机敏混凝土结构的电阻率层析成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电阻率层析成像(Electric Resistance Tomography,简称ERT)由于具有非侵入性、在线、无放射性、结构简单、设备成本低廉、设备搬运灵活、响应快速、监测结果直观、监测信息量大等优点,在医学、地球物理勘探、水文结构探测等领域得到了广泛应用。但在混凝土结构中的应用尚未见有报道,其主要原因是混凝土本身的电阻率太大且不稳定。在混凝土中加入少量碳纤维形成的机敏混凝土(Carbon Fiber Reinfored Concrete,简称CFRC)具有导电性和压敏性,由此使得ERT技术应用于混凝土结构成像监测成为可能。
     本文提出了用ERT技术对CFRC结构进行成像监测的新方法。该方法通过对CFRC结构表面电流、电压的施加和测量来获得携带其内部电阻率分布信息的投影数据,再利用反演计算方法重建出反映结构内部物质构成和状态的电阻率分布图,从而实现对CFRC结构的状态监测。
     在对ERT基本原理和相关理论进行全面系统分析的基础上,深入研究了ERT技术在CFRC结构监测中应用的相关问题。主要创新工作如下:
     1.提出了一种ERT测量(投影)方法。与其它投影方法不同,该方法测量的所有测量参考点都选在低电势的激励电极上,测量系统采集时将所有激励和测量电极的电位(参考点为0V)都采集到计算机内,并按编号记录各电极测量值。这种测量方法简化了测量系统结构,用较简单的存储结构实现了电压激励条件和响应结果数据的完备记录。
     2.开发设计了一种复杂电阻率分布的ERT数值投影方法,实现了CFRC结构ERT的测量模拟。通过参数化孔洞模型的建立、计算机辅助建模软件开发和程序自动生成技术研究,实现了在ANSYS中的任意复杂电阻率分布的有限元模型建立、载荷变换、求解和投影数据记录等数值投影操作的自动处理功能,解决了在ANSYS中进行交互方式ERT测量数值模拟的工作量庞大、投影周期长和容易出错等问题。
     3.提出了一种基于物理模型的ERT图像重建算法—等位线修正算法。该方法通过将等位线划分区域的各单元未知量组合为一个整体处理,实现了未知量的降维,使得单次激励的ERT不适定反问题转化为ERT适定反问题,提高解的稳定性。当换用另一次激励时,由于等位线划分区域不同,因而各单元未知量的组合方法也不同,这种动态降维方法允许ERT有限元单元个数超过独立测量数据个数,实现了较高空间分辨率的ERT图像稳定重建。与非反投影类算法相比,该方法不需要求解Jacobi矩阵和Hessian矩阵,不需要正则化方法,具有算法原理直观、速度快、求解稳定和精度高等特点;与一般反投影类算法相比,该方法由于可进行多次等位线修正的迭代,因而图像重建精度较高。
     4.研制了CFRC结构的ERT软硬件系统。本文在对ERT基本原理和关键理论进行全面系统研究的基础上,首次研制了一套应用于CFRC结构监测的ERT软硬件系统。该系统由ERT投影测量软硬件子系统、ERT系统配置模块、ERT投影模型定义模块、ERT重建模型定义模块、ERT图像重建模块和图像显示处理模块等组成。该系统的研制为进一步的CFRC结构ERT研究提供了一个独立且完整的平台。
     5.进行了多种截面形状结构和非均匀电极布置的ERT研究。目前ERT的研究对象截面形状往往比较确定,其ERT电极一般都采用均匀布置方式。如地球物理勘探的ERT测试对象为大地,截面形状为半无限空间,ERT电极采用等间距布置;工业流型监测的ERT测试对象为工业管道,截面形状为圆形,ERT电极采用均匀布置在管道圆周上。本文利用所研制的ERT系统进行了多种截面形状(包括方形截面ERT、长条形路面ERT和几种异形截面ERT)和不同电极布置方式的ERT仿真研究。研究结果表明:各种截面形状ERT成像效果良好,恰当地布置ERT电极可以提高局部成像分辨率。此外,本文还通过CFRC试件的ERT实验对ERT技术应用于CFRC结构监测的可行性和所做的ERT研究的正确性进行了验证。
This paper, study on Electrical Resistance Tomographic (ERT) of Carbon Fiber Reinforced Concrete (CFRC) structure, is sponsored by the National Natural Science Foundation of China (No. 50238040).
     ERT method has many advantages, such as non-intrusion, online property, no-radioactivity, simpleness, inexpensiveness, portability, fast respond, result understandability and having mass of information of the result. This technology has been applied on physic, earth reconnoiter and hydrology. So far, no usage of ERT of concrete structure monitoring has been reported yet, because the resistivity of is very hight and not steatbale. CFRC, which is a kind of cement containing a small amount of short carbon fibers and has the properity of conductivity and pressure sensitivity, make it possible to monitor the CFRC structure by ERT method.
