. SIAM Journal on Mathematical Analysis, 1987, 18(3): 777-787
    [77] Kang Hyeonbae, Seo Jin Keun, Sheen Dongwoo. Numerical identification of discontinuous conductivity coefficients. Inverse Problems, 1997, 13(1): 113-124
    [78] Ki Hosam, Sheen Dongwoo. Numerical inversion of discontinuous conductivities. Inverse Problems, 2000, 16(1): 33-48
    [79] Friedman Avner, Vogelius Michael. Determining cracks by boundary measurements. Indiana University mathematics journal, 1989, 38(3): 527-556
    [80] Alessandrini Giovanni, Valenzuela Alvaro Diaz. Unique Determination of Multiple Cracks by Two Measurements. SIAM Journal on Control and Optimization, 1996, 34(3): 913-921
    [81] Alessandrini Giovanni, Rondi Luca. Optimal Stability for the Inverse Problem of Multiple Cavities. Journal of Differential Equations, 2001, 176(2): 356-386
    [82] Kang Hyeonbae, Seo Jin Keun. Identification of domains with near-extreme conductivity: global stability and error estimates. Inverse Problems, 1999, 15(4): 851-868
    [83] Henderson R P, Webster J G, Swanson D K. A thoracic electrical impedance camera. Proceedings of the 29th Annual Conference on Engineering in Medicine and Biology, Boston, USA, November 6-10, 1976. 322
    [84] Henderson Ross P, Webster John G.. An Impedance Camera for Spatially Specific Measurements of the Thorax. IEEE Transactions on Biomedical Engineering, 1978, 25(3): 250-254
    [85] Barber D C, Seagar A D. Fast reconstruction of resistance images. Clinical Physics and Physiological Measurement, 1987, 8(Supplement A): 47-54
    [86] Eyuboglu B M, Brown B H, Barber D C, Seager A D. Localisation of cardiac related impedance changes in the thorax. Clinical Physics and Physiological Measurement, 1987, 8(Supplement A): 167-174
    [87] Seagar A D, Barber D C, Brown B H. Theoretical limits to sensitivity and resolution in impedance imaging. Clinical Physics and Physiological Measurement, 1987, 8(Supplement A): 13-32
    [88] Brown B H, Seagar A D. The Sheffield data collection system. Clinical Physics and Physiological Measurement, 1987, 8(Supplement A): 91-97
    [89] Samuli Siltanen. Electrical Impedance Tomography and Faddeev Green’s Functions: [Dissertation]. Helsinki: Helsinki University of Technology, 1999.
    [90] Cheney M, Isaacson D, Newell J C, Simske S, Goble J. NOSER: An algorithm for solving the inverse conductivity problem. International Journal of Imaging Systems and Technology, 1990, 2(2): 66-75
    [91] Dobson David C. Convergence of a reconstruction method for the inverse conductivity problem. SIAM Journal on Applied Mathematics, 1992, 52(2):442-458
    [92] Knowles Ian. A variational algorithm for electrical impedance tomography. Inverse Problems, 1998, 14(6): 1513-1526
    [93] Vauhkonen M. Electrical Impedance Tomography and Prior Information: [Dissertation]. Kuopio: University of Kuopio, 1997.
