水稻超高产品种的生理特性及遗传基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实现水稻超高产对保障我国粮食安全有重要作用,超高产水稻的生理特性和遗传基础是实现水稻超高产的理论依据。沈农265和沈农6014是沈阳农业大学水稻研究所培育出来的直立穗型超高产水稻品种,它们推动了粳型超高产水稻育种研究的深入和超高产水稻品种种植面积的扩大。本文从多方面研究了超高产水稻沈农265和沈农6014的生理特性及沈农265的遗传基础。研究内容包括:1)以辽粳294和辽粳371为对照,研究了超高产水稻沈农265和沈农6014的产量性状、光合特性、维管束性状和籽粒灌浆充实特性;2)以12个不同穗颈弯曲度的北方粳稻品种为试材,研究了直立穗型与弯曲穗型水稻抗倒伏能力的差异,沈农265和沈农6014为直立穗型试材;3)利用沈农265/丽江新团黑谷的176株F_2群体,对超高产水稻沈农265的产量、穗部、穗颈维管束以及抗倒伏性状进行了QTL分析。研究结果如下:
     1沈农265和沈农6014产量水平高。沈农265比对照辽粳294和辽粳371分别增产7.96%和14.16%,沈农6014比对照分别增产9.50%和15.80%。从产量构成因素分析,沈农265和沈农6014通过适当降低单位面积穗数和千粒重、大幅度地提高穗粒数及保持较高的结实率来获得高产。从穗部性状特点来看,沈农265和沈农6014的穗长中等、穗着粒密度大、一二次枝梗数及粒数多、一二次枝梗着粒密度大且结实率较高、一二次枝梗千粒重较小、穗型指数较大。从穗部性状与产量及产量相关性状的相关分析来看,穗着粒密度和一二次枝梗着粒密度大、一二次枝梗数和粒数多、一次枝梗结实率高是两超高产水稻品种获得高产的重要因素,这些特点可以作为北方水稻育种的重要参考指标。
     2沈农265和沈农6014光合生产和光合产物转运能力强是其获得高产的生理基础。它们的光合特点有:1)叶面积指数相对较小,但上三叶叶面积所占比例较高,上三叶叶长适中,但叶宽和比叶重较大,空间配置较好;2)剑叶叶绿素含量高、叶绿素a/b的值低,剑叶衰老缓慢,适应环境变化的能力强,在弱光及低CO_2浓度下有较强的同化能力,光合“午休现象”较轻,耐光氧化能力强,叶片净光合速率高;3)分蘖成穗率高,光合产物浪费少,整个生育期干物质积累量优势不大,但齐穗后干物质积累优势明显,经济系数高,光合产物分配到穗部的量多,茎鞘中储藏物质转运率较高。
     3沈农265和沈农6014维管束性状和籽粒灌浆充实特点有:剑叶、穗颈和穗下部一二次枝梗维管束系统发达,说明两超高产水稻品种光合产物运输系统比较发达;由于穗粒数多,尽管光合生产和光合产物转运能力强、维管束系统发达,沈农265和沈农6014籽粒的灌浆起始势、最大灌浆速率、平均灌浆速率和达最大灌浆速率时间等灌浆特性并没有优势,而各粒位和穗位籽粒仍表现了较高的结实率和充实度。相关分析表明:改善剑叶、穗颈和枝梗维管束性状,不仅利于增加穗粒数和形成大穗,还能使各粒位和穗位的结实率、充实率提高,说明穗粒数与结实率和充实率间的矛盾,可以通过改进维管束系统来协调;由剑叶、穗颈和枝梗维管束性状改善所引起的穗粒数增多、灌浆速率降低及灌浆期延长,可以通过提高枝梗小维管束韧皮部面积占维管束面积的比例来解决。此外,剑叶、穗颈及枝梗维管束性状间存在着一定的正相关,剑叶和穗颈维管束性状对枝梗维管束性状改善有促进作用,作用大小表现为:穗下部>穗中部>穗上部,提高穗颈小维管束韧皮部所占比例有利于提高枝梗小维管束韧皮部所占比例。
     4直立穗型粳稻穗下第1节间(N_1)、第2节间(N_2)、第3节间(N_3)和第4节间(N_4)的弯曲力矩与弯曲穗型品种差异不显著,但N_1、N_2、N_3的抗折力却显著提高,从而使N_1、N_2、N_3的倒伏指数显著或极显著低于弯曲穗型粳稻,说明其中上部节间抗倒能力明显增强。进一步分析直立穗型与弯曲穗型粳稻茎杆解剖结构、化学成分以及它们与茎杆抗折力的相关性发现,直立穗型粳稻N_1、N_2、N_3抗折力强的主要原因是:(1)茎壁厚度和茎壁面积增大,节间抗折的物理性状明显提高;(2)大小维管束数目多,大小维管束、韧皮部、木质部面积增大,节间内部组织的结构明显改善:(3)纤维素含量高,支持细胞壁结构的物质含量多。茎壁厚度、茎壁面积、维管束性状及纤维素含量可以作为选育抗倒伏品种的主要参考指标。就北方粳稻而言,培育直立穗型品种,更容易获得抗倒性强的品种。
     5对沈农265/丽江新团黑谷的F_2群体的产量、穗部和穗颈维管束以及抗倒伏性状进行了QTL分析。1)共检测到17个控制产量相关性状的QTL,分布在6条染色体上,其贡献率差异较大,在12%~65%之间,其中有4个QTL的贡献率超过25%,分别是控制穗长的qPL9、每穗颖花数的qSPP4-1、着粒密度qSD9和结实率的qRG12。2)共检测到37个控制穗部和穗颈维管束性状的QTL,它们分布在水稻的第1、2、3、4、5、6、7、8、9和12号染色体上,单个QTL对性状表型贡献率在11%~65%之间,其中大于20%的有15个。这些QTL分别位于第3、4、6、9和12号染色体上,以6个QTL簇(QCR)的形式存在。说明紧密连锁或成簇分布是穗颈维管束性状和穗部性状高度相关的遗传学基础之一。3)共检测到18个控制基部第二节间机械强度及其相关性状的QTL。其中控制基部第二节间抗折力的QTL检测到4个,位于第4、7、9和10号染色体上,可解释遗传变异的12%~23%,其正效等位基因均来自沈农265。在第4染色体上的相同区间上还同时检测到了控制茎粗、茎壁厚度、单个大维管束面积、单个大维管束木质部面积、单个小维管束面积和单个小维管束木质部面积的QTL,贡献率在12%~21%之间。在第7染色体与控制基部第二节间抗折力的QTL相同的位置上,检测到控制茎粗的QTL,贡献率为13%,说明这两个位点是控制基部第二节间机械强度的重要区域,也是茎壁性状、维管束性状与机械强度高度正相关的遗传学基础。
