时滞离散不确定系统的滑模控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的飞速发展,离散控制系统的分析与设计已经成为控制理论的一个重要组成部分。另外,在航空航天、过程控制、网络控制系统中,由于信号传输及计算时间延迟,时滞现象普遍存在。时滞的存在严重降低了系统的性能,甚至使系统不稳定。另一方面,实际的控制系统通常都会受到各种外部扰动的影响,这些扰动不仅能使系统的工作点发生漂移,还会使系统的动态和稳态特性变坏,甚至使系统失稳,导致控制失败。因此,在具有时滞的离散不确定系统中,如何设计控制器消除或减小扰动对系统的影响,无论在理论上还是在实践中,都是很有意义的研究课题。
     滑模控制由于算法简单、响应快速、鲁棒性好、易于工程实现等优点,近年来受到了控制界的广泛重视。本文以滑模控制理论为基础,结合多输出反馈技术、鲁棒控制、自适应控制、Lyapunov稳定性理论等,针对时滞离散不确定系统,给出了高性能镇定控制器和跟踪控制器的设计方法。本文的研究内容概括如下:
     在前言中,回顾了变结构控制理论的发展,详细介绍了国内外关于连续系统的滑模变结构控制、不确定时滞系统的滑模变结构控制以及离散系统的滑模变结构控制理论的研究概况与现状,给出了本文的研究内容和研究意义。
     第二章研究了利用变速趋近律实现离散系统的滑模控制问题。首先,对于无时滞的离散系统,构造了一种离散变速趋近律,证明了利用此趋近律设计的变结构控制器具有趋近速度快、抖振小的优良品质,并且证明了系统具有常值的滑模带以及系统运动最终趋于原点的性质;其次,对于有时滞的离散系统,利用极点配置法,给出了时滞离散变结构控制系统的滑模面方程,保证了系统滑模运动的渐近稳定性;并利用改进的离散趋近律给出了时滞离散变结构控制律以及系统滑模带的具体数学表达式。最后通过仿真实例,验证了本文提出的变结构控制器的设计方法能保证滑模最终趋于原点,且具有趋近速度快、抖动小的优良品质。
     在第三章中,对于含有外部扰动的状态时滞系统,根据已知外部扰动条件的不同,设计了三种不同的控制策略用以消除或减弱扰动对系统的影响。一是对于外部扰动上、下界已知的时滞离散不确定系统,构造了一种新的近似变结构控制策略,证明了在此变结构控制器的控制下,系统具有准滑模带的存在性、有限可达性和趋近运动的全局稳定性。二是对于外部扰动变化率有界的时滞离散不确定系统,设计了新的对控制律实施在线补偿的扰动动态补偿器,解决了系统的不确定性问题。三是基于多输出反馈技术,结合趋近律方法,设计了能够物理实现的控制律,并证明了对于含有外部扰动的状态时滞系统此控制方法是有效的。最后,通过相同的仿真实例与其它控制策略进行了比较,体现了本文所提控制方法的优越性。
     第四章研究了利用模型参考自适应滑模控制算法实现具有未知外部扰动的状态时滞系统的模型跟踪问题。本章提出了一种模型参考自适应滑模控制算法,通过构造离散的Lvapunov函数,证明了系统在所给控制的作用下具有渐近稳定性。另外,对于带有时滞关联项的离散大系统,本章提出了一种分散模型跟踪自适应滑摸控制算法,证明了误差系统在所给控制的作用下,系统的输出函数在准滑模带内步步穿越滑模面、跟踪误差最终趋于原点以及误差系统的趋近滑模带的运动是渐近稳定的等性质。最后给出了仿真实例,验证了所提方法的可行性。
     在第五章中,研究了离散混沌系统的状态同步问题。首先,利用广义系统的概念给出了系数矩阵为能控标准型的滑模面方程,并利用极点配置定理给出了能使系统稳定的滑模面;其次,构造了含有自适应律的离散趋近律,设计了能够使系统达到同步的变结构控制器,并利用Lyapunov稳定性定理,证明了系统的趋近运动的稳定性。最后,通过对Duffing-Holmes系统的同步仿真,验证了该方法的可行性。另外,通过利用Terminal滑模控制技术设计了离散Terminal滑模控制器,构造了自适应趋近律,实现了离散系统的混沌同步;同时证明了误差系统在所给控制的作用下新设计的滑模面即为Terminal滑模面,并且系统运动具有步步穿越滑模面的性质。最后通过仿真说明了本章所提方法的有效性。
     第六章在总结全文主要工作的基础上,对时滞离散不确定系统的滑模控制研究进行了展望。
With the development of computer techniques, the stability analysis and control algorithm design of discrete systems are important research subjects in control theory. Moreover, in aeronautics and astronautics, process control, and networked control systems, due to the delay in signal transmission and computation time, time delays are commonly encountered. The presence of time delays could seriously degrade performances of the control system, or even drives the system to instability. On the other hand, practical control systems are frequently subjected to various external disturbances. These disturbances can not only lead to working-position shift, but worsen the dynamic and stable characteristics of the system, or even destabilize the system and result in control failure. So it is of great significance to cancel or attenuate the effect of exogenous disturbances, both in theory and practice.
