高亲和力CD20抗体的制备及生物学功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非霍奇金淋巴瘤(Non Hodgkin’s Lymphoma NHL)是临床最常见的淋巴系统恶性肿瘤,其中B细胞来源约占85%。人CD20分子又称为B1或Bp35,仅表达于所有的前B细胞、成熟B细胞和超过95%的恶性B细胞表面,而不表达于造血干细胞、浆细胞和其他正常组织中。其与抗体结合后无显著内化和脱落,也不因与抗体结合而发生抗原调变,从而成为治疗B细胞非霍奇金淋巴瘤的理想靶点。
     Rituximab(C2B8)是美国基因科技公司研发的以人CD20分子为靶点的人鼠嵌合型IgG1免疫球蛋白,可特异性地与B淋巴细胞表面CD20抗原结合。主要通过以下两种机制发挥抗肿瘤作用:诱导补体介导的细胞毒作用(CDC)和诱导抗体依赖细胞介导的细胞毒作用(ADCC)。尽管Rituximab已显示良好的治疗效果,但其临床反应率仅为50%左右,完全缓解率只有10%,因此进一步研制出具有更强抗肿瘤活性的CD20抗体对临床治疗具有重要的意义。在前期研究中,本实验室获得了Rituximab/CD20抗原肽的复合物共晶,在此基础上通过计算机模拟辅助设计得到三个亲和力提高的突变体:Rituximab_(D57R)(Rituximab重链57位D突变成R)、RituximabY102R(Rituximab重链102位Y突变成R)、Rituximab_(Y102S)(Rituximab重链102位Y突变成S)。经体外实验表明:与Rituximab相比,这些亲和力提高的突变体CDC活性没有改变,而ADCC活性显著增强,显示出较亲本抗体Rituximab更强的抗肿瘤活性。
     在前期实验中,我们还成功获得一株CDC活性显著高于Rituximab的抗CD20人源化抗体hu8E4,经体内实验证实:hu8E4的抗肿瘤作用比Rituximab明显增强。计算机模拟辅助设计提高抗体的亲和力,需要在已获得抗原抗体复合物共晶的基础上,这往往难于获得。而过去研究表明采用传统杂交瘤技术制备的CD20单克隆抗体均与Rituximab具有相似的结合表位,因此我们设想能否通过在具有相似抗原结合表位的单克隆抗体间对应移植亲和力提高的突变位点,从而达到提高抗体亲和力的目的。在本课题研究中,我们利用噬菌体展示技术对hu8E4的抗原表位进行筛选和鉴定,发现其同样与Rituximab具有相似的结合表位。于是我们尝试将能够提高Rituximab亲和力的三个突变位点:D57R、Y102R、Y102S,对应移植到hu8E4上;与此同时,为进一步验证该方法的有效性,我们也将这三个突变位点对应移植到与Rituximab具有相似结合表位的嵌合抗体2H7上。
     实验结果表明,在得到的hu8E4三个突变体中,hu8E4_(D57R)和hu8E4_(Y102S)的亲和力获得了提高,但hu8E4Y102S的亲和力下降;而在C2H7的三个突变体中,C2H7_(D57R)和C2H7_(Y102R)的亲和力提高,C2H7_(Y102S)的亲和力下降。重要的是,我们发现在hu8E4和C2H7的突变体上,亲和力提高的突变位点是一致的。经体外实验表明:hu8E4和C2H7突变体分别具有与亲本抗体相似的CDC活性,但它们的ADCC活性明显增强。
     综上所述,我们获得了人源化CD20抗体hu8E4的高亲和力突变体,经体外生物学功能鉴定证实具有更强的抗肿瘤作用。而这种在具有相似抗原结合表位的单克隆抗体间对应移植亲和力提高的突变位点,从而提高抗体亲和力及其活性的方法,具有潜在的应用价值。
CD20 is a cell-surface marker expressed on mature B cells and most malignant B cells, but not stem or plasma cells. It is an ideal target for monoclonal antibodies (mAb), such as rituximab, as it is expressed at high levels on most B-cell malignancies, but does not become internalized or shed from the plasma membrane following mAb treatment. This allows the antibody to persist on the cell surface for extended periods to deliver sustained immunological attack from complement and FcR expressing cells.