     This paper put forward a new method of monitoring CFRC structure by ERT technology. ERT aims to reconstruct the conducting ( or dielectric) properties of an object from measurements of the electrical signals measured from all possible sensing electrodes while an exciting current or voltage is exerted to the object throught a pair of sensing electrodes mounted on the sufface of it. Therefore, the spatial gradients of electrical conductivity, which are a function of damage or strain gradients, can be measured.
     The correlative matters about the applications of ERT of CFRC structure monitoring are studied, and the main innovatory work are listed as follow:
     1. A new projection method of ERT is put forward in this paper. Compare to other ERT projection methods, all measurements of voltages are token the potential of the lower one of the pair of exciting electrodes potential as the same referent potential, and the voltages sampled from all the sensing electrodes (the voltage of referent electrode is 0V) are stored one by one according to the electrodes number in this method, which predigest the measure system, and achieve a maturity projection record of excited voltage and responed voltages with a compact storage stucture.
     2. A numerical projection method used for complex resistivity distribution is proposed and designed. The author constructs parameterized hole-models and develops computer aided modeling software and ANSYS programs auto-generating software. Thus many functions of projection can be realized in ANSYS system automaticly, such as building the FEM model for complex resistivity distribution, changing loads, solving and recording data of projection, which resolves many important and difficult problems involved in using numerical projection method in ANSYS system, such as large mumbers of interactive manual operation, a long period of projection and high probability of making mistakes etc.
     3. An image reconstructed algorithm called Contour Line Regulate (CLR) metdod based on physics model is put forward. In this method, all the unknown resisitivities of the elements in an area carved by contour lines are regarded as one unknown quantity, which would reduce the counts of unknown quantities and converted the ill-posed invert problem to a well one in the projection. In another projection, an alternant reducing method of the counts of unknown quantities is adopted because the contour lines are changed. This dynamic reducing method allows the counts of element great to the counts of independent datum, and a high resolution image is availabled. Compared to non-back projection reconstructed methods, the principle of this algorithm is simple. Jacobi matrix and Hessian matrix are not necessary and no regularization method is need in this algorithm. It has the advantages of high speed and steady. Compared to back projection reconstructed methods, because the CLR method is an iterative algorithm, it has high precision.
     4. An ERT system of CFRC structure is developed. This paper does a full and detailed research on ERT. Based on researches of basic principles and pivotal theory, the author builds up a set of ERT system for CFRC structure monitoring for the first time. The system includes following modules: hardware and software system of ERT projection measurement, configurement module of ERT system, definition module of ERT projection model and ERT reconstruction model, ERT image reconstructed module and image processing module, etc. This system provides a whole set of independent hardware and software platform for the further research on ERT of CFRC structure.
     5. The paper studies ERT technology of structures with different section shapes and ununiform electrodes arrangement. Recently ERT research groups generally do many reseach on ERT system with certain section shapes and uniform electrodes arrangement. Take physical reconnaissance of the globe for example, the earth is the research object. Its section shapes is semi-infinite space and ERT electrodes are equal spaced. The object of industry flow monitoring is pipes. Its section shape is circle and the electrodes are arranged uniformly.The paper researches the ERT system of structures with various section shapes, such as square, bar-shape and several heteromorphous section shapes, and ERT simulation is carried out for the structure with heteromorphous section shapes and ununiform electrode arrangement. The research results show that the ERT images of structures with all section shapes are satisfactory and appropriate ERT electrodes arrangement can enhance partial tomography resolution. Furthermore the feasibility of monitoring CFRC structure by ERT technology and the validity of the research are validated by experimentations.
引文
[1] 刑林生.混凝土坝坝体渗漏危害分析及处理.水力发电学报,2001,6(3):108-116.