     In recent years, sliding mode control receives wide attention because of its simplicity, quick response, robustness and easy realization. In this dissertation, the effective sliding mode controllers and trackers are designed based on sliding mode control theory, robust control, adaptive control and Lvapunov stable theory for discrete uncertain systems with time-delays. The contents of this dissertation are arranged as follows:
     In the preface, an overview of the sliding mode control theory is given, and the relative studies on the methods of sliding mode control for continues systems, for the uncertain systems with time-delay and for discrete-time systems and their relevant control problems are reviewed. The research subject and significance of this dissertation are also shown.
     Chapter 2 deals with the problem of how the discrete system is controlled effectively by using a variable rate reaching law. First, the dissertation constructs a new discrete variable rate reaching law based on the exponential reaching for discrete system without time-delay, and it is proved that the system with new controller designed by using this new reaching law not only can decrease system chattering and hold fast reaching speed, but also can fast approach to zero at last. Then, a discrete sliding mode surface is designed for discrete system with time-delay by using pole deployment method, and a new sliding mode controller is designed by using the new reaching law and the system is controlled stably. At last, an example is studied and its simulation results illustrate that the system not only can decrease chattering and have fast reaching speed, but also can quickly approach to zero by using the proposed scheme.
     In chapter 3, three different methods to decrease or cancel the system chattering are proposed for uncertain discrete system with time-delay with different external disturbances. First, a discrete approximate sliding mode control method is adopted for the system with known boundary of external disturbances, and it is proved that the system can arrive the sliding mode layer in finite steps and the approaching movement is stable. Secondly, a novel discrete reaching law with dynamic disturbance compensator is presented for a class of uncertain systems with limited bounded in varying rate of external disturbance boundary, and the problem that the controller containing unrecognized states couldn't be actualized is solved. At last, a control law that can be actualized in physics based is designed based on multi-output feedback technique and the reaching law method, and it is proved that the controller can control the uncertain discrete system with time-delay effectively. The simulation results illustrate the proposed algorithms are more effective than the conventional methods.
     The chapter 4 considers the problem how to design a model tracker by using model reference adaptive sliding mode control algorithm for uncertain system with time-delay. A novel model reference adaptive sliding mode control algorithm is presented, and the system can track the model reference system effectively by using the new controller where the boundary of external disturbance can not be known as usually. In addition, a decentralized model reference adaptive variable structure control algorithm for a class of perturbed large-scale discrete systems with varying time-delay interconnections is investigated, and a discrete robust adaptive quasi-sliding-mode tracking controller is presented. It is proved that by using the adaptive controller the output error decreases to zero and the trajectories of each subsystem traverse the sliding hyperplane in each step, and the globally asymptotically stability of the system is also proved based on the Lyapunov-Razumikhin stability theorem. Finally, an example is presented and its simulation results illustrate the efficiency of the proposed approach.
