光学自由曲面设计方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学自由曲面面型复杂、可控制自由度多,能实现传统光学面型不能实现的光学映射关系,但是由于自由曲面面型的特殊性,目前光学领域并没有提出一种普遍适用的自由曲面设计方法。因此,其设计方法的研究已经成为光学自由曲面发展的重要领域。随着超精密加工技术的发展,光学自由曲面的加工已成为可能,且在航空、医疗、民用、军事上都有越来越广泛的应用。
     本文研究了光学自由曲面设计方法,并就其典型应用开展了深入研究。对不同应用需求使用相应的自由曲面设计方法,完成了光学自由曲面在成像和非成像中的典型应用实例,主要内容如下:
     1.基于对现有光学自由曲面设计方法(SMS法和微分法)的研究,提出了一种三维自由曲面设计方法,即三维几何构造法,同时保证了光学要求和曲面光滑性的要求。并利用几何构造法设计了LED二次光学元件,验证了设计方法的正确性;
     2.研究了光学自由曲面在典型非成像光学系统聚光光伏中的应用,采用几何构造法设计完成了三种类型聚光镜,完成了相应的超精密加工和光学实验。设计的Fresnel聚光镜可实现对任意大小光斑的会聚,二级聚光镜可有效提高到达电池片太阳光的均匀性;
     3.基于聚光光伏系统的超薄轻型化设计需求,提出了一种超短聚焦聚光镜的新型设计方法,采用微分法和几何构造法相结合,并利用透镜阵列和自由曲面反射镜实现对光线的精确控制,将太阳能电池放置在聚光镜侧面,大幅度的降低聚光模组的整体厚度,可实现聚光镜的轻薄化;
     4.为验证设计的聚光镜的性能,开展了太阳模拟器的研究,设计了由两片自由曲面反射镜组成的太阳模拟器,完成了反射型自由曲面阵列积分镜的设计和加工,实现了对入射光能量的均匀化作用;
     5.研究了自由曲面在成像光学系统中的应用,利用三维几何构造法和光学仿真软件相结合,解决了成像光学系统中复杂自由曲面面型的设计,并通过短焦投影仪的设计验证了方法的正确性。
Freeform optical elements have complex surfaces so that more freedom can becontrolled during the design. It can achieve optical mapping relationship which cannot be done by the conventional optical surfaces. There is not a applicable method forall freeform optics in the optical field till now. Therefore, the study of the designmethod of freeform optics has become an important area of the development offreeform optics. At the same time, with the development of ultra-precision machiningtechnology, it is possible to realize the machining of freeform optics, and the freefromoptics has more and more widely used in the aviation and aerospace, medicaltreatment, civilian and military applications.
     This paper studied the design methods of freeform optics, and made adevelopment in typical applications. It is proposed that using corresponding methodsfor different optical requirements, and realized the optical applications of freeformoptics in imaging and nonimaging optics, the main contents as follows:
     1. Based on the study of existing optical freeform design methods (SMS anddifferential methods), three-dimensional Geometric Construction Method (GCM) wasproposed, which can ensure the optical requirements and surface smoothnessrequirements simultaneously. A secondary optics was designed for LED to verify thecorrectness of the design method.
     2. Studied the freeform optics in photovoltaic concentrators of typicalnonimaging optical system applications, completed the design of three types ofconcentrators by GCM, and completed the ultra precision machining and opticalexperiments of them. The Fresnel concentrators can realize any size spot on the solarcell, and the secondary concentrators can effectively improve the uniform distributionof the sun light on the solar cell.
     3. Based on the ultra-thin and ultra-light design demand of concentrators in CPVsystems, proposed a new design method of ultra-short focus concentrators which usedthe differential method and GCM. The concentrator used a lens array and a freeformreflector to achieve the control of light precisely. The solar cells were placed at theside of the concentrators, and greatly reduced the overall thickness of theconcentrators module, which can meet the requirements of light and thin ofconcentrators;
     4. To verify the performance of the concentrators, made the study on the solar simulator, designed a solar simulator consisted of two freefrom reflectors to achieveuniform and collimated light. Beside, designed an off-axis optical reflective integratorwith faceted structure to transform a parallel beam into a uniform intensity beam witha rectangular cross section.