    [94] Vauhkonen M, Kaipio J P, Somersalo E, Karjalainen P A. Electrical impedance tomography with basis constraints. Inverse Problems, 1997, 13(2): 523-530
    [95] Somersalo E, Cheney M, Isaacson D, Isaacson E. Layer stripping: a direct numerical method for impedance imaging. Inverse Problems, 1991, 7(6): 899-926
    [96] Sylvester J. A convergent layer stripping algorithm for radially symmetric impedance tomography problem. Communications in Partial Differential Equations, 1992, 17(12): 1955-1994
    [97] Cheney Margaret, Isaacson David, Somersalo Erkki. Layer-stripping reconstruction algorithms in impedance imaging. Inverse Problem in Mathematical Physics, 1993, 422: 9-15
    [98] Siltanen Samuli, Mueller Jennifer, Isaacson David. An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem. Inverse Problems, 2000, 16(3): 681-699
    [99] Siltanen S, Mueller J, Isaacson D. An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem. Inverse Problems, 2001, 17(5): 1561-1563
    [100] Lechleiter Armin, Rieder Andreas. Newton regularizations for impedance tomography: a numerical study. Inverse Problems, 2006, 22(6): 1967-1987
    [101] Shiguemoriélcio H, de Campos Velho Haroldo F, da Silva JoséDemisio S. Generalized Discrepancy Principle. Design and Optimization Symposium, Rio de Janeiro, Brazil, March 17-19, 2004.145-151
    [102] Lechleiter Armin, Rieder Andreas. Newton regularizations for impedance tomography: convergence by local injectivity. Inverse Problems. 2008, 24(6): 065009(18pp)
    [103] Dorn Oliver, Lesselier Dominique. Level set methods for inverse scattering. Inverse Problems, 2006, 22(4): R67-R131
    [104] Soleimani Manuchehr, Dorn Oliver, Lionheart William R B. A narrow-band level set method applied to EIT in brain for cryosurgery monitoring. IEEE Transactions on Biomedical Engineering, 2006, 53(11): 2257-2264
    [105] Ben Hadj Miled M K, Miller E L. A projection-based level-set approach to enhance conductivity anomaly reconstruction in electrical resistance tomography. Inverse Problems, 2007, 23(6): 2375-2400
    [106] van den Doel K, Ascher U M. Dynamic level set regularization for large distributed parameter estimation problems. Inverse Problems, 2007, 23(3): 1271-1288
    [107] Kirsch Andreas. Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems, 1998, 14(6): 1489-1512
    [108] Kirsch Andreas. The factorization method for a class of inverse elliptic problems. MathematicheNachrichten, 2005, 278(3): 258-277
    [109] Gebauer Bastian, Hyvonen Nuutti. Factorization method and irregular inclusions in electrical impedance tomography. Inverse Problems, 2007, 23(5): 2159-2170
    [110] Hyvonen Nuutti. Application of the factorization method to the characterization of weak inclusions in electrical impedance tomography. Advances in Applied Mathematics, 2007, 39(2): 197-221
    [111] Eckel Harry, Kress Rainer. Nonlinear integral equations for the inverse electrical impedance problem. Inverse Problems, 2007, 23(2): 475-491
    [112] Gebauer Bastian, Hanke Martin, Schneider Christoph. Sampling methods for low-frequency electromagnetic imaging. Inverse Problems, 2008, 24(1): 015007(18pp)
    [113] Schmitt Susanne. The factorization method for EIT in the case of mixed inclusions. Inverse Problems. 2009, 25(6): 065012 (20pp)