     The chapter 5 considers the chaos synchrony problem for a class of discrete uncertain systems with time-delays. First, a switching function is designed to guarantee that the movement of the system is asymptotically stable in the switching manifold. And the equation of the switching surface is given based on pole assignment theorem; Then a discrete robust adaptive quasi-sliding-mode tracking controller is presented by constructing the two adaptive gains, and the globally asymptotically stability of the system is proved based on the Lyapunov-Razumikhin stability theorem. At last, the simulation examples illustrate that this algorithm is effective and robust with respect to some exogenous disturbances for Duffing-Holmes system. In addition, a discrete terminal sliding mode controller is proposed by applying terminal sliding mode control technique and selecting adaptive reaching law, and the chaos synchrony problem can be solved effectively by using this method. At the same time, it is proved that the designed sliding surface is a terminal sliding surface and the movement of the system controlled by given controller can traverse the sliding surface in each step. At last, an example is presented and its simulation results illustrate the efficiency of the proposed approach.
     The last chapter summarizes the research work of this dissertation and gives an outlook on sliding mode control method for discrete uncertain system with time-delay.
引文
[1] S. V. Emelyanov.Variable structure control systems. Moscow, Nauka, (in Russian), 1967.
    [2] S. V. Emelyanov, A. I.Fedotova. Producing astaticism in servo systems with a variable structure. Automatic Remote Control, 1962,23(10): 1223-1235.
    [3] S. V. Emelyanov, N. E. Kostyleva. Design of variable structure control systems with discontinuous switching function. Engineering Cybernetics, 1964,2(1): 156-160.
    [4] V. I. Utkin. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 1977,22(2): 212-220.
    [5] U. Itkis. Control Systems of Variable Structure. New York, Wiley, 1976.
    [6] V. I. Utkin. Variable structure systems: present and future. Automatic and Remote Control, 1983,44(9): 1105-1120.
    [7] V. I. Utkin. Sliding Modes in Control and Optimization. New York, Springer, 1992.
    [8] K. D. Young, V. I. Utkin, U. Ozquner. Control engineer's guide to sliding mode control. IEEE Transactions on Control Systems Technology, 1999,7(3): 328-342.
    [9] R. El-khazali, R. DeCarlo. Output feedback variable structure control design. Automatica, 1995,31(6): 805-816.
    [10] A. Isidori. Nonlinear Control Systems. Third Edition, London: Springer-Verlag, 1995.
    [11] G. Monsees, J. M. A. Scherpen. Adaptive switching gain for a discrete-time sliding mode controller. International Journal of Control, 2002,75(4): 242-251.
    [12] O. Boubaker, J. P. Babary. On SISO and MIMO variable structure control of nonlinear distributed parameter systems: Application to fixed bed reactors. Journal of Process Control, 2003,13(8): 729-737.
    [13] K. K. Shyu, W. J. Liu, K. C. Hsu. Design of large-scale time-delayed systems with dead-zone input via variable structure control. Automatica, 2005,41(7): 1239-1246.
    [14] Y. Xia, Y. Jia. Robust sliding-mode control for uncertain time-delay systems: An LMI approach. IEEE Transactions on Automatic Control, 2003,48(6): 1086-1092.
    [15] V. I. Utkin, K. D. Yang. Methods for constructing discontinuity planes in multidimensional variable structure systems. Autom Remote Control, 1978, 39(10): 1466-1470.
    [16] C. M. Dorling, A. S. I. Zinober. Robust hyperplane design in multivariable variable structure control. International Journal of Control, 1988,48(5): 2043-2053.
    [17] H. G. Kwatny, H. Kim. Variable structure control of partially linearizable dynamics. Proceedings of the American Control conference, Pittsburgh, PA, 1989.1148-1153.
    [18] H. Sira-Ramirez. Nonlinear variable structure systems in sliding mode: The general case. IEEE Transactions on Automatic Control, 1989,34(11): 1186-1188.
    [19] C. Edwards, S. Spurgeon. Sliding mode control: Theory and Applications. London: Taylor & Francis, 1998.
    [20] W.C. Su, S. V. Drakunov, U. Ozquner. Constructing discontinuity surface for variable structure systems: A Lyapunov approach. Automatica, 1996, 32(6): 925-928.
    [21] H.H. Choi. On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties. Automatica, 1999, 35(10): 1707-1715.
    [22] C. Edwards. A practical method for the design of sliding mode controllers using linear matrix inequalities. Automatica, 2004, 40(10): 1761-1769.
    [23] K.D. Young, U. Ozquner. Frequency shaped variable structure control. Proceedings of the American Control Conference, 1990, 181-185.