    [2] 黄蔚,吴代华(武汉工业大学),刘迎曦(大连理工大学).局部劣化弹性薄板的损伤识别研究.武汉工业大学学报,1999,21(6):37-39
    [3] 张恒萍,袁慎芳.基于三维弹性理论的碳纤维板中Lamb波建模.材料科学与工程学报,2006,24(3):399-402
    [4] 欧进萍,周智,武湛君等.黑龙江呼兰河大桥的光纤光栅智能监测技术.土木工程学报,2004,37(1):45-64
    [5] 安冬梅,戈新生.一种混凝土材料损伤模型研究.北京机械工业学院学报,2000,15(3):34-38
    [6] 杨玉冬,王浩,李爱群.大跨桥梁结构健康监测和状态评估研究进展.江苏建筑,2005,9(2):18-20,26
    [7] 郑立霞,宋显辉,李卓球.机敏混凝土结构梁变形测量时的温度补偿.混凝土,2004,15(9):8-9,11
    [8] 姚志远,汪凤泉,赵淳生.环境自然激励下一种结构损伤在线识别方法.应用数学和力学,2005,26(2):246-252
    [9] J.V. Araujo dos Santos, H.L.G. Pina, A damage identification numerical model based on the sensitivity of orthogonality conditions and least squares techniques, Computers and Structures,2000,78:283-291
    [10] M. Xia, K. Kemmochi, H. Takayanagi, Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermo mechanical loading. Composite Structures,2001,51:273-283
    [11] Pandey AK, Biswas M, Samman MM. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 1991,145(2):321-353
    [12] Carino JN, Sansalone M, Impact-echo: A new method for inspecting construction materials. Proc. Conf. NDT&E Manuf. Constr., University of Illinois at Urbana-Champaign,1988
    [13] Ohtsu M, Watanabe T. Stack imaging of spectral amplitudes based on impact-echo. NDT&E International, 2002,35:189-196
    [14] Kim DS, et al. Feasibility study of the IE-SASW ethod for nondestructive evaluation of containment building structures in nuclear power plants. Nuclear Engineering and Design,2002,219:97-110
    [15] 傅翔,宋人心等.冲击回波法检测预应力预留孔灌浆质量.施工技术,2003,32(u):37-38
    [16] Buckley J. Air2Coupled Ultrasound Rome. Millennial Review, In:Proc of 15th WCNDT,2000
    [17] Krause M, Mielentz F, Milman B, et al. Ultrasonic Imaging of Concrete Members Using an Array System. NDT&E International, 2001, 34:403-408
    [18] Salawu OS. Detection of structural damage through changes in frequency: a review. Engineering Structures, 1997,19(9):718-741
    [19] Hidalgo PA, Jordan RM, Martinez MP. An analytical model to predict the inelastic seismic behavior of shear-wall, reinforced concrete structures. Engineering Structures, 2002,24:85-98,
    [20] Hyeung-Yun Kim, Woonbong Hwang. Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams. Composite Structures, 2002,55:51-62
    [21] Chotard TJ, Pasquiet J, Benzeggagh ML. Impact response and residual performance of GRP pultruded shapes under static and fatigue loading .Composites Science and Technology, 2002,60:895-912
    [22] Crema LB, Castellani A, Romani A. Damage detection by eigenfrequency measurements in macroelement divided structures. In: Proceedings of the 15th International Modal Analysis Conference Society for Experimental Mechanics, Bethel, CT06801, 1997, 476-483
    [23] Ratcliffe CP. Damage detection using a modified laplacian operator on mode shape data. Journal of Sound and Vibration, 1997,204(3):505-522
    [24] Maeck J, De Roeck G., Dynamic bending and torsion stiffness derivation from modal curvatures and torsion rates. Journal of Sound and Vibration, 1999, 225(1):153-223
    [25] Maeck J, Abdel Wahab M, De Roeck G., Damage localization in reinforced concrete beams by dynamic stiffness determination, Proceedings of International Model Analysis Conference 17, Kissimmee, Florida, USA, 1999,1289-1295
    [26] Maeck J, De Roeck G. Detection of damage in civil engineering structures by dynamic stiffness derivation. Proceedings of Eurodyn 99, Prague, Czech Republic, 1999, 485-490
    [27] B.A.奥尔特,固体中的声场和波,北京:科学出版社.1982.12
    [28] H.J.佩因著,振动与波动物理学,陈难先,赫松安译,北京:人民教育出版社,1980.12
    [29] 杨桂通,张善元.弹性动力学,北京:中国铁道出版社,1988.5
    [30] Yih-Hsing Pao,Chao-Chow Mow,弹性波的衍射与动应力集中,北京:科学出版社,1993
    [31] Ruotolo R, Surace C. Damage assessment of multiple cracked beams: numerical results and experimental validation. Journal of Sound and Vibration, 1997,206(4): 567-88
    [32] Stubbs N, Osegueda R. Global non-destructive damage evaluation in solids. International Journal of Analytical and Experimental Modal Analysis, 1990, 5(2): 67-79
    [33] Carrasco CJ, Osegueda RA, Ferregut CM, Grygier M. Damage localization in a space truss model using modal strain energy. In: Proceedings of the 15th International Modal Analysis Conference Society for Experimental Mechanics, Bethel, CT06801, 1997, 1786-1792
    [34] Doebling SW, Hemez FM, Peterson LD, Farhat C. Improved damage location accuracy using strain energy-based model selection criteria. AIAA J, 1997, 35(4): 693-699
    [35] 翟伟廉,陈伟.多层及高层框架结构地震损伤诊断的神经网络方法.地震工程与工程振动,2002,22(1):43-48
    [36] 李国强,李杰.工程结构动力检测理论与应用.北京:科学出版社,2002
    [37] Molyneaux TK, Millard SG, et al. Radar assessment of structural concrete using neural networks. NDT&E International, 1995,28(5):281-288
    [38] Shaw MR, Molyneaux TCK, et al. Assessing bar size of steel reinforcement in concrete using ground penetrating radar and neural networks. Non-Destructive Testing and Condition Monitoring, 2003,45(12):813-816