     The chimeric anti-CD20 mAb rituximab was approved for use in relapsed or refractory low-grade or follicular B-cell non-Hodgkin’s lymphoma (NHL) in 1997. Previous studies have suggested that several main mechanisms might be involved in providing therapeutic efficacy, including complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). Despite the effectiveness of rituximab, only 48% of patients respond to the treatment and complete responses are less than 10%. In addition, a significant number of patients have progressive disease during antibody therapy. There is an urgent need to develop more effective anti-CD20 antibodies to further improve the efficacy of antibody therapy for B-cell lymphomas. In our previous study, we developed the crystal structure of rituximab-Fab in complex with the CD20 epitope peptide. Based on this crystal structure, we used computer-aided design to generate three single-point mutants with higher affinity (Rituximab_(D57R)、Rituximab_(Y102R)、Rituximab_(Y102S)). Our data showed that these high-affinity mutants displayed similar CDC activity to that of rituximab, but their ADCC activity was greater than that of rituximab.
     In our previous study, a humanized anti-CD20 antibody, hu8E4, was generated by complementarity-determing region grafting method. Hu8E4 was as effective as rituximab in mediating antibody-dependent cellular cytotoxicity in B-lymphoma cells, but it exhibited much more potent complement-dependent cytotoxicity than rituximab. In our present study, we attempted to enhance the affinity of hu8E4 in order to further improve its anti-tumor activity. To employ the computer-aided design to enhance antibody binding affinity, we need to acquire the crystal structure. However, the crystal structure of antigen-antibody complexes was diffcult to obtain. Previous studies have suggested that most of anti-CD20 antibodies which employed by the traditional hybridoma technology compared with rituximab with the same epitope peptide. So we speculated whether the affinity-improving mutations of an antibody could be transplanted into the corresponding places of another antibody to improve its affinity when these two antibodies had similar eiptopes. In our previous study, we employed the phage display peptide libraries technology to select peptides binding to hu8E4. We found that hu8E4 and rituximab recognize the same epitope peptide. So we try to transplant the three affinity-improving mutations (D57R、Y102R、Y102S) to hu8E4 in order to enhance antibody binding affinity. In addition to verify its effectiveness, we also transplant the three affinity-improving mutations (D57R、Y102R、Y102S) to chimeric antibody 2H7 which also compared with rituximab with the same epitope peptide.
     The results showed that the avidity of hu8E4D57R and hu8E4_(Y102S) was higher than that of hu8E4, while the avidity of hu8E4_(Y102S) was lower than that of hu8E4. The three mutants (hu8E4_(D57R)、hu8E4_(Y102R)、hu8E4_(Y102S)) were as effective as hu8E4 in CDC, while they were more effective in mediating ADCC in an affinity-dependent manner. Our data indicated that the avidity of C2H7_(D57R) and C2H7_(Y102R) was higher than that of C2H7, while the avidity of C2H7_(Y102S) was lower than that of C2H7. The three mutants (C2H7D57R、C2H7_(Y102R)、C2H7_(Y102S)) were as effective as C2H7 in CDC, while they were more effective in mediating ADCC in an affinity-dependent manner.
     Here we have obtained the high-affinity mutants of the humanized anti-CD20 monoclonal antibody, hu8E4. The high-affinity mutants showed more potent anti-tumor activity than that of the parental antibody. Our study suggested that the affinity-improving mutations of an antibody could be transplanted into the corresponding places of another antibody to improve its affinity when these two antibodies had similar eiptopes. These high-affinity mutants of hu8E4 might be the promising therapeutic agents for the treatment of B-cell lymphomas.
引文
[1] Calclas C,Coelho V,Kalil J,el a1.Humanization of the anti-CD18 antibod y 6.7:an unexpected effect of a framework residue in binding to antigen.Mol Immunol,2003,39(15):941.
    [2] S.L. Morrison, M.J. Johnson, L.A. Herzen berg, V.T. Oi, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, Proc. Natl. Acad. Sci. USA 81(1984) 6851-6855.
    [3] Adair JR. Engineering antibody for therapy. Immunolog Rev, 1992, 130: 5-40.
    [4] Kettle borough CA, Saldanha J, Heath VJ, Morrison CJ, Bendig MM. Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng, 1991, 4(7):773-83.
    [5] Kolbinger F, Saldanha J, Hardman N, Bendig MM. Humanization of a mouse anti-human IgE antibody: a potential therapeutic for IgE-mediated allergies. Protein Eng, 1993, 6(8):971-80.
    [6] Moea V,Lesk AM,Tramontano A.Antibody modeling:Implications for engineering and design.Methods,2000,20:267.
    [7] Hwangw Y,Almaro JC,Buss TN,et al.Use of human germline genes in a CDR homology-based approach to antibody humanization.Methods,2005,36:35.
    [8] Ewert S,Honegger A,Pluckthun A.Stability improvement of antibody for extracellular and intracellular applications:CDR grafting to stable frameworks and structure-based framework engineering.Methods,2004,34(2):l8.