    [24] J.J.E. Slotine, W. Li. Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [25] T.A.W. Dwyer, H. Sira-Ramirez. Variable structure control of spacecraft attitude maneuvers. Journal of Guidance, Control, and Dynamics, 1988, 11(3): 262-270.
    [26] A. Davari, Z. Zhang, Three-segment variable structure systems. International Journal of Robust and Nonlinear Control, 1996, 6(3): 249-255.
    [27] S.B. Choi, C. C. Cheong, D, W. Park. Moving switch-surfaces for robust control of second-order variable structure systems. International Journal of Control, 1993, 58(1):229-245.
    [28] Q.P. Ha, D. C. Rye. Fuzzy moving sliding mode control with application to robotic manipulators. Automatica, 1999, 35(4): 607-616.
    [29] D.W. Park, S. B. Choi. Moving sliding surfaces for high-order variable structure systems. International Journal of Control, 1999, 72(11): 960-970.
    [30] J.H. Lee, J. S. Ko. Continuous variable structure controller for BLDDSM position control with prescribed tracking performance. IEEE Transactions on Industrial Electronics, 1994, 41(5): 483-491.
    [31] C.H. Chou, C. C. Cheng. Design of adaptive variable structure controllers for perturbed time-varying state delay systems. Journal of the Franklin Institute, 2001, 338(1): 35-46.
    [32] W.J. Cao, J. X. Xu, Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems. IEEE Transactions on Automatic Control, 2004, 49(8):1355-1360.
    [33] Y. Nin, D. W. C. Ho, J. Lam. Robust integral sliding mode control for uncertain stochastic systems with time-varying delay. Automatic.a, 2005, 41(5): 873-880.
    [34] J.J.E. Slotine. Sliding controller design for non-linear systems. International Journal of Control, 1984, 40(2): 421-434.
    [35] 高为炳,程勉.变结构控制系统的品质控制.控制与决策,1989,4(4):1-5.
    [36] J.Y. Huang, W. B. Gao, J. C. Huang. Variable Structure Control: A Survey. IEEE Transactions on Industrial Electronics, 1993, 40(1): 2-22.
    [37] H.K. Khalil. Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ, Third Edition, 2002.
    [38] J.J.E. Slotine, S. S. Sastry. Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator. International Journal of Control, 1983, 38(2):465-492.
    [39] V. Parra-Veqa, G. Hirzinqer. Chattering-free sliding mode control for a class of nonlinear mechanical systems. International Journal of Robust and Nonlinear Control, 2001, 11(12): 1161-1178.
    [40] S.C.Y. Chung, C. L. Lin. Transformed Lure problem for sliding mode control and chattering reduction. IEEE Transactions on Automatic Control, 1999, 44(3): 563-568.
    [41] M.S. Chert, Y. R. Hwang, M. Tomizuka. A state-dependent boundary layer.design for sliding mode control. IEEE Transanctions on Automatic Control, 2002, 47(10): 1677-1681.
    [42] S. Seshagiri, H. K. Khalil. On introducing integral action in sliding mode control. Proceedings of the IEEE Conference on Decision and Control, 2002, 2: 1473-1478.
    [43] K. Erbatur, A. Kawamura. Chattering elimination via fuzzy boundary layer tuning. IECON Proceedings (Industrial Electronics Conference), 2002, 3: 2131-2136.
    [44] 高为炳.离散时间系统的滑模控制.自动化学报,1995,21(2):154-161.
    [45] 翟长连,吴智铭.一种离散时间系统的变结构控制方法.上海交通大学学报,2000,34(5):719-722.
    [46] K. Jiang, J. G. Zhang, Z. M. Chen. A new approach for the sliding mode control based on fuzzy reaching law. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 2002, 1: 656-660.
    [47] P. Kachroo, M. Tomizuka. Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems, IEEE Transanctions on Automatic Control, 1996, 41(7): 1063-1068.
    [48] W.C. Su, S. Drakunov, U. Ozquner, K. D. Young. Sliding Mode with chattering reduction in sampled data systems. Proceedings of the IEEE Conference on Decision and Control, 1993, 3: 2452-2457.
    [49] J.X. Xu, Y. J. Pan, T. H. Lee. A gain shaped sliding mode control scheme using filtering techniques with applications to multi-link robotic manipulators. Proceedings of the American Control Conference, 2001, 6: 4363-4368.