    [39] Shaw P, Bergstrom J, In-situ testing of reinforced concrete structures using stress waves and high-frequency ground penetrating radar. Non-Destructive Testing and Condition Monitoring, 2000,42(7):454-457
    [40] Nagataki S, Kamada T, Matsumoto A. Application of infrared thermography technique for evaluation of cracks in concrete structures. Journal of the Society of Materials Science, Japan,1997,46(2):198-203
    [41] Akbar Darabi Xavier Maldague. Neural network based defect detection and depth estimation in TNDE. NDT&E International.2002,35:165-175
    [42] Takahide Sakagami, keiji Ogura. Thermographie NDT based on transient temperature field under Joule effect heating. SPIE Proceedings,1994,2245:120-130
    [43] Maierhofer C, Wiggenhauser, et al. Quantitative numerical analysis of transient IR-experiments on buildings. Infrared Physics and Technology,2004,46(1):173-180
    [44] Wiggenhauser H.Active IR-applications in civil engineering. Infrared Physics & Technology,2002,43:233-238
    [45] Maierhofer Ch,Brink A,Rollig M,et al. Transient thermography for structural investigation of concrete and composites in the near surface region, Infrared Physics&Technology 2002,43:271-278
    [46] Takahide Sakagami, Shiro Kubo. Development of a new non-destructive testing technique for quantitative evaluations of delamination defects in concrete structures based on phase delay measurement using lock-in thermography. Infrared Physics&Technology, 2002, 43:311-316
    [47] 孙格靓,王厚亮,李建保.碳纤维增强混凝土构件的内部缺陷红外热像技术检测.炭素技术,2002,(4):47-49
    [48] 梅林,陈自强,王裕文.脉冲加热红外热成像无损检测的有限元模拟及分析.西安交通大学学报,2000,(1):66-70
    [49] 黄莉.基于红外热像的碳纤维混凝土损伤分析与研究:[博士学位论文].武汉:武汉理工大学.2005
    [50] 张荣成.红外热像法检测建筑物外墙饰面施工质量的试验研究.建筑科学,2002,18(1):40-44
    [51] 杜红秀,张雄,乔俊莲.红外热像用于水泥砂浆火灾损伤的检测与评定.同济大学学报,2000,27(4):422-425
    [52] Chen PW, Chung DDL. Carbon-fiber-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading. J. American Ceramic Society, 1995,78(3):816-818
    [53] Fu XL, Chung DDL. Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cem. Concr. Res., 1996, 26(1):15-20
    [54] Shi ZQ, Chung DDL, Carbon Fiber Reinforced Concrete for Traffic Monitoring and Weighing in Motion, Cem. Contr. Res. 1999,29(3):435-439
    [55] Fu XL, Chung DDL. Effect of curing age on the self-monitoring behaviour of carbon fiber reinforced mortar. Cem. Concr. Res., 1997, 27(9):1313-1318
    [56] Xu YSH, Chung DDL, Cement-Based Materials Improved by Surface Treated Admixtures. ACI Mater. J. 2000.97(3):333-342
    [57] 李湘洲(长春建筑材料工业学校),王伟(吉林森工总公司建筑工程公司).碳纤维增强混凝土的现状与趋势.混凝土.2000,8:31-33,43
    [58] Grellier S, Robain H, Bellier G, et al. Influence of temperature on the electrical conductivity of leachate from municipal solid waste.J.Hazard.Mater.,2006,137(1):612-617
    [59] LaBrecque DJ, Sharpe R, Wood, et al. Small-scale electrical resistivity tomography of wet fractured rocks. Ground.Water,2004,42(1):111-118
    [60] Constable, SC, Occams inversion: A practical algorithm for generating smooth models from electro magnetic sounding data. Geophysics, 1987, 52(3):289-300
    [61] Su MB, Fracture monitoring within concrete structure by Time Domain Reflectometry. International Conference on Fracture and Damage of Concrete and Rock, Vienna(Austria), 1990,35(1):313-320
    [62] Feng MQ, De Flaviis F, Kim YJ. Use of Microwaves for Damage Detection of Fiber Reinforced Polymer-Wrapped Concrete Structures. Journal of Engineering Mechanics, ASCE, 2002,128(2):172-183
    [63] Pierri R, Brancaccio A, De Blasio F. Multifrequency Dielectric Profile Inversion for a Cylindrically Stratified Medium. IEEE Trans. Geoscience and Remote sensing, 2000,38(4):1716-1724,
    [64] Gao P, Collins L, Garber PM, et al. Classification of Landmine-Like Metal Targets Using Wideband Electromagnetic Induction. IEEE Transactions on eosciences and Remote Sensing, 2000, 38:1352-1361
    [65] Won IJ, Keiswetter DA, Novikova TAE. Electromagnetic Induction Spectroscopy. Journal of Environmental and Engineering Geophysics, 1998, 3:27-40
    [66] Aruliah DA, Ascher UM, Haber E, et al. A Method for the Forward Modelling of 3-D Electromagnetic Quasi-static Problems. Mathematical Models and Methods in the Applied Sciences, 2001, 11:1-21
    [67] Schueler, Ruediger, Joshi, et al. Damage detection in CFRP by electrical conductivity mapping. Composites Science and Technology. 2001,61(6):921-930
    [68] 陈厚群,丁卫华,党发宁等.混凝土CT图像中等效裂纹区域的定量分析.中国水利水电科学研究院学报,2006,4(1):1-7
    [69] 张季如,陈超敏,管昌生.路面水泥混凝土质量检测的X射线衍射分析.广西工学院学报,2001,12(4):29-32
    [70] 詹炳根.尿素包装厂房结构混凝土损伤调查与损伤机理分析.土木工程学报,2006,39(7):52-60
    [71] 徐超.基础底板的检测与处理.安徽建筑,2002,(7):62-62
    [72] 单轴压力下的声发射和电磁发射,张以勤译.世界地震译丛,1983,(3):12-14
    [73] Lee Jong She, Batson Gordon. Electrical tagging of fiber reinforced cement composite. Materials for the new millennium, Proc. 4th the Materials Engineering Conference, V2, ASCE, New York, NY, 887-896, 1996.