     5. Studied the applications of the freeform optics in imaging optical system,designed freeform surface by3D Geometric Construction Methods and opticalsimulation software, which can solve the problem of the complex optical freeformdesign, and verified this method by the design of short focal projector.
引文
[1] Zhang X, Fang F, Wang H, Wei G, Hu X. Ultra-precision machining of sinusoidalsurfaces using the cylindrical coordinate method. Journal of Micromechanics andMicroengineering.2009,19(5):054004.
    [2] Gong H, Fang F, Hu X, Cao LX, Liu J. Optimization of tool positions locallybased on the BCELTP for5-axis machining of free-form surfaces.Computer-Aided Design.2010,42(6):558-70.
    [3] Fang F, Zhang X, Hu X. Cylindrical coordinate machining of optical freeformsurfaces. Optics express.2008,16(10):7323-9.
    [4] Rodgers J M, Thompson K P. Benefits of freeform mirror surfaces in opticaldesign. Proceedings of the American Society of Precision Engineering2004winter topical meeting on freeform optics.2004,31:73-78.
    [5]张效栋,房丰洲,程颖.自由曲面超精密车削加工路径优化设计.天津大学学报.2009,42(3):278-82.
    [6]朱心雄.自由曲线曲面造型技术:科学出版社;2000.
    [7]李林.现代光学设计方法.北京理工大学出版社[等],2009.
    [8] Garrard K, Bruegge T, Hoffman J, Dow T, Sohn A. Design tools for freeformoptics. Proc SPIE;2005;2005. p.95-105.
    [9]李原,张开富,余剑峰.计算机辅助几何设计技术及应用:西北工业大学出版社;2007.
    [10]Davenport T L R.3D NURBS representation of surfaces for illumination.International Optical Design Conference2002. International Society for Opticsand Photonics,2002:293-301.
    [11]Cassarly W J, Hayford M J. Illumination optimization: The revolution has begun.International Optical Design Conference2002. International Society for Opticsand Photonics,2002:258-269.
    [12]Cassarly W J. Illumination merit functions. Optical Engineering+Applications.International Society for Optics and Photonics,2007:66700K-66700K-12.
    [13]吴宗敏.径向基函数,散乱数据拟合与无网格偏微分方程数值解.工程数学学报.2002,19(2): l-l2.
    [14]Schaback R. A practical guide to Radial Basis Functions. Citeseer;2007.
    [15]Cakmakci O, Fasshauer G E, Foroosh H, et al. Meshfree approximation methodsfor free-form surface representation in optical design with applications tohead-worn displays. Proc. of SPIE Vol.2008,7061:70610D-1.
    [16]Cakmakci O, Vo S, Foroosh H, Rolland J. Application of radial basis functions toshape description in a dual-element off-axis magnifier. Optics letters.2008,33(11):1237-9.
    [17]Kaya I, Cakmakci O, Thompson K, et al. The Assessment of a Stable Radial BasisFunction Method to Describe Optical Free-Form Surfaces. Optical Fabricationand Testing. Optical Society of America,2010.
    [18]Chan A K, Chui C K, Guan L T. Radial basis function approach to interpolation oflarge reflecting surfaces. Electronic Imaging'90, Santa Clara,11-16Feb'95.International Society for Optics and Photonics,1990:62-72.
    [19]Kaya I, Rolland J P. A radial basis function method for freeform optics surfaces.Frontiers in Optics. Optical Society of America,2010.
    [20]Ben P. The Future of illumination design. Optics and photonics news.2007,18(5):20-5.
    [21]Winston R, Ries H. Nonimaging reflectors as functionals of the desired irradiance.JOSA A.1993,10(9):1902-8.
    [22]Davies P. Edge-ray principle of nonimaging optics. JOSA A.1994,11(4):1256-9.
    [23]Ries HR, Winston R. Tailored edge-ray reflectors for illumination. JOSA A.1994,11(4):1260-4.
    [24]Rabl A, Gordon JM. Reflector design for illumination with extended sources: thebasic solutions. Applied optics.1994,33(25):6012-21.
    [25]Jenkins D, Winston R. Tailored reflectors for illumination. Applied optics.1996,35(10):1669-72.