    [114] Harrach Bastian, Seo Jin Keun, Woo Eung Je. Factorization method and its physical justification in frequency-difference electrical impedance tomography. IEEE Transactions on Medical Imaging, 2010, 29(11): 1918-1926
    [115] Mueller J L, Siltanen S, Isaacson D. A Direct Reconstruction Algorithm for Electrical Impedance Tomography. IEEE Transactions on medical imaging, 2002, 21(6): 555-559
    [116] Mueller Jennifer L, Siltanen Samuli. Direct Reconstructions of Conductivities from Boundary Measurements. SIAM Journal on Scientific Computing, 2003, 24(4): 1232-1266
    [117] Isaacson D, Mueller J L, Newell J C, Siltanen S. Reconstructions of Chest Phantoms by the D-Bar Method for Electrical Impedance Tomography. IEEE Transactions on medical imaging, 2004, 23(7): 821-828
    [118] Isaacson D, Mueller J L, Newell J C, Siltanen S. Imaging cardiac activity by the D-bar method for electrical impedance tomography. Physiological Measurement, 2006, 27(5): S43-S50
    [119] Cornean Horia, Knudsen Kim, Siltanen Samuli. Towards a d-bar reconstruction method for three-dimensional EIT. Journal of Inverse and Ill-Posed Problems, 2006, 14(2): 111-134
    [120] Murphy E K, Mueller J L, Newell J C. Reconstructions of conductive and insulating targets using the D-bar method on an elliptical domain. Physiological Measurement, 2007, 28(7): S101-S114
    [121] Knudsen Kim, Lassas Matti, Mueller Jennifer L, Siltanen Samuli. D-bar method for electrical impedance tomography with discontinuous conductivities. SIAM Journal on Applied Mathematics, 2007, 67(3): 893-913
    [122] Knudsen K, Lassas M, Mueller, Siltanen S. Reconstructions of piecewise constant conductivities by the D-bar method for electrical impedance tomography. Journal of Physics: Conference Series, 2008, 124(1): 012029(9pp)
    [123] Murphy Ethan K, Mueller Jennifer L. Effect of domain shape modeling and measurement errors on the 2-D D-bar method for EIT. IEEE Transactions on Medical Imaging, 2009, 28(10): 1576-1584
    [124] DeAngelo M, Mueller J L. 2D D-bar reconstructions of human chest and tank data using an improved approximation to the scattering transform. Physiological Measurement, 2010, 31(2): 221-232
    [125] Rao Liyun, He Renjie, Wang Youhua, Yan Weili, Bai Jing, Ye Datian. Efficient improvement of modifiedNewton-Raphson algorithm for electrical impedance tomography. IEEE Transactions on Magnetics, 1999, 35(3): 1562-1565
    [126] He Renjie, Rao Liyun, Liu Shuo, Yan Weili, Narayana Ponnada A, Brauer Hartmut. Method of maximum mutual information for biomedical electromagnetic inverse problems. IEEE Transactions on Magnetics, 2000, 36(4): 1741-1744
    [127]徐桂芝,刘志红,李有余,颜威利.基于EIT技术的二维头模型电特性研究.河北工业大学学报, 2002, 31(2): 6-10
    [128] Dong G Y, Endo H, Hayano S, Gao S K. GVSPM for reconstruction in electrical impedance tomography. IEEE Transactions on Magnetics, 2003, 39(3): 1630-1633
    [129] Dong Guoya, Bayford Richard H, Gao Shangkai, Saito Yoshifuru, Yerworth Rebecca, Holder David, Yan Weili. The application of the generalized vector sample pattern matching method for EIT image reconstruction. Physiological Measurement, 2003, 24(2): 449-466