    [74] Sihai Wen, D.D.L. Chung, Electrical Behavior of Cement-Based Junctions Including the pn-Junction, Cem. Concr. Res., 2001,31(2): 129-133
    [75] 张跃,职任涛,朱逢吾等.碳纤维(LCF)一无宏观缺陷(MDF)水泥基复合材料电学性能的研究.材料科学进展,1992,6(4):357-362
    [76] 毛起炤,赵斌元,沈大荣等.极化效应对碳纤维增强水泥(CFRC)导电性的影响.材料研究学报,1997,11(2):195-198
    [77] 毛起炤,杨元霞,李卓球等.外加剂对CFRC导电性能的影响.无机材料学报,1997,12(3):415-419
    [78] Sihai Wen, D.D.L Chung. Carbon Fiber-Reinforced Cement as a Thermistor. Cem. Concr. Res., 1999,29(6):961-965
    [79] 唐祖全,李卓球,徐东亮.CFRC路面材料的温敏性研究.武汉理工大学学报(自然科学版),2001,23(3):302-305
    [80] 唐祖全,李卓球,张华.混凝土路面温度自诊断特性的实验研究.工程力学(增刊),2001,:228-232
    [81] 唐祖全.碳纤维机敏混凝土路面结构融雪化冰性能研究:[博士学位论文].武汉:武汉理工大学工程结构与力学系,2002
    [82] 唐祖全,李卓球,侯作富等.导电混凝土电热层布置对路面除冰效果的影响.武汉理工大学学报,2002,24(2):45-48
    [83] Sihai Wen, D.D.L.Chung. Electric polarization in carbon reinforced cement, cement and concrete research, 2001,31:141-147
    [84] Sihai Wen, D.D.LChung. Effect of stress on the electric polarization in cement, cement and concrete research, 2001,31:291-295
    [85] Xuli Fu, D.D.L.Chung. Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cem. Concr. Res., 1996, 26(1):15-20
    [86] Xuli Fu, D.D.L.Chung. Effect of curing age on the self-monitoring behaviour of carbon fiber reinforced mortar. Cemo Concr. Res., 1997,27(9):1313-1318
    [87] 韩宝国,关新春,欧进萍.碳纤维水泥基材料导电性与压敏性的试验研究.材料科学与工艺,2006,16(1):1-4
    [88] 郑立霞,宋显辉,李卓球.CFRC材料在准三向受压情况下的压敏性研究.硅酸盐通报,2004,(4):40-43
    [89] 郑立霞,宋显辉,李卓球.不同电参数对CFRC应变敏感性的响应.武汉理工大学学报,2004,26(1):35-37,75
    [90] Hounsfield GN. A method of and apparatus for examination of a body by radiation such as X or gamma radiation. In London: The Patent Office: London, GB, 1968
    [91] Hounsfield GN. Computerized transverse axial scanning (tomography). Description of system. Br. J. Radiol., 1973,46:1016-1022
    [92] Henderson RP, Webster J G. An impedance camera for spatially specific measurements of the thorax. IEEE Trans.Biomed.Eng.BME-25,1978,250-253
    [93] Brown BH, Barber DC. 'Applied Potential Tomography' - a new in-vivo medical imaging technique. Proc. of the HPA Annual Conference, Sheffield,1982
    [94] Brown BH. Tissue Impedance Measurements. Progress in Medical and Environmental Physics, 1983,11:85-110
    [95] Huang SM, Green RG, Plaskowski A, Beck MS. A High Frequency Stray-immune Capacitance Transducer Based on Charge Transfer Principle.IEEE Trans.Instrum.1988,37:368~440
    [96] Shima H, Sakayama T. Resistivity tomography: An approach to 2-D resistivity inverse problem. 57th SEG, Expaded Abstracts, 1987,204~207
    [97] 底青云,王妙月等.高密度电阻率法在珠海某防波堤工程中的应用.地球物理学进展,1997,12(2):79~85
    [98] 闫永利.底青云等.高密度电阻率法在考古勘探中的应用.物探与化探,1998,22(6):452~457
    [99] 徐桂芝,杨硕,李颖等.电阻抗断层成像技术综述.河北工业大学学报,2004,33(2):35-40
    [100] Chambers JE, Loke MH, Ogilvy RD, et al. Noninvasive monitoring of DNAPL migration through a saturated porous medium using electrical impedance tomography. J.contam Hydrol,2004,68(1-2):1-22
    [101] Jerbi K, Lionheart WR,Vauhkonen PJ,et al.Sensitivity matrix and reconstruction algorithm for EIT assuming axial uniformity.Physiol Meas.,2000,21(1):61-66
    [102] Davalos RV, Otten DM,Mir LM, et el.Electrical impedance tomography for imaging tissue electroporation.IEEE Trans.Biomed.Eng,2004,51(5):761-767