The realization of super-high-yielding of rice has a great significance for food security of China.The physiology characteristics and genetics basis of super-high-yield rice is its theoretical basis.Shennong 265 and Shennong 6014,developed by Rice Research Institute of Shenyang Agricultural University,are erect panicle type Japonica super-high-yield rice varieties.These two rice varieties promoted the in-depth research in breeding of Japonica super-high-yield rice and the expansion of cultivated area of Japonica super-high-yield rice. The physiology characteristics of Shennong 265 and Shennong 6014 and the genetics basis of Shennong 265 were studied from various aspects in this PhD thesis.The research contents were as follows:1)The characteristics of yield,photosynthetic,vascular bundle and grain-filling of Shennong 265 and Shennong 6014 were studied by using Liaojing 294 and Laojing 371 as check varieties;2)The lodging resistance of erect panicle type rice(EPT)and curved panicle type rice(CPT)were studied by using 12 japonica rice cultivars as materials, Shennong 265 and Shennong 6014 were used as samples of erect panicle type among them;3) QTLs controlling yield traits,panicle characteristics,panicle base vascular bundle traits and lodging resistance traits were detected in 176 F2 population derived from a cross between super japonica rice Shennong265 and japonica rice Lijiangxintuanheigu.The major results were as follows:
     1 The yield of Shennong 265 was 7.96%and 14.16%higher than that of Liaojing 294 and Liaojing 371 respectively.The yield of Shennong 6014 was 9.50%and 15.80%higher than that of Liaojing 294 and Liaojing 371 respectively.Yield components analysis demonstrated that Shennong 265 and Shennong 6014 achieving high yield through increasing spikelet number per panicles and seed setting rate,but decreasing effective panicle number and 1000-grain weight moderately.The panicle characteristics of Shennong 265and Shennong 6014 can be summarized as follows:medium panicle length,higher spikelets density,a larger number of primary(PB)and secondary branches(SB)and grains on primary and secondary branches,higher seed setting rate of PB and SB,less 1000-grain weight of PB and SB,and bigger panicle trait index.The correlation coefficient between panicle traits,yield and its components showed that the important factor of these two varieties in high-yield can be summarized as:higher spikelets density of PB and SB,a larger number of PB and SB and grains on PB and SB,and higher seed setting rate of PB.The high-yield characters of Shennong 265 and Shennong 6014 can be used as an important reference for Northern rice breeding.