    [130] Dong Guoya, Liu Hesheng, Bayford Richard H, Yerworth Rebecca, Gao Shangkai, Holder David, Yan Weili. The spatial resolution improvement of EIT images by GVSPM-FOCUSS algorithm. Physiological Measurement, 2004, 25(1): 209-226
    [131] Xu Guizhi, Yang Qingxin, Yang Shuo, Liu Fugui, Yan Weili. Electrical characteristics of real head model based on electrical impedance tomography. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1617-1620
    [132] Xu Guizhi, Wu Huanli, Yang Shuo, Liu Shuo, Li Ying, Yang Qingxin, Yan Weili, Wang Mingshi. 3-D electrical impedance tomography forward problem with finite element method. IEEE Transactions on Magnetics, 2005, 41(5): 1832-1835
    [133]徐桂芝,王明时,杨庆新,李颖,颜威利.基于EIT技术颅内电阻抗特性分析.中国生物医学工程学报, 2005, 24(6): 705-708
    [134] Dong Guoya, Liu Hesheng, Bayford Richard H, Yerworth Rebecca, Schimpf Paul H, Yan Weili. Spatial resolution improvement of 3D EIT images by the shrinking sLORETA-FOCUSS algorithm. Physiological Measurement, 2005, 26(2): S199-S208
    [135] Dong Guoya, Zou J, Bayford Richard H, Ma Xinshan, Gao Shangkai, Yan Weili, Ge Manling. The comparison between FVM and FEM for EIT forward problem. IEEE Transactions on Magnetics, 2005, 41(5): 1468-1471
    [136]李颖,徐桂芝,饶利芸,何任杰,颜威利.微分进化算法在头部电阻抗成像中的应用.中国生物医学工程学报, 2005, 24(6): 672-675
    [137] Li Ying, Rao Liyun, He Renjie, Xu Guizhi, Wu Qing, Yan Weili, Dong Guoya, Yang Qingxin. A novel combination method of electrical impedance tomography inverse problem for brain imaging. IEEE Transactions on Magnetics, 2005, 41(5): 1848-1851
    [138]徐桂芝,王明时,李有余,张帅,于青,颜威利.医用电阻抗成像系统的模块化设计.天津大学学报, 2006, 39(suppl): 133-137
    [139] Zhang Jianjun, Xu Guizhi, Zhao Quanming, Yan Weili. Using Polynomial Curve Fitting Method to Improve Image Quality in EIT. Proceedings-28th Annual International Conference of the IEEE,
    Engineering in Medicine and Biology Society 2006, New York, USA, August 30-September 3, 2006. 6769-6772
    [140] Zhang Jianjun, Yan Weili, Xu Guizhi, Zhao Quanming. A New Algorithm to Reconstruct EIT Images: Node-Back-Projection Algorithm. Proceedings-29th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society 2007, Lyon, France, August 22-26, 2007. 4390-4393
    [141] Xu Guizh, Wang Renping, Zhang Shuai, Yang Shuo, Justin G A, Sun Mingui, Yan Weili. A 128-Electrode Three Dimensional Electrical Impedance Tomography System. Proceedings-29th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society 2007 (EMBS 2007), Lyon, France, August 22-26, 2007. 4386-4389
    [142]张帅,徐桂芝,颜威利,张雪莹.一种用于胸腔监测的电阻抗成像系统.微计算机信息, 2008, 24 (8-3): 284-286
    [143]张剑军,徐桂芝,颜威利.伪测量值法在电阻抗成像中的应用研究.微计算机信息, 2009, 25(11-1): 25-27
    [144]吴焕丽,徐桂芝,张帅,于洪丽.基于圆柱模型的三维电阻抗成像问题研究.山东大学学报(理学版). 2009, 44(5): 45-48
    [145] Ni Ansheng, Dong Xiuzhen, Yang Guosheng, Fu Feng, Tang Chi. Image reconstruction incorporated with the skull inhomogeneity for electrical impedance tomography. Computerized Medical Imaging and Graphics, 2008, 32(5): 409-415
    [146] Ni Ansheng, Tang Chi, Yang Guosheng, Fu Feng, Dong Xiuzhen. Effect of skull inhomogeneities on localization accuracy in brain electrical impedance tomography. Proceedings-2nd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2008, Shanghai, China, May 16-18, 2008: 2705-2707