    [50] G. Bartolini, A. Pisano, E. Punta, E. Usani. A Survey of applications of second-order sliding mode control to mechanical systems. International Journal of Control, 2003, 76(9): 755-770.
    [51] M. Hamerlain, T. Youssef, M. Belhocine. Switching on the derivative of control to reduce chatter. IEE Proceedings on Control Theory and Appplications, 2001, 148(1): 88-96.
    [52] 晁红敏,胡跃明.动态滑模控制极其在移动机器人输出跟踪中的应用.控制与决策, 2001, 16(5): 565-568.
    [53] A. Kawamura, H. Itoh, K. Sakamoto. Chattering reduction of disturbance observer based sliding mode control. IEEE Transanctions on Industry Applications, 1994, 30(2): 456-461.
    [54] Y. Eun, J. H. Kim, K. Kim, D. H. Cho. Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism. IEEE Transanctions on Control Systems Technology, 1999, 7(4): 414-422.
    [55] Y.S. Kim, Y. S. Han, W.S.You. Disturbance observer with binary control theory. PESC Record - IEEE Annual Power Electronics Specialists Conference, 1996, 2: 1229-1234.
    [56] H. Liu. Smooth sliding control of uncertain systems based on a prediction error. Int. J. Robust Nonlinear Control, 1997, 7(4): 353-372.
    [57] H. Morioka, K. Wada, A. Sabanovic, K. Jezemik. Neural network based chattering for sliding mode control. Proceedings of the 34th SICE Annual Conference, 1995: 1109-1112.
    [58] 达飞鹏,宋文忠.基于输入输出模型的模糊神经网络滑模控制.自动化学报.2000,26(1):136-139.
    [59] M. Ertugrul, O. Kaynak. Neuro sliding mode control of robotic manipulators. Mechatronics, 2000, 10(1, 2): 239-263.
    [60] 张天平,冯纯伯.基于模糊逻辑的连续滑模控制.控制与决策,1995,10(6):503-507.
    [61] K.Y. Zhuang, H. Y. Su, J. Chu, K. Q. Zhang. Globally stable robust tracking of uncertain systems via fuzzy integral sliding mode control. Proceedings of the Word Congress on Intelligent Control and Automation (WCICA), 2000, 3: 1827-1831.
    [62] 孙宜标,郭庆鼎,孙艳娜.基于模糊自学习的交流直线伺服系统滑模变结构控制.电工技术学报,2001,16(1):52-56.
    [63] Q.P. Ha, Q. H. Nguyen, D. C. Rye, H. F. Durrant-Whyte. Fuzzy sliding-mode controller with application. IEEE Transanctions on Industrial Electronics, 2001, 48(1): 38-46.
    [64] F.J. Lin, R. J. Wai. Sliding-mode-controlled slider-crank mechanism with fuzzy neural network. IEEE Transanctions on Industrial Electronics, 2001, 48(1): 60-70.
    [65] C. L Hwang. Sliding mode control using time-varying switching gain and boundary layer for electrohydraulic position and differential pressure control. IEEE Proceedings on Control Theory and Appplications, 1996, 143(4): 325-332.
    [66] L J. Wong, F.H. F. Leung, P. K. S. Tam. Chattering elimination algorithm for sliding mode control of uncertain non-linear systems. Meehatronics, 1998, 8(7): 765-775.
    [67] F.J. Lin, W. D. Chou. An induction motor servo drive using sliding-mode controller with genetic algorithm. Electric Power Systems Research, 2003, 64(2): 93-108.
    [68] K. C. Ng, Y. Li, D. J. Murray-Smith, K. C. Sharman. Genetic algorithms applied to fuzzy sliding mode controller design. IEE Conference Publication, 1995, 414: 220-225.
    [69] A. Ficola, M. L. Cava. Sliding mode controller for a two-joint robot with an elastic link. Mathematics and Computers in Simulation, 1996,41(5,6): 559-569.
    [70] V. Utkin, J. Guldner, J.x. Shi. Sliding mode control in electromechanical systems. Taylor& Framcs, 1999.
    [71] D. Zhou, C. D. Mu, W. L. Xu. Adaptive sliding mode guidance of a homing missile. Journal of guidance, control, and dynamics, 1999,22(4): 589-594.