     2 The photosynthetic capacity and photosynthate transport capacity of Shennong 265 and Shennong 6014 were better than those of Liaojing 294 and Liaojing 371.These characters were the physiological basis for these two varieties to achieve high yield.Compared with Liaojing 294 and Liaojing 371,the photosynthetic capacity and photosynthate transport capacity of Shennong 265 and Shennong 6014 can be summed up as follows,1)they had a little lower in the leaf area index(LAI),but much higher percentage of efficient LAI,and they had moderate length and larger width and specific leaf weight of top 3 leaves.2)The chlorophyll content and the Ch1 a/b value in flag leaves of Shennong 265 and Shennong 6014 were higher and decreased slowly after heading,and its had stronger ability to adapt to the environment;Shennong 265 and Shennong 6014 had an ability of keeping high level photosynthesis and Pn under high or low light intensity,high temperature and low CO_2 concentration,and its also had stronger light oxidation ability.3)Percentage of productive panicle of Shennong 265 and Shennong 6014 was higher,so that it's had less photosynthate waste;Shennong 265 and Shennong 6014 had higher photosynthetic productivity and dry matter accumulation superiority and harvest index,and it also had high export amount and transformation of the mater in stems and sheathes.
     3 The vascular bundles traits and grain-filling characteristics of Shennong 265 and Shennong 6014 were investigated and summarized as follow,their vascular bundles trait of flag leaf and neck-panicle and primary and secondary branches on the lower panicle were better than that of check varieties,which indicated that these two super-high-yield rice had efficient transporting system in photosynthetic products;Although Shennong 265 and Shennong 6014 had stronger photosynthetic capacity and photosynthate transport capacity, but its also had more spikelets per panicles,so that they did not have advantage in grain-filling characteristics,but they still had higher seed setting rate and filled-grain percentage on different panicle part eventually.Correlation analysis showed that improving on vascular bundle traits of flag leaf,panicle neck and branches was not only beneficial to got an increase in the number of spikelets per spike but also beneficial to got an improving on seed setting rate and filled-grain percentage on different parts of panicle.Correlation analysis also indicated that improvement of the ratio of total phloem area of small vascular bundle (SVB)to total area of SVB of branches was beneficial to ameliorate grain-filling characteristics.Besides,there is a positive correlation between flag leaf,panicle neck and branches on vascular bundle traits.Improving on vascular bundle traits of flag leaf and panicle neck was beneficial to improving on vascular bundle traits of branches on panicle,the positive correlation was in order of lower panicle>middle panicle>upper panicle.Improving on the ratio of total phloem area of small vascular bundle(SVB)to total area of SVB of panicle neck will help to improve the ratio of branches.
     4 There was no significant difference in bending moment of the 1st,2nd,3rd and 4th internodes between erect panicle type rice and curved panicle type rice(CPT).But EPT had greater breaking resistance of the 1st,2nd and 3rd internode than CPT.So that the lodging index of the 1st,2nd and 3rd internode of EPT was lower than that of CPT.The correlations between the breaking resistance of culm and its morphological traits,anatomical features, chemical components were further studied.There were many reasons for the breaking resistance of 1st,2nd and 3rd internode of EPT increased.Firstly,EPT had thicker culm wall and larger culm wall area than CPT.Secondly,the mummer of vascular bundles,the area of vascular bundles,the area of phloem and the area of xylem of EPT were lager than those of CPT.Thirdly,EPT had higher cellulose content in comparison with CPT.TO select lodging resistant cultivars,one should consider these characterized includeing thicker culm wall, larger culm wall area and better vascular bundle characters with high cellulose content in their stems.In northern of China,breeding erect-panicle cultivars would be an effective way to improve lodging resistance of japonica rice