    [103] Mengxing T, Xiuzhen D,Mingxin Q,et al.Electrical impedance tomography reconstruction algorithm based on general inversion theory and finite element method.Med.Biol.Eng Comput.,1998,36(4):395-398
    [104] Bayford RH.Bioimpedance tomography (electrical impedance tomography). Annu.Rev.Biomed.Eng, 2006,8:63-91
    [105] Brown BH.Electrical impedance tomography (EIT): a review.J.Med.Eng Technol.,2003,27(3):97-108
    [106] Brown BH,Primhak RA,Smallwood RH,et el. Neonatal lungs--can absolute lung resistivity be determined non-invasively. Med.Biol.Eng Comput.,2002, 40(4):388-394
    [107] Brown BH,Leathard A,Sinton A, et el. Blood flow imaging using electrical impedance tomography. Clin.Phys.Physiol Meas.,1992,13 Suppl A:175-179
    [108] Vonk, Noordegraaf A,Faes TJ,et al.Improvement of cardiac imaging in electrical impedance tomography by means of a new electrode configuration. Physiol Meas.,1996,17(3):179-188
    [109] Sievers KW, Gauger J,Bauermann T, Lohr E.Changes of soft-tissue water examined with magnetic resonance and electrical impedance tomography: an in vivo experiment. Angiology,1993,44(11):889-895
    
    [110] Meier T, Leibecke T, Eckmann C,et al. Electrical impedance tomography: changes in distribution of pulmonary ventilation during laparoscopic surgery in a porcine model.LangenbecksArch.Surg.,2006,391(4):383-389
    
    [111] Lim KH,Lee JH,Ye G,Liu QH. An efficient forward solver in electrical impedance tomography by spectral element method.IEEE Trans. Med.Imaging, 2006, 25(8):1044-1051
    [112] Wang W, Brown BH, Leathard AD,Lu L. Noise equalization within EIT images.Physiol Meas.,1994,15 Suppl 2A:211-A216
    
    [113] Yang WQ, Liu S. Electrical capacitance tomography with a square sensor. 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, 1999, 313-317
    [114] Bennett MA,Williams RA. Monitoring the operation of an oil/water separator using impedance tomography.Minerals Engineering,2004,17(5):605-614
    [115] Butler JE, Bonnecaze RT. Inverse method for imaging a free surface using electrical impedance tomography.Chemical Engineering Science,2000,55(7):1193-1204
    [116] Deng X, Peng LH, Yao DY, et al.Velocity distribution measurement using pixel-pixel cross correlation of electrical tomography. Chinese Journal of Electronics, 2004, 13(3):548-551
    
    [117] Deng X, Dong F, Xu LJ, Liu XP, et al. The design of a dual-plane ERT system for cross correlation measurement of bubbly gas/liquid pipe flow.Measurement Science & Technology, 2001,12(8):1024-1031
    
    [118] Ricard F, Brechtelsbauer C, Xu Y, et al. Development of an electrical resistance tomography reactor for pharmaceutical processes.Canadian Journal of Chemical Engineering, 2005,83(1):11-18
    [119] Tamburrino A, Ventre S, Rubinacci G Electrical resistance tomography: complementarity and quadratic models.Inverse Problems,2000,16(5):1585-1618
    [120] Toye D, Fransolet E, Simon D,et al. Possibilities and limits of application of electrical resistance tomography in hydrodynamics of bubble columns.Canadian Journal of Chemical Engineering, 2005,83(1):4-10
    
    [121] Vlaev DS, Bennington CPJ. Flow uniformity in a model digester measured with electrical resistance tomography.Canadian Journal of Chemical Engineering, 2005, 83(1):42-47
    