    [72] C. Edwards, S. K. Spurgeon. Sliding Mode Control. Taylor& Framcs, 1998.
    [73] Y. P. Chen, J. L. Chang, S. R. Chu. PC-based sliding mode control applied to parallel-type double inverted pendulum system. Mechatronics, 1999,9(5): 553-564.
    [74] J. Hu, J. Chu, H. Su. SMVSC for a class of time-delay uncertain systems with mismatching uncertainties. IEE Proceedings on Control Theory and Applications, 2000, 147(6): 687-693.
    [75] J. P. Richard. Time-delay systems: An overview of some recent advances and open problems. Automatic, 2003,39(10): 1667-1694.
    [76] C. Bonnet, J. R Partington, M. Sorine. Robust control and tracking of a delay system with discontinuous non-linearity in the feedback. International Journal of Control, 1999, 72(15): 1354-1364.
    [77] N. Luo, M. De la Sen. State feedback sliding mode control of a class of uncertain time-delay systems. IEEE Proceedings on Control Theory and Applications, 1993, 140(4): 261-274.
    [78] F. Gouaisbaut, W. Perruquetti, J. P. Richard. Sliding mode control for linear systems with input and state delays. Proceedings of the IEEE Conference on Decision and Control, 1999,4: 4234-4239.
    [79] X. Li, S. Yurkovich. Sliding mode control of delayed systems with application to engine idle speed control. IEEE Transactions on Control Systems Technology, 2001, 9(6):802-810.
    [80] Y. Niu, J. Lam, X. Wang, D. W. C. Ho. Sliding mode control for nonlinear state-delayed systems using neural network approximation. IEE Proceedings-Control Theory and Applications, 2003,150(3): 233-239.
    [81] F. J. Yin, G. M. Dimirovski, Y. W. Jing. Robust stabilization of uncertain input delay for internet congestion control. Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA, June 2006,14-16:5576-5580.
    [82] F. Da. Sliding mode predictive control for long delay time systems. Physics letters A, 2006,348: 228-232.
    [83] C. Milosavljevic. General conditions for the existence of a quasisliding mode on the switching hyperplane in discrete variable structure systems. Automation and Remote Control, 1985,46(3): 307-314.
    [84] Y. Dot, R. G. Holf. Microprocessor based sliding mode controller for dc motor drives. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 1980, 641-645.
    [85] S.Z. Sapturk, Y. Istefanopulos, O. Kaynak. On the stability of discrete-time sliding mode control systems. IEEE Trans Automat Contr, 1987, 32(10): 930-932.
    [86] K. Furuta. Sliding mode control of a discrete system. Systems and Control Letters, 1990, 14(2): 145-152.
    [87] 高为炳.滑模控制的理论及设计方法.北京:科学出版社,1998.
    [88] A. Bartoszewicz. Discrete time sliding mode control - An advanced reaching law approach. Systems Science, 2003,28(4): 35-42.
    [89] 姚琼荟,宋立忠,温洪.离散滑模控制系统的比例-等速-变速控制.控制与决策,2000,15(3):329-332.
    [90] 李文林.离散时间系统变结构控制的趋近律问题.控制与决策,2004,19(11):1267-1270.
    [91] W.B. Gao, Y. f. Wang, A. Homaifa. Discrete-time variable structure control systems. IEEE Transactions on Industrial Electronics, April 1995.42(2): 117-1.22.
    [92] E.A. Misawa. Observer-based discrete-time sliding mode control with computational time delay: the linear case. Proceedings of the American Control Conference, 1995, 2: 1323-1327.
    [93] H. Richter, E.A. Misawa, Boundary layer eigenvalues in observer-based discrete-time sliding mode control. Proceeding of the 2002 American Control Conference, 2002, 4: 2935-2936.
    [94] C.P. Bottura, M. J. Bordon, M. C. M. Teixeira, Discrete time sliding mode realization of observer based control with CMAC. Proceedings of the 10th Mediterranean Conference on Control and Automation-MED2002, Lisbon, Portugal, July 9-12, 2002.
    [95] C.X. Tong. The control system design for ASV via discrete sliding mode control based on disturbance observer IMACS Multiconference on "Computational Engineering in Systems Applications"(CESA), 2006, Beijing, China, 758-762.