    [147] You Fusheng, Shi Xuetao, Dong Xiuzhen, Fu Feng, Liu Ruigang, Shuai Wanjun, Li Zheng. A quantitative method based on total relative change for dynamic electrical impedance tomography. IEEE Transactions on Biomedical Engineering, 2008, 55(3): 1224-1226
    [148] Shuai Wanjun, You Fusheng, Zhang Hongyi, Zhang Wei, Fu Feng, Shi Xuetao, Liu Ruigang, Bao Tingyi, Dong Xiuzhen. Application of electrical impedance tomography for continuous monitoring of retroperitoneal bleeding after blunt trauma. Annals of Biomedical Engineering, 2009, 37(11): 2373-2379
    [149] Shi Xuetao, You Fusheng, Xu Canhua, Wang Liang, Fu Feng, Liu Ruigang, Dong Xiuzhen. Experimental study on early detection of acute cerebral ischemic stroke using electrical impedance tomography method. IFMBE Proceedings-World Congress on Medical Physics and Biomedical Engineering: Diagnostic Imaging, Munich, Germany, September 7-12, 2009. 25(2) 510-513
    [150] You Fusheng, Shuai Wanjun, Shi Xuetao, Fu Feng, Liu Ruigang, Dong Xiuzhen. In vivo monitoring by EIT for the pig's bleeding after liver injury. IFMBE Proceedings-World Congress on Medical Physics and Biomedical Engineering: Diagnostic Imaging, Munich, Germany, September 7-12, 2009. 25(2) 110-112
    [151] Tang Chi, You Fusheng, Cheng Guang, Gao Dakuan, Fu Feng, Dong Xiuzhen. Modeling the frequency dependence of the electrical properties of the live human skull. Physiological Measurement, 2009, 30(12): 1293-1302
    [152] Dai Meng, Wang Liang, Xu Canhua, Li Lianfeng, Gao Guodong, Xiuzhen Dong. Real-time imaging of subarachnoid hemorrhage in piglets with electrical impedance tomography. Physiological Measurement, 2010, 31(9): 1229-1240
    [153]王化祥,曹章.电阻抗层析成像系统“软场”非线性特性——基于统计的方法.天津大学学报, 2006, 39(5): 543-547
    [154]赵波,王化祥,胡理.基于Walsh函数的电阻抗层析成像激励模式.清华大学学报(自然科学版), 2007, 47(10): 1598-1601
    [155]王化祥,汪婧,胡理,李璐.基于肺部先验知识的电阻抗成像重构算法.天津大学学报, 2008, 41(4): 383-388
    [156]王化祥,汪婧,胡理,姜娓娓,郝魁红,宋志坚. ERT/ECT双模态敏感阵列电极优化设计.天津大学学报, 2008, 41(8): 911-918
    [157]王超,张强,黄春艳,王化祥.生物电阻抗测量系统功能抽象与设计.仪器仪表学报, 2008, 29(1): 38-42
    [158]王超,肖亚苏,杜大莉,孙宏军,王化祥.术中乳腺癌灶边缘界定的电极及测量方案.天津大学学报, 2008, 41(3): 321-325
    [159]王超,黄春艳,章晓丽,王化祥.基于DFT和虚参考矢量的混频阻抗动态信号测量方法.电子学报, 2008, 36(10): 2076-2080
    [160]陈晓艳,王化祥,石小累,范文茹.人体肺功能生物电阻抗成像技术.中国生物医学工程学报, 2008, 27(5): 663-668
    [161]王化祥,范文茹,胡理.基于GMRES和Tikhonov正则化的生物电阻抗图像重建算法.生物医学工程学杂志, 2009, 26(4): 701-705
    [162] Chen Xiaoyan, Wang Huaxiang, Zhao Bo, Shi Xiaolei. Lung ventilation functional monitoring based on electrical impedance tomography. Transactions of Tianjin University, 2009, 15(1): 7-12
    [163]范文茹,王化祥,马雪翠.基于先验信息的肺部电阻抗成像算法.中国生物医学工程学报, 2009, 28(5): 680-685
    [164] Fan W R, Wang H X. 3D modelling of the human thorax for ventilation distribution measured through electrical impedance tomography. Measurement Science and Technology, 2010, 21(11): 115801
    [165] Fan Wenru, Wang Huaxiang, Yang Chengyi, Ma Shiwen. Time series of EIT measurements and images during lung ventilation based on principal component analysis. Transactions of Tianjin University, 2010, 16(5): 366-372
    [166] Fan W R, Wang H X. Maximum entropy regularization method for electrical impedance tomography combined with a normalized sensitivity map. Flow Measurement and Instrumentation, 2010, 21(3): 277-283
    [167]罗辞勇,朱清友.改进的电阻抗反投影成像算法.重庆大学学报, 2009, 32(3): 243-246