    [26]Ong P, Gordon J, Rabl A. Tailored edge-ray designs for illumination with tubularsources. Applied optics.1996,35(22):4361-71.
    [27]Ries H, Muschaweck J. Tailored freeform optical surfaces. JOSA A.2002,19(3):590-5.
    [28]Timinger A L, Muschaweck J A, Ries H. Designing tailored free-form surfaces forgeneral illumination. Optical Science and Technology, SPIE's48th AnnualMeeting. International Society for Optics and Photonics,2003:128-132.
    [29]Zhenrong Z, Xiang H, Xu L. Freeform surface lens for LED uniform illumination.Applied optics.2009,48(35):6627-34.
    [30]Xiang H, Zhenrong Z, Xu L, et al. Freeform surface lens design for uniformillumination. Journal of Optics A: Pure and Applied Optics,2008,10(7):075005.
    [31]Parkyn W A. Design of illumination lenses via extrinsic differential geometry.SPIE's International Symposium on Optical Science, Engineering, andInstrumentation. International Society for Optics and Photonics,1998:154-162.
    [32]Parkyn B, Pelka D. Free-form illumination lenses designed by apseudo-rectangular lawnmower algorithm. Optics&Photonics. InternationalSociety for Optics and Photonics,2006:633808-633808-7.
    [33]Fournier FR, Cassarly WJ, Rolland JP. Fast freeform reflector generation usingsource-target maps. Optics express.2010,18(5):5295-304.
    [34]Fournier F R, Cassarly W J, Rolland J P. Freeform reflector design usingintegrable maps. International Optical Design Conference. Optical Society ofAmerica,2010.
    [35]Wang K, Chen F, Liu Z, Luo X, Liu S. Design of compact freeform lens forapplication specific light-emitting diode packaging. Optics express.2010,18(2):413-25.
    [36]Belousov A, Doskolovich L, Kharitonov S. A gradient method of designingoptical elements for forming a specified irradiance on a curved surface. Journal ofOptical Technology.2008,75(3):161-5.
    [37]Luo Y, Feng Z, Han Y, Li H. Design of compact and smooth free-form opticalsystem with uniform illuminance for LED source. Optics express.2010,18(9):9055-63.
    [38]Oliker V. Geometric and variational methods in optical design of reflectingsurfaces with prescribed irradiance properties. Optics&Photonics2005.International Society for Optics and Photonics,2005:594207-594207-12.
    [39]Kochengin S A, Oliker V I, von Tempski O. On the design of reflectors withprespecified distribution of virtual sources and intensities. Inverse problems,1998,14(3):661.
    [40]Oliker V. Freeform optical systems with prescribed irradiance properties innear-field. Contract Proceedings2006. International Society for Optics andPhotonics,2006:634211-634211-12.
    [41]Glimm T, Oliker V. Optical design of two-reflector systems, theMonge-Kantorovich mass transfer problem and Fermat's principle. arXiv preprintmath/0303388,2003.
    [42]Ben P, Min J C, Dross O, et al. Simultaneous multiple surface optical designmethod in three dimensions. Optical Engineering,2004,43(7):1489-1502.
    [43]Mi ano J C, Gonzalez J C. New method of design of nonimaging concentrators.Applied optics,1992,31(16):3051-3060.
    [44]Winston R, Welford W, Mi ano JC, Benítez P. Nonimaging optics: AcademicPress;2005.
    [45]Tohme Y. Trends in ultra-precision machining of freeform optical surfaces.Optical fabrication and testing. Optical Society of America,2008.
    [46]Cheng D, Wang Y, Hua H, Talha M. Design of an optical see-throughhead-mounted display with a low f-number and large field of view using afreeform prism. Applied optics.2009,48(14):2655-68.
    [47]Chern J L, Liu C Y, Chuang P Y. Color Appearance and Imaging Quality inVideophone with Free-Form Optics. Frontiers in Optics. Optical Society ofAmerica,2006.
    [48]Li L, Yi AY. Design and fabrication of a freeform prism array for3D microscopy.JOSA A.2010,27(12):2613-20.
    [49]Hicks RA. Controlling a ray bundle with a free-form reflector. Optics letters.2008,33(15):1672-4.