    [122] Cilliers JJ, Xie W, Neethling SJ, et al. Electrical resistance tomography using a bi-directional current pulse technique.Measurement Science & Technology,2001,12(8):997-1001
    [123] Kerner TE, Williams DB, Osterman KS,et al. Electrical impedance imaging at multiple frequencies in phantoms.Physiological Measurement,2000,21(1):67-77
    [124] Stanley SJ, Mann R, Primrose K. Interrogation of a precipitation reaction by electrical resistance tomography (ERT).Aiche Journal,2005,51(2):607-614
    [125] Stanley SJ, Hristov H, Mann R, Primrose K. Reconciling electrical resistance tomography (ERT) measurements with a fluid mixing model for semi-batch operation of a stirred vessel. Canadian Journal of Chemical Engineering,2005,83(1):48-54
    [126] Schueler R, Joshi SP, Schulte K. Damage detection in CFRP by electrical conductivity mapping.Composites Science and Technology,2001,61(6):921-930
    [127] 马艺馨.电阻层析成像技术及其在气腋两相泡状流检测中的应用:[博士论文].天津:天津大学,1999
    [128] 董峰.电阻层析成像技术在两相管流测量中的应用:[博士论文].天津:天津大学,2002
    [129] 董峰,徐立军等.用电阻层析成像技术实现两相流流型识别.仪器仪表学报,2001,22(3):416-417
    [130] 董峰,刘小平等.基于电阻层析成像(ERT)技术识别两相流流形的研究.自动化仪表,2002,23(7):
    [131] 燕芳,李文涛.气/液两相泡状流相关流速测量系统的研究.传感器世界,2005,11(2):10-12
    [132] 许会.电容层析成像在气固两相流浓度测量中的应用技术研究:[博士论文].沈阳:东北入学,1999
    [133] 魏颖.电阻层析成像技术及其在两相流测量中的应用研究:[博士论文].沈阳:东北大学,2001
    [134] 魏颖,王师,赵进创,陆增喜.电阻层析成象技术的研究现状与应用发展趋势.信息与控制,2000,29(4):340-346
    [135] 颜华,邵富群.电容层析成像传感器的优化设计.仪器仪表学报.2000,21(2):139-141,145
    [136] 颜华,刘春婷,高静.电容层析成像系统的图像重建.沈阳工业大学学报.2003,25(5):423-425
    [137] 颜华,高静.电容层析成像的仿真研究.系统仿真学报.2003,15(11):1625-1627
    [138] 赵进创,王师等.电容层析成像用新型电容/电压转换电路的研制.仪器仪表学报.,2001,22(1):36-38,41
    [139] 颜华,王师.电容层析成像技术及应用.工业仪表与自动化装置.,1999,(3):22-25
    [140] 吴小明,董秀珍等.人胸部电阻抗成像和铜测量电极系统初步研究.第四军医大学学报,2001,22(2):178-179
    [141] 尤富生,董秀珍,史学涛,付峰,刘锐岗,李江,电阻抗断层成像中临近和对向驱动模式的研究.第四军医大学学报,2004,25(1):88-91
    [142] 尤富生,董秀珍,等.电阻抗断层成像中驱动和测量模式程控系统的设计.第四军医大学学报,2001,22(3):273-275
    [143] 尤富生,董秀珍.电阻抗断层成像中提高测量精度的方法.第四军医大学学报,1998,19(2):230-231
    [144] 尤富生.电阻抗断层成像硬件系统.国外医学:生物医学工程分册,1998,21(3):134-139
    [145] 付峰,董秀珍,尤富生,史学涛,刘锐岗.实时电阻抗断层成像系统中的一种动态成像算法.北京生物医学工程,2003,22(2):109-112
    [146] 付峰,董秀珍,刘锐岗,尤富生,史学涛.实时电阻抗断层成像系统的成像算法及软件系统实现.医疗设备信息,2003,18(6):2-4
    [147] 任超世.生物电阻抗测量技术.中国医疗器械信息,2004,10(1):21-26
    [148] 王妍,任超世.3D-EIT图像重建的研究进展.国外医学.生物医学工程分册,2003,26(6):265-268
    [149] 任超世,池学东,崔云莉等.电阻抗断层图像技术.中国医学物理学杂志,1997,14(2):122-125
    [150] 任超世.EIT-种诱人的医学成像新技术.电子科技导报,1996,(5):9-13
    [151] 任超世,池学东,崔云莉.生物电阻抗成像技术与仪器.国外医学.生物医学工程分册,1995,18(5):249-255
    [152] 安源,任超世.电阻抗断层功能成像技术的发展.第四军医大学学报,2001,22(1):90-92
    [153] 李敬功.储层三维电阻率成像监测技术在濮城油田的应用.石油天然气学报,2006,28(1):65-69
    [154] 底青云,倪大来,王若,王妙月.高密度电阻率成像.地球物理学进展,2003,18(2):323-326
    [155] 底青云,王妙月,许琨等.电阻率成像在堤坝勘察中的应用.工程地质学报,2002,10(1):74-78
    [156] 底青云,王妙月.二维电阻率成像研究.CT理论与应用研究,2000,9(S1):44-47
    [157] 卢元林,王兴泰,王若等.电阻率成像反演中的模拟退火方法.地球物理学报,1999,42(S1):225-233
    [158] 董秀珍.生物电阻抗断层成象研究的几个关键问题.心脏杂志,2000,12(5):392-394
    [159] 赵进创,傅文利,张锦雄,李陶深.正则化优化修正的电容层析成像图像重建算法.仪器仪表学报,2004,25(1):1-5
    [160] 邵晓寅,冀海峰,黄志尧,李海青.用于油气两相流空隙率测量的电容层析成像量化新算法研究.浙江大学学报(工学版),2003,37(4):393-399
    [161] 白登海,于晟.电阻率层析成象理论和方法.地球物理学进展,1995,10(1):56-75
    [162] 陈德运,郑贵滨,于晓洋,孙立镌.电容层析成像系统传感器的仿真分析及遗传算法图像重建.系统仿真学报,2004,16(11:152-154
    [163] 王振宇.土木工程的层析成像与广义反演研究:[博士学位论文].杭州:浙江大学,2003
    [164] 董向元.电容成像技术在热物理量测量中的应用研究:[博士学位论文].北京:中国科学院研究生院,2006