    [168]罗辞勇,何为,陈民铀,王平.电阻抗成像交叉测量协议的灵敏度性能.中国生物医学工程学报, 2009, 28(5): 778-782
    [169]罗辞勇,何传红,何为.开放式电阻抗成像的灵敏度和病态性问题.中国生物医学工程学报, 2009, 28(4): 544-548
    [170]陈民铀,张晓菊,罗辞勇,何为.开放式电阻抗成像建模及其仿真.重庆大学学报, 2009, 32(7): 731-735
    [171]黄嵩,张占龙,罗辞勇,何为.电阻抗静态成像中混合正则化算法抗噪性能的仿真研究.中国生物医学工程学报, 2009, 28(2): 309-313
    [172]何为,何传红,刘斌.电阻抗成像中高速高精度数字相敏检波器设计.重庆大学学报, 2009, 32(11): 1274-1279
    [173]鞠康,何为,何传红,刘斌,李冰.基于数字相敏检波的恒流源输出阻抗检测及补偿技术实现.医疗卫生装备, 2009, 30(10): 5-7
    [174]徐征,何为,何传红,张占龙.头部电阻抗成像正问题的解析解研究.计算物理, 2010, 27(1): 107-114
    [175]何为,李倩,徐征,朱金华,何阳光,王磊.头部分层球模型磁感应成像正问题的解析解.计算物理, 2010, 27(6): 912-918
    [176]刘斌,何为,何传红.开放式电阻抗成像中数字相敏检波器设计.微计算机信息, 2010, 26(4-2): 167-169
    [177] Wang Yan, Sha Hong, Ren Chaoshi. Optimum design of electrode structure and parameters in electrical impedance tomography. Physiological Measurement, 2006, 27(3): 291-206
    [178]王妍,沙洪,任超世.医学电阻抗断层成像线电极与复合电极的仿真比较研究.中国生物医学工程学报, 2006, 25(5): 637-640
    [179]王妍,沙洪,任超世.医学EIT复合电极结构参数优化设计.生物医学工程与临床, 2007, 11(2): 91-96
    [180]王妍,沙洪,任超世.电阻抗断层成像线电极的仿真研究.生物医学工程学杂志, 2007, 24(5): 986-989
    [181]沙洪,王妍,赵舒,任超世.高精度EIT数据采集方法研究.中国生物医学工程学报, 2008, 27(5): 675-678
    [182]沙洪,王妍,赵舒,任超世.高精度一体化电阻抗断层成像数据采集系统.生物医学工程与临床, 2008, 12(4): 334-337
    [183]吕婧华,宫伟彦,王妍,任超世.基于梯度误差电阻抗断层成像技术的图像评价.中国组织工程研究与临床康复, 2008, 12(52): 10277-10280
    [184]宫伟彦,吕婧华,王妍,沙洪,任超世.生物电阻抗测量电极的阻抗特性.中国组织工程研究与临床康复, 2009, 13(9): 1653-1656
    [185]沙洪,赵舒,邓娟,王妍,任超世.躯干细分电阻抗人体成分分析方法.中国医学装备, 2009, 6(5): 18-21
    [186]邓娟,王妍,吕婧华,任超世.三种EIT算法重建图像评价的仿真研究.医疗卫生装备, 2010, 31(5): 1-3
    [187]赵舒,任超世.生物阻抗胃动力检测方法.中国医学装备, 2010, 7(8): 1-6
    [188]任超世,李章勇,王伟,赵舒,邓娟.无创电阻抗胃动力检测与评价.中国组织工程研究与临床康复, 2010, 14(9): 1653-1657
    [189]徐管鑫.电阻抗成像技术理论及应用研究: [博士学位论文].重庆:重庆大学, 2004
    [190]董国亚.头部电阻抗成像和各层组织电导率测量方法的研究: [博士学位论文].北京:清华大学, 2003
    [191] Gibson Adam Philip. Electrical Impedance Tomography of Human Brain Function: [Dissertation]. London: University College London, 2000
    [192] Ferree T C, Eriksen K J, Tucker D M. Regional head tissue conductivity estimation for improved EEG analysis. IEEE Transactions on Biomedical Engineering, 2000, 47(12): 1584-1592
    [193] Silvester P, Chari M V K. Finite Element Solution of Saturable Magnetic Field Problems. IEEE Transactions on Power Apparatus and Systems, 1970, 89(7): 1642-1651
    [194]叶珍宝.时域有限差分和时域有限元电磁数值计算的研究: [博士学位论文].南京:南京理工大学, 2008
    [195]孟庆龙,颜威利.电器数值分析.北京:机械工业出版社, 1993
    [196]徐桂芝.基于EIT技术的脑内电特性与功能成像研究: [博士学位论文].天津:河北工业大学, 2002
    [197]颜威利,徐桂芝,等.生物医学电磁场数值分析.北京:机械工业出版社, 2006
    [198]颜威利,杨庆新,汪友华,等.电气工程电磁场数值分析.北京:机械工业出版社, 2005
    [199]吴焕丽.三维电阻抗成像问题研究: [博士学位论文].天津:河北工业大学, 2009
    [200] Kleinermann F, Avis N J, Alhargan F A. Analytical solution to the three-dimensional electrical forward problem for a circular cylinder. Inverse Problems, 2000, 16(2): 461-468
    [201] Lytle R J, Duba A G, Willows J L. Alternative methods for determining the electrical conductivity of core samples. The Review of Scientific Instruments, 1979, 50(5): 611-615
    [202] Metherall Peter. Three Dimensional Electrical Impedance Tomography of the Human Thorax. Sheffield: University of Sheffield, 1998
    [203]刘国强.医学电磁成像.北京:科学出版社, 2006
    [204]张剑军.节点反投影法电阻抗成像研究: [博士学位论文].天津:河北工业大学, 2008
    [205] Natterer F. The Mathematics of Computerized Tomography. New York: John Wiley & Sons Inc, 1986.