    [50]Oliker V. Optical design of freeform two-mirror beam-shaping systems. JOSA A.2007,24(12):3741-52.
    [51]Mu oza F, Benítezb P, Mi anob J C. High-order aspherics: the SMS nonimagingdesign method applied to imaging optics. Proc. of SPIE Vol.2008,7061:70610G-1.
    [52]Cheng Y C, Hsu W Y, Chen Y H, et al. Design and Fabrication of Free-formShaped Lens for Laser Leveler Instrument. Frontiers in Optics. Optical Society ofAmerica,2010.
    [53]Xu L, Chen K, He Q, Jin G. Design of freeform mirrors in Czerny-Turnerspectrometers to suppress astigmatism. Applied optics.2009,48(15):2871-9.
    [54]Feng Z, Luo Y, Han Y. Design of LED freeform optical system for road lightingwith high luminance/illuminance ratio. Optics express.2010,18(21):22020-31.
    [55]Wang K, Wu D, Chen F, Liu Z, Luo X, Liu S. Angular color uniformityenhancement of white light-emitting diodes integrated with freeform lenses.Optics letters.2010,35(11):1860-2.
    [56]Fournier F, Rolland J. Design methodology for high brightness projectors. Journalof Display Technology.2008,4(1):86-91.
    [57]Sun L, Jin S, Cen S. Free-form microlens for illumination applications. Appliedoptics.2009,48(29):5520-7.
    [58]Fournier F, Rolland J. Optimization of freeform lightpipes forlight-emitting-diode projectors. Applied optics.2008,47(7):957-66.
    [59]Mi ano JC, Benítez P, Blen J, Santamaría A. High-efficiency free-form condenserovercoming rotational symmetry limitations. Optics express.2008,16(25):20193-205.
    [60]Garcia-Botella A, Fernandez-Balbuena AA, Bernabeu E. Elliptical concentrators.Applied optics.2006,45(29):7622-7.
    [61]Fresnel Technologies I. http://fresneltech.com/pdf/FresnelLenses.pdf. Fresnellenses.1995.
    [62]Anicin BA, Babovic VM, Davidovic DM. Fresnel lenses. American Journal ofPhysics.1989,57(4):312-6.
    [63]Boettner E, Barnett N. Design and construction of Fresnel optics for photoelectricreceivers. JOSA.1951,41(11):849-.
    [64]Miller O, McLeod J, Sherwood W. Thin sheet plastic Fresnel lenses of highaperture. JOSA.1951,41(11):807-14.
    [65]Kritchman E, Friesem A, Yekutieli G. Highly concentrating Fresnel lenses.Applied optics.1979,18(15):2688-95.
    [66]Leutz R, Suzuki A. Nonimaging Fresnel lenses: design and performance of solarconcentrators. Springer Verlag,2001.
    [67]Leutz R, Suzuki A, Akisawa A, Kashiwagi T. Design of a nonimaging Fresnellens for solar concentrators. Solar Energy.1999,65(6):379-87.
    [68]Leutz R, Suzuki A, Akisawa A, Kashiwagi T. Shaped nonimaging Fresnel lenses.Journal of Optics A: Pure and Applied Optics.2000,2(2):112.
    [69]Leutz R, Suzuki A, Akisawa A, et al. Nonideal concentration of nonimaginglinear Fresnel lenses. International Symposium on Optical Science andTechnology. International Society for Optics and Photonics,2001:100-109.
    [70]O'Neill M J, Piszczor M F, Eskenazi M I, et al. Ultralight stretched Fresnel lenssolar concentrator for space power applications. Optical Science and Technology,SPIE's48th Annual Meeting. International Society for Optics and Photonics,2003:116-126.
    [71]O'Neill M J, Piszczor M F. Inflatable lenses for space photovoltaic concentratorarrays. Photovoltaic Specialists Conference,1997., Conference Record of theTwenty-Sixth IEEE. IEEE,1997:853-856.
    [72]O’Neill M J, Piszczor M F. Ultralight inflatable fresnel lens solar concentrators.AIP Conference Proceedings.1998,420:288.