    [165] Bond J, Cullivan JC, Climpson N. Industrial Monitoring of Hydrocyclone Operation Using Electrical Resistance Tomography. 1st World Congress on Industrial Process Tomography. Buxton, Greater Manchester, 1999,102-107
    [166] Williams RA. Development of study mixing models using resistance tomogphaphy. Powder Technology,1996,87(1):21-27
    [167] Wang M,Dorward A, Vlaev D. Measurements of gas-liquid mixing in a stirred vessel using electrical resistance tomography (ERT). 1st World Congress on Industrial Process Tomography. Buxton, Greater Manchester,1999,78-83
    [168] Wang M,Johnstone S, Pritchard WJN. Modelling and Mapping Electrical Resistance Changes Due to Hearth Erosion in a 'Cold' Model of a Blast Furnace. 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester,1999,161-166
    [169] Shima H. Two-dimensional automatic resistivity inversion technique using alpha center.Geophysics, 1990,55(6):628-694
    [170] Shima H. 2-D and 3-D resistivity image reconstruction using crosshole data. Geophysics, 1992, 57(10):1270-1281
    [171] 静恩杰,周洁.二维电法有限元正演计算的几个问题.物探化探计算技术,1990,12(2):141-147
    [172] 底青云,王妙月.稳定电流场有限元法模拟研究.地球物理学报,1998,41(2):252-259
    [173] Chunduru RK, Sen MK, Stoffa PL. 2-D resistivity inversion using spline parameterization and simulated annealing. Geophysics,1996,61(1):151-161
    [174] Hohmann GW. Three-dimensional induced polarization and electromagnetic modeling. Geophysics, 1975, 40:309-324
    [175] 周熙襄,钟本善.三维任意形体电法数值模拟的积分方程法.物化探计算技术,1995,7(2):125-135
    [176] 柳重堪,信号处理的数学方法,南京:东南大学出版社,1992
    [177] Daily W, Owen E. Cross-borehole resistivity tomography.Geophysics, 1991, 56(8):1228-1235
    [178] 王兴泰,李晓芹。电阻率图像重建的佐迪反演((Zohdy)及其应用效果[J].物探与化探,1996,20(3):228-233
    [179] 底青云,王妙月.电流线追踪电位电阻率层析成像方法初探.地球物理学讲展,1997,12(41):27-35
    [180] 杨华.电阻率层析成像方法技术近年发展概括田.地球物理学进展,1998,13(4):90-96
    [181] 李晓芹,陶裕录,冯锐.电阻率层析成像的原理与初步应用阴.地震地质,1998,20(3):234-242
    [182] Brown BH, Segar AD. The Sheffield data collection system. Clin.Phys. Physiol. Measurement, 1987, 8:91-97
    [183] Hua P, Webster JG, Tompkins WJ. Effect of the measurement method on noise handling and image quality of EIT imaging. In Proc.Ninth Int. Conf. IEEE Eng. In Med. And Biol. Society, 1987,2:1429-1458
    [184] 王静.面向复杂产品的工业CT图像重建与分析技术:[博士学位论文].西安:西北工业大学,2004
    [185] Ikeda H, Hayashi N, Three-dimensional image synthesis of MRI and CT angiography on an image-guided neurosurgical simulation system, Clinical Neurology and Neurosurgery, 1999(S1):S221-S222
    [186] 王国强主编.实用工程数值模拟技术及其在ANSYS上的实践.西安西北工业大学出版社,2000
    [187] 洪庆章,刘清吉.ANSYS教学范例,北京:中国铁道出版社,2002
    [188] 高强,朱安国.Visual C++高级编程技巧.北京:人民邮电出版社,2000
    [189] 崔晓会,电阻层析成像算法研究及其应用软件设计:[硕士学位论文].天津:天津大学,电气与自动化工程学院,2005
    [190] Wheeler JL, Wang W, Tang M, A comparison of methods for measurement of spatial resolution in two dimensional circular EIT images. Physio. Meas., 2002, 23(1):169-176
    [191] 徐桂芝,基于EIT技术的脑内电特性与功能成像研究,天津:河北:正业大学,2002
    [192] Model 2700 Multimeter/Switch System User's Manual, Keithley Instruments Inco, Cleveland, Ohio, U.S.A.,2001
    [193] Model 7036 40-Channel Single-Pole Relay Switch Card Instruction Manual, Keithley Instruments Inc., Cleveland, Ohio, U.S.A.,1997
    [194] PCI-7489数据采集板使用说明书,北京宏拓公司,2001
    [195] 侯卫东,张卫民,莫玉龙.电阻抗成像中有限元法的算法实现.上海大学学报(自然科学版),2000,6(4):343-346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700