    [96] A. Beghi, L. Nardo, M. Stevanato. Observer-based discrete-time sliding mode throttle control for drive-by-wire operation of a racing motorcycle engine. IEEE Transactions on Control Systems Technology, 2006, 14(4): 767-775.
    [97] Y.M. Park, W. Kim, Discrete-time adaptive sliding mode power system stabilizer with only input/output measurements. Electrical Power and Energy Systems, 1996, 18(8): 509-517.
    [98] G. Bartolini, A. Ferrara, V. Utkin. Adaptive sliding mode control in discrete-time systems. Automatica, 1995, 31(5): 769-773.
    [99] V. Utkin. Adaptive discrete-time sliding mode control of infinite-dimensional systems, Proceedings of the IEEE Conference on Decision and Control, 1998, 4:4033-4038
    [100] G. Monsees, J. M. A. Scherpen, Adaptive switching gains for a discrete-time sliding mode controller, Proceedings of the 2000 American Control Conference, 2000, 3: 1639-1643.
    [101] X. Chen. Adaptive sliding mode control for discrete-time multi-input multi-output systems. Automatica, 2006,42(3): 427-435.
    [102] A. Filipescu, F. Leite, U. Nunes, Robust discrete-time adaptive sliding mode WMR tracking and parameter identification, Annals of "Dunarea de Jos"University of Galati. Fascicle Ⅲ, Electrotechnics, Electronics, Automatic Control,Informatics, 2004, 5-13.
    [103] X. Chen, S. Tsuruoka, T. Hori. Robust discrete quasi-sliding mode adaptive controller. Proceedings of the IEEE Conference on Decision and Control, 1996,4:4020-4021.
    [104] C. Y. Chan. Discrete adaptive sliding mode control of a state-space system with a bounded disturbance. Automatica, 1998,34(12): 1631-1635.
    [105] X. Yu, Z. Man. Model reference adaptive control systems with terminal sliding modes. International Journal of Control, 1996,64(6): 1165-1176.
    [106] S. Janardhanan, B. Bandyopadhyay. On discretization of continuous-time terminal sliding mode. IEEE Transactions on Automatic Control, 2006,51(9): 1532-1536.
    [107] S. Janardhanan. Multirate output feedback based discrete-time sliding mode control strategies. Ph. D thesis, IDP in systems and Control Engineering, Indian Institute of Techology Bombay, 2005.
    [108] B. Bandyopadhyay, S.Janardhanan, Discrete-time sliding mode control: A multirate output feedback approach. lecture notes in control and information sciences, 2005,323.
    [109] Z. Chen, Z. Zhao, J. Zhang, J. Zeng. Integral variable structure control of uncertain discrete-time systems. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 2002, 2: 892-894.
    [110] T. L. Chern, C. W. Chuang, R. L. Jiang. Design of discrete integral variable structure control systems and application to a brushless DC motor control. Automatica, 1996, 32(5): 773-779.
    [111] T. L. Chern, J. K. Chang. Automatic voltage regulator design by modified discrete integral variable structure model following control. Automatica, 1998, 34(12): 1575-1582.
    [112] K. Abidi, J. X. Xu, X. H. Yu. On the discrete-time integral sliding-mode control. IEEE Transactions on Automatic Control, 2007,52(4): 709-715.
    [113] C. Bonivento, M. Sandri, R. Zanasi. Discrete variable structure integral controllers. Automatica, 1998,34(3): 355-361.
    [114] B. Bandyopadhyay, C. M. Saaj. Algorithm on robust sliding mode control for discrete time system using fast output sampling feedback. JEE Proceedings-Control Theory and Applications, 2002,149(6): 497-503.
    [115] Y. D. Pan, K. Furuta. Variable structure control systems using sectors for switching rule design. Advances in Variable Structure and Sliding Mode Control, Lecture Notes in Control and Information Sciences, Springer Berlin/Heidelberg, 2006,334: 89-106.
    [116] L. Chern. Microprocessor-based modified discrete integral variable structure control for UPS. IEEE Transactions on Industrial Electronics, 1999,46(2): 340-348.
    [117] C. C. Huang, T. T. Tang. Spinline tension control in melt spinning by discrete adaptive sliding-mode controllers. Journal of Applied Polymer Science, 2006,100(5): 3816-3821.