    [9] Luo GX,Kohlstaedt LA,Charles CH,et a1.Humanization of an anti-ICAM-l antibody with over 50-fold afinity and functional improvement.Immunol Methods,2003,275(1-2):3.
    [10] B Li, H. Wang J. Dai J. Ji W. Qian D. Zhang S. Hou Y. Guo, Construction and characterization of a humanized anti-human CD3 monoclonal antibody 12F6 with effective immunoregulation functions, Immunology 116 (2005) 487–498.
    [11] Bohua Li,Hao Wang,Dapeng Zhang,Weizhu Qian,Sheng Hou,Shu Shi,Lei Zhao,Geng Kou,Zhiguo Cao,Jianxin Dai,Yajun Guo, Construction and characterization of a high-affinity humanized SM5-1 monoclonal antibody, Biochemical and Biophysical Research Communications 2007,357:951-6.
    [12] Nowakowski G S. et al. A single heptapeptide from phage display peptide library home to bone marrow in vivo and binds to primitive murine stem cell. Experimental Hematology, 2000, 28: 87.
    [13] Graves, S S., Goshorn, S C., Stone, D M., Axworthy, D.B., Reno J M., Bottino, B, Searle, S., Henry, A., Pedersen, J, Rees, A R, and Libby, R T. (1999) Molecular modeling and preclinical evaluation of the humanized NR-LU-13 antibody. Clin. Cancer.Res. 5, 899-908.
    [14] T. Kekarainen, S Mannelin, J Laine, T Jaatinen, Optimization of immunomagnetic separation for cord blood-derived hematopoietic stem cells, BMC Cell Biol. 7 (2006) 30.
    [15] Ohtomo T, Tsuchiya M, Sato K, Shimizu K, Moriuchi S, Miyao Y, Akimoto T, Akamatsu K, Hayakawa T, Ohsugi Y. Humanization of mouse ONS-M21 antibody with the aid of hybrid variable regions. Mol Immunol. 1995 Apr; 32(6):407-16.
    [16] Hinchliffe SJ, Spiller OB, Rushmere NK, Morgan BP. Molecular cloning and functional characterization of the rat analogue of human decay-accelerating factor (CD55). J Immunol, 1998, 161(10):5695-703.
    [17] Yamada A, Yoshio M, Oiwa K, Nyitray L. Catchin, a novel protein in molluscan catch muscles, is produced by alternative splicing from the myosin heavy chain gene. J Mol Biol, 2000, 295(2):169-78.
    [18] Wang H, Yan T, Tan JT, Gong Z. A zebrafish vitellogenin gene (vg3) encodes a novel vitellogenin without a phosvitin domain and may represent a primitive vertebrate vitellogenin gene. Gene, 2000, 256(1-2):303-10.
    [19] Xu L, Jin B Q, Fan DM. Selection and identification of mimic epitopes for gastric cancer associated antigen MG7 Ag. Cancer Ther, 2003, 2(3): 301-306.
    [20] Cox JA, Barmina O, Voigt MM. Gene structure, chromosomal localization, cDNA cloning and expression of the mouse ATP-gated ionotropic receptor P2X5 subunit. Gene, 2001, 270(1-2):145-52.
    [21] Philip A. Hieter, Edward E. Max, J. G. Seidman, Jacob V. Maizel, Jr. and Philip Leder , Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments ,Cell,1980,22:197-207.
    [22] Jay W, Ellison, Bennett J.Berson and Leroy E.Hood, The nucleotide sequence of a human immunoglobulin Cγ1 gene, Nucleic Acids Research,1982,10:4071-4079.
    [23] E A. Kabat, Wu, HM. Perry, K.S. Gottesman, C Foeller,Sequences of Proteins of Immunological Interest, fifth ed., United States Department of Health and Human Services, Bethesda,MD, 1991.
    [24] Neuberger MS, Williams GT and Fox RO. Recombinant antibody possessing novel effector functions. Nature, 1984, 312:604.
    [25] Avivi I,Robinson S,Goldstone A.Clinical use of rituximab in haematological malignancies.Br J Cancer,2003,89(8):1389-94.
    [26] Larrick J W, Yu L, Chen J, a1. Production of antibody in transgenic plants. Research in Immunology, 1998, 149(6):603-608.
    [27] Tsurushita. (2005) Design of humanized antibody: from anti-Tac to Zenapax Methods. 36, 69-83.
    [28] Gorman SD, Clark MR, Routledge EG, Cobbold SP, Waldmann H. Reshaping a therapeutic CD4 antibody.Proc Natl Acad Sci USA. 1991 May 15; 88(10): 4181 -5.