    [73]Mi ano JC, Gon lez JC, Benítez P. A high-gain, compact, nonimagingconcentrator: RXI. Applied optics.1995,34(34):7850-6.
    [74]Minano JC, Benítez P, González JC. RX: a nonimaging concentrator. Appliedoptics.1995,34(13):2226-35.
    [75]Cvetkovi A, Hernández M, Benitez P, et al. The XR nonimaging photovoltaicconcentrator. Workshop on Concentrating photovoltaic Power Plants: OpticalDesign and Grid Connection, Marburg, Germany.2007.
    [76]Alvarez J L, Hernandez M, Benitez P, et al. TIR-R Concentrator: a new compacthigh-gain SMS design. International Symposium on Optical Science andTechnology. International Society for Optics and Photonics,2001:32-42.
    [77]Parkyn W A, Gleckman P L, Pelka D G. Converging TIR lens for nonimagingconcentration of light from compact incoherent sources. SPIE's1993InternationalSymposium on Optics, Imaging, and Instrumentation. International Society forOptics and Photonics,1993:78-86.
    [78]华刘,瑞朱,卢振武,张红鑫;便携免跟踪式非成像太阳能聚光装置,中国专利,101388418,2008-10-22.
    [79]Negi B, Purohit I. Experimental investigation of a box type solar cookeremploying a non-tracking concentrator. Energy conversion and management.2005,46(4):577-604.
    [80]Kotsidas P, Chatzi E, Modi V. Stationary nonimaging lenses for solarconcentration. Applied optics.2010,49(27):5183-91.
    [81]Duerr F, Meuret Y, Thienpont H. Tracking integration in concentratingphotovoltaics using laterally moving optics. Optics express.2011,19(103):A207-A18.
    [82]Karp J H, Ford J E. Multiband solar concentrator using transmissive dichroicbeamsplitting. Solar Energy+Applications. International Society for Optics andPhotonics,2008:70430F-70430F-8.
    [83]Barnett A, Kirkpatrick D, Honsberg C, et al. Milestones toward50%efficientsolar cell modules. DELAWARE UNIV NEWARK,2007.
    [84]徐况,常军,程德文,等.适用于非对称系统的Wassermann-Wolf方程.2007年中国南京第三届全国光学技术(光学制造技术与装备)交流会论文集,2007.
    [85]Wassermann G D, Wolf E. On the theory of aplanatic aspheric systems.Proceedings of the Physical Society. Section B,1949,62(1):2.
    [86]Vaskas EM. Note on the Wasserman-Wolf method for designing aspheric surfaces.JOSA.1957,47(7):669-70.
    [87]Knapp DJ. Conformal optical design.2002.
    [88]MINano JC, BENItez P, Santamaría A. Free-form optics for illumination. Opticalreview.2009,16(2):99-102.
    [89]Mi ano JC. Design of three-dimensional nonimaging concentrators withinhomogeneous media. JOSA A.1986,3(9):1345-53.
    [90]Mi ano J C, Benítez P, Lin W, et al. Overview of the SMS design method appliedto imaging optics. Proc. SPIE.2009,7429:74290C.
    [91]Chaves J. Introduction to nonimaging optics[M]. CRC PressI Llc,2008.
    [92]程颖,聚光光伏系统聚光器的初步研究:[硕士学位论文],天津;天津大学;2009.
    [93]Dross O, Mohedano R, Hernández M, et al. K hler integrators embedded intoillumination optics add functionality. Optical Systems Design. InternationalSociety for Optics and Photonics,2008:71030G-71030G-12.
    [94]Dross O, Mohedano R, Benitez P, et al. Review of sms design methods andreal-world applications. Proceedings of SPIE.2004,5529:35-47.
    [95]Mi ano J C, Benitez P, Arroyo R M, et al. Ultracompact optics for opticalwireless communications. Photonics East'99. International Society for Optics andPhotonics,1999:80-90.
    [96]Igari S. Solar simulator: U.S. Patent8,016,439.2011-9-13.
    [97]Oliker VI. Mathematical aspects of design of beam shaping surfaces ingeometrical optics. Trends in Nonlinear Analysis.2003:191-222.
    [98]Kobayashi K. Projection lens system and projector: U.S. Patent7,057,825.2006-6-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700