    [118] T. L. Chern, C. S. Liu, C. f. Jong, G. M. Yan. Discrete integral variable structure model following control for induction motor drivers. IEE Proceedings-Electric Power Applications, 1996,143(6): 467-474.
    [119] C. L. Hwang, Y. M. Cheng. Discrete sliding mode tracking control of high-displacement piezoelectric actuator systems. Journal of Dynamic Systems, Measurement and Control,2004,126(4): 721-731.
    [120] G. Venkataramanan, D. M. Divan. Discrete time integral sliding mode control for discrete pulse modulated converters. PESC Record - IEEE Annual Power Electronics Specialists Conference, 1990,67-73.
    [121] P. Phakamach, C. Akkaraphong. Microcontroller-based discrete feed forward integral variable structure control for an uninterruptible power system (UPS). The Fifth International Conference on Power Electronics and Drive Systems, PEDS 2003,2003, 1422-1427.
    [122] K. G. Sung, Y. M. Han, K. H. Lim, S. B. Choi. Discrete-time fuzzy sliding mode control for a vehicle suspension system featuring an electrorheological fluid damper. smart Materials and Structures, 2007,16(3): 798-808.
    [123] Y. P. Chen, J. L. Chang and S. R. Chu. PC-based sliding-mode control applied to parallel-type double inverted pendulum system. Mechatronics, 1999,9(5): 553-564.
    [124] X. Q. Li, S. Yurkovich. Discrete adaptive sliding mode control for idle speed regulation in IC engines. Proceedings of the 2000 IEEE International Conference on Control Applications. 2000,1:237-242.
    [125] W. C. Wu, T. S. Liu. Frequency-shaped sliding mode control for flying height of pickup head in near-field optical disk drives. IEEE Transactions on Magnetics, 2005, 41(2):1061-1063.
    [126] Y. F. Li, J. Wikander. Model reference discrete-time sliding mode control of linear motor precision servo systems. Mechatronics, 2004,14(7): 835-851.
    [127] W. C. Yu, G. J. Wang. Discrete sliding mode controller design based on the LQR suboptimal approach with application on AC servomotor. Journal of the Chinese Institute of Engineers. Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2006,29(5): 873-882.
    [128] M. H. Chiang, C. C. Chen and T. N. Tsou. Large stroke and high precision pneumatic-piezoelectric hybrid positioning control using adaptive discrete variable structure control. Mechatronics, 2005,15(5): 523-545.
    [129] X. Z. Zhang, Z. M. Deng, C. C. Gao. Quasi-sliding mode vsc discrete linear constant system with time-delay. Acta Automatic Sinica, 2002, 28(4): 625-630.
    [130] 王冀.离散控制系统.北京:科学出版社,1987.
    [131] Y. Mi, J. X. Huang, W. L Li. Variable structure control for multi- input discrete systems with control Delay. Control and Decision, 2006, 21(12): 1425-1428.
    [132] 于双和,强文义,傅佩琛.无抖振离散准滑模控制.控制与决策,2001,16(3):380-382.
    [133] 瞿少成,王永骥.基于扰动动态补偿的离散滑模变结构控制.控制与决策,2004,19(3):312-318.
    [134] D.W. Zhou, C. C. Gao. Reaching law of discrete-time variable structure control system. Control and Decision, 2008, 23(3): 306-309.
    [135] S. Janardhanan, B. Bandyopadhyay. Discrete sliding mode control of systems with unmatched uncertainty using multirate output feedback. IEEE Transactions on Automatic Control, 2006, 51(6): 1030-1035.
    [136] X. Chen, T. Fukuda, K. D. Young. Adaptive quasi-sliding-mode tracking control for discrete uncertain input--output systems. IEEE Transactions on Industrial Electronics, 2001,48(1): 216-224.
    [137] C.H. Chou, C. C. Cheng. A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems. IEEE Transactions on Automatic Control, 2003,48(7): 1213-1217.
    [138] H.T. Yau. Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos, Solitons and Fractals, 2004, 22(2): 341-347.
    [139] K.B. Park, T. Tsuji. Terminal sliding mode control of second-order nonlinear uncertain systems. International Journal of Robust and Nonlinear Control, 1999, 9(11): 769-780.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700