    [206] Beylkin Gregory. The inversion problem and applications of the generalized radon transform. Communications on Pure and Applied Mathematics, 1984, 37(5): 579-599
    [207] Santosa Fadil, Vogelius Michael. A Backprojection Algorithm for Electrical Impedance Imaging. SIAM Journal on Applied Mathematics, 1990, 50(1): 216-243
    [208] Geselowitz David B. An Application of Electrocardiographic Lead Theory to Impedance Plethysmography. IEEE Transactions on Biomedical Engineering, 1971, 18(1): 38-41
    [209] Lehr John. A Vector Derivation Useful in Impedance Plethysmographic Field Calculations. IEEE Transactions on Biomedical Engineering, 1972, 19(2): 156-157
    [210] Barber D C. Image Reconstruction in Applied Potential Tomography - Electrical Impedance Tomography. Internal Report, Department of Medical Physics and Clinical Engineering, University of Sheffield, 1990.
    [211]李颖.脑电逆问题求解的数值计算方法研究: [博士学位论文].天津:河北工业大学, 2003
    [212] Murai Tadakuni, Kagawa Yukio. Electrical Impedance Computed Tomography Based on a Finite Element Model. IEEE Transactions on Biomedical Engineering, 1985, 32(3):177-184
    [213] KimMin Chan, KimSin, KimKyung Youn, LeeYoon Joon. Regularization methods in electricalimpedance tomography technique for the two-phase flow visualization. International Communications in Heat and Mass Transfer, 2001, 28(6): 773-782
    [214] Vauhkonen M, Vadasz D, Karjalainen P A, Somersalo E, Kaipio J P. Tikhonov regularization and prior information in electrical impedance tomography. IEEE Transactions on Medical Imaging, 1998, 17(2): 285-293
    [215] Giguère R, Fradette L, Mignon D, Tanguy P A. ERT algorithms for quantitative concentration measurement of multiphase flows. Chemical Engineering Journal, 2008, 141(1-3): 305-317
    [216] Kenneth Levenberg. A Method for the Solution of Certain Non-Linear Problems in Least Squares. The Quarterly of Applied Mathematics. 1944, 2: 164-168.
    [217] Donald Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM Journal on Applied Mathematics. 1963, 11: 431-441.
    [218] Lin Wen-Jing, Seader J D, Wayburn T L. Computing multiple solutions to systems of interlinked separation columns. AIChE Journal, 1987, 33(6) :886-897
    [219]李壮.探地雷达反问题的同伦算法研究: [博士学位论文].哈尔滨:哈尔滨工业大学, 2007
    [220]苏孟龙.同伦方法求解若干非线性问题: [博士学位论文].长春:吉林大学, 2007
    [221]李天一,用同伦算法模拟复杂精馏过程: [博士学位论文].天津:天津大学, 2004
    [222]罗辞勇.基于快速牛顿一步误差重构的电阻抗成像算法和实验研究: [博士学位论文].重庆:重庆大学, 2005
    [223]张帅.人体胸腔电阻抗成像系统研究: [博士学位论文].天津:河北工业大学, 2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700