    [29] Nakamura K, Tanaka Y., Shitara K., and Hanai N (2001) Construction of humanized anti-ganglioside monoclonal antibody with potent immune effector functions. Cancer. Immunol. Immunother. 50, 275-284.
    [30] Kostelny, S A., Link, B K., Tso, J Y., Vasquez, M, Jorgensen, B H., Wang, H., Hall,WC, and Weiner, G.J Humanization and characterization of the anti-HLA-DR antibody 1D10. Int. J. Cancer. (2001); 93, 556-565.
    [31] Couto JR, Blank EW, Peterson JA, Ceriani RL. Anti-BA46 monoclonal antibody Mc3: humanization using a novel positional consensus and in vivo and in vitro characterization.Cancer Res. 1995 Apr 15; 55(8):1717-22.
    [32] Couto JR, Christian RB, Peterson JA, Ceriani RL. Designing human consensus antibody with minimal positional templates. Cancer Res. 1995 Dec 1; 55(23 Suppl):5973-5977.
    [33] Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibody for therapy. Nature, 1988, 332(24): 323-327.
    [34] Roguska MA,Pedersenj T,Keddyc A,et al. Humanization of murine monoclonal antibody through variable domain resurfacing. Proc Natl Acad Sci USA, 1994, 91(3):969 - 973.
    [35] Poul MA, Ticchionim, Bernard A,et al. Inhibition of T cell activation with a humanized antibeta 1 integrin chain mAb. Mol Immunol, 1995, 32(2):101-16.
    [36] Ansuini H. et al. Biotin-tagged cDNA ecpression libraries displayed on lamba phage: a new tool for the selection of natural protein ligands. Nucleic Acids Res, 2002, 30(15): e78.
    [37] Fabrizia Bartoli. DNA-based selection and screening of peptide ligands. Nature Biotechnology, 1998, 16: 1068-1073.
    [38] Kretzschmar T, Von Ruden T. Antibody discovery: phage display. Curr Opin Biotechnol, 2002, 13(6): 598-602.
    [39] Claus K o-selection of cognate antibody-antigen pairs by selectively-infective phage. FEBS letters, 1995, 377: 227-231.
    [40] Hoogenboom H R. Overview of antibody phage-display technology and its applications. Methods Mol Biol, 2002, 178: 1-37.
    [41] Houshmand H, Froman G, Magnusson G. Use of Bacteriophage T7 displayed peptides for determination of monoclonal antibody spectificity and biosensor analysis of the binding reaction. Anal Biochem, 1999, 268 (2): 363-370.
    [1] Calclas C,Coelho V,Kalil J,el a1.Humanization of the anti-CD18 antibod y 6.7:an unexpected effect of a framework residue in binding to antigen.Mol Immunol,2003,39(15):941.
    [2] Ester Fonsatti1 Anna Maria Di Giacomo Michele Maio Optimizie complement-activating antibody-based cancer immunotherapy: a feasible strategy? Journal of Translational Medicine 2004, 2:21.
    [3] Beatriz Bellosillo Neus Villamor Armando López-Guillermo mechanism involving the generation of reactive oxygen species lymphoproliferative disorders is mediated in vitro by a caspase-independent Complement-mediated cell death induced by rituximab in B-cell Blood 1 November 2001 zVolume 98 Number 9.
    [4] Rhona Stein Zhengxing Qu Characterization of a New Humanized Anti-CD20 Monoclonal Antibody, IMMU-106, and Its Use in Combination with the Humanized Anti-CD22 Antibody, Epratuzumab, for the Therapy of Non-Hodgkin’s Lymphoma Clinical Cancer Research Vol.10 2868–2878 April 15 2004.
    [5] Carole Henry Marina Deschamps Pierre-Simon Rohrlich Identification of an alternative CD20 transcript variant in B cell malignancies coding for a novel protein associated to rituximab resistance 2010; DOI 10.1182/blood-2009-06-229112.
    [6] Myron S Czuczman Scott Olejniczak Aruna Gowda Acquirement of Rituximab Resistance in Lymphoma ell Lines Is Associated with Both Global CD20 Gene and Protein Down-Regulation Regulated at the Pretranscriptional and Posttranscriptional Levels Clin Cancer Res 2008;14(5) March 1, 2008.
    [7] John C Byrd Kanti Rai Bercedis L Peterson Addition of rituximab to ?udarabine may prolong progression-free survival and overall survival in patients with previously untreated chronic lymphocytic leukemia: an updated retrospective comparative analysis of CALGB 9712 and CALGB 9011 Blood 1 January 2005 Volume 105 Number 1.
    [8] Stephan Mathas Anke Rickers Kurt Bommert Bernd Do rken Anti-CD20- and B-cell Receptor-mediated Apoptosis: Evidence for Shared Intracellular Signaling Pathways Cancer Research 60 7170–7176 December.
    [9] Sean H Lim Stephen A Beers Anti-CD20 monoclonal antibodies– historical and future perspectives 10.3324/haematol.2008.001628.
    [10] Alan Eastman Raymond P Perez New targets and challenges in the molecular therapeutics of cancer Br J Clin Pharmacol 62 15 145.
    [11] Ahmedin Jemal Rebecca Siegel Elizabeth Ward Yongping Hao Jiaquan Xu CA CANCER J CLIN 2009;59:225-249.
    [12] Mccafferty J, Griffiths A D, Winter G, et al. Phage antibodies: filamentous phage displaying anti-body variable domains. Nature, 1990, 348: 552-554.
    [13] Jespers L S. Messens J H, Keyser A D, et al. Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene VI. Bio Technology, 1995, 13: 378-382.
    [14] Stanton L. Gerson Selection without harm: drug resistance gene therapy hits the big time Blood 1 February 2005 I Volume 105 Number 3.
    [15] Guillaume Cartron HervéWatier Josée Golay Philippe Solal-Celigny From the bench to the bedside: ways to improve rituximab efficacy Blood 1 November 2004 Volume 104 Number 9.
    [16] R Shimizu1 J Kikuchi HDAC inhibitors augment cytotoxic activity of rituximab by upregulating CD20 expression on lymphoma cells Leukemia (2010), 1–9.
    [17] Maria-Ana Ghetie Helen Bright Ellen S. Vitetta Homodimers but not monomers of Rituxan (chimeric anti-CD20) induce apoptosis in human B-lymphoma cells and synergize with a chemotherapeutic agent and an immunotoxin Blood 1 March 2001 zVolume 97 Number 5.
    [18] JULIE P DEANS HAIDONG LI MARIA J POLYAK CD20-mediated apoptosis: signalling through lipid rafts Immunology 2002 176–182.
    [19] Claire A.Walshe1 Stephen A. Beers Induction of Cytosolic Calcium Flux by CD20 Is Dependent upon B Cell Antigen Receptor Signaling THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 283, NO. 25, pp. 16971–16984, June 20, 2008.
    [20] Clarke LE.Bayed MG,Ehmann WC,et a1.Cutaneous B·cell lyrephoma with loss of CD20 immunoreactivity after rituximab therapy.J Cumn Pathol,2003,30(7):459-462.
    [21] Stein R Characterization of a new humanizedAnti-CD20 monoclonal antibody,IMMU-106,and its use in combination with the humanized anti-CD22 antibody,epratuzumab,for the therapy of non-hodgkin S lymphoma[J].Clin Cancer Res,2004,10(8):2868-2878.
    [22] Brekke O New technologies in therapeutic antibody development. Curr Opin Pharmacol, 2003, 3(5): 554-550.
    [23] Jilani I,OBrien S,Manshuri T,et a1.Transient down·modulationof CD20 by rituximab in patients with chronic lymphocytic leukemia.Blood,2003,102(10):3514-352.
    [24] Haidar JH.Shamseddine A,Salem Z,et a1.Loss ofCD20 expression in relapsed lymphomas after rituximab therapy.Eur J Haemato1.2003,70(5):330-332.
    [25] Van der Kolk LE,Grillo-Lopez AJ,Baars JW.et a1.Treatment of relapsed B-cell non-Hodgkin’s lymphoma with a combination of chimeric anti-CD20 monoclonal antibody(rituximab)and GCSF:Final reporton sdety and efiqcacy.Leukemia,2003,17(8):1658.1664.
    [26] Brekke O, Loset G.New technologies in therapeutic antibody development. Curr Opin Pharmacol, 2003, 3(5): 554-550.
    [27] Mullaney J M, Black L W. Capsid targeting sequence targets foreign proteins into bacteriophage T4 and permits proteolytic processing. J Mol Biol, 1996, 261 (3):372-385.
    [28] Hong Y R, Blank L W. An expression-packaging-vector which selects and maintains 7-KD DNA inserts in the blue T4 phage genome. Gene, 1993, 136: 193-198.
    [29] Schaffer L , Brissette R E , Spetzler J C. et al. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks. Proc Natl Acad Sci U S A, 2003, 100(8): 4435-4439.
    [30] Ann-Christin M. et al. Selective phage infection mediated by epitope expression on F pilus. Mol Biol, 1997, 273: 544-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700