     5 QTLs for yield,panicle and panicle base vascular bundle characteristics and lodging resistance related characteristics were identified by using a population of an F_2 population derived from a cross between japonica rice Shennong265 and Lijiangxintuanheigu.1)A total of 17 QTLs for yield traits which distributed on 6 chromosomes.The variances explained by each QTL from 12%~65%.There were 4 QTL explaining more than 25%of total phenotypic variation individually,which were qPL9 conferring PL,SPP4-1 conferring SPP,qSD9 conferring SD and qRG12 conferring RG.2)A total of 37 QTLs controlling 24 panicle and panicle base vascular bundle characteristics were detected,which distributed on chromosome 1,2,3,4,5,6,7,8,9 and 12.The phenotypic variations explained by individual QTL were ranged from 11.0%to 65.0%,among which 15 QTLs explained VE by more than 20%.These QTLs showed cluster forms on chromosome 3,4,6,9 and 12.All the information suggests that the closed linkage between genes and phenotypes and clusters of QTLs in genome highlight the correlation of panicle and panicle vascular bundle characteristics,as the important genetic basis.3)A total of 18 QTLs for 14 traits were detected for basal second internodes' culm mechanical strength and related traits,including 4 for the breaking resistance of the basal second internode on chromosome 4,7,9,and 10.The variances explained by each QTL from 12%~23%.For all loci,the Shennong265 alleles increased Culm's breaking resistance.The QTLs controlled Stem diameter,Wall thickness,Area of large vascular bundle,Xylem areas of large vascular bundle,Area of small vascular bundle and Xylem areas of small vascular bundle characteristics were detected on the same area on chromosome
     4.The phenotypic variations explained by individual QTL were ranged from 12%~21%.The QTLs controlled Stem diameter and QTLs controlled the breaking resistance of the basal second internode were detected on the same area on chromosome 7.The qSD7 explained about 13%of the total phenotypic variation in the F_2 population.All the information suggests that these QTLs are important for the breaking resistance of the basal second internode,and as the important genetic basis of the positive correlation of culm,vascular bundle and stem strength characteristics.
引文
1.蔡永萍,杨其光,黄义德.2000.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响.中国水稻科学,14(4):219-224.
    2.曹树青,翟虎渠,钮中一,等.2000.不同产量潜力水稻品种的剑叶光合特性研究.南京农业太学学报,23(3):1-4.
    3.曹树青,翟虎渠,张红,等.1999.不同类型水稻品种叶源量及有关光合生理指标的研究.中国水稻科学,13(2):91-94.
    4.曹显祖,朱庆森,顾自奋.1981.关于杂交水稻结实率的研究.江苏农业科学,(1):1-7.
    5.陈炳松,张云华,李霞,等.2002.超级杂交稻两优培九生育后期的光合特性和同化产物的分配.作物学报,285(6):777-782.
    6.陈锦清.1983.稻穗各部位维管束影响谷粒发育成熟的研究.浙江农业大学学报,9(2):145-158.
    7.陈清泉,向孙军,彭鹰,等.1991.洞庭湖区优质稻米品种的产量和品质研究简报.湖南农业科学,(3):7-8.
    8.陈温福,徐正进,张龙步.2003.水稻超高产育种生理基础.沈阳.辽宁科学技术出版社.
    9.陈温福,徐正进,张龙步.2005.北方粳型超高产水稻育种的理论与方法.沈阳农业大学学报,36(1):3-8.
    10.陈温福,徐正进著.2007.水稻超高产育种理论与方法.北京:科学出版社.
    11.陈信波,廖爱君,罗泽民.1999.大穗型水稻生育后期叶片和根系生理的特性.生命科学研究,3(3):250-255.
    12.陈友订,万邦惠,张旭.2005.华南双季超高产水稻抽穗期理想株型结构研究.中国水稻科学,19(1):52-58.
    13.程式华,翟虎渠.2000.杂交水稻超高产育种策略.农业现代化研究,21(3):147-154.
    14.程式华,庄杰云,曹立勇,等.2004.超级杂交稻分子育种研究.中国水稻科学,18(5):377-383.
    15.程旺大,姚海根,张红梅,等.2007.南方晚粳杂交稻与常规稻籽粒灌浆及后期叶片光合特性的差异.中国水稻科学,21(2):174-178.
    16.大野义一(屠增平译).1979.籼稻光合效率的品种间差异和干物质生产.北京:中国农业出版社.
    17.段俊,梁承邺,黄毓文,等.1996.不同类型水稻品种(组合)籽粒灌浆特性及库源关系的比较研究.中国农业科学,29(3):66-73.
    18.关玉萍,沈枫.2004.水稻抗倒伏能力与茎秆物理性状的关系及对产量的影响.吉林农业科学,29(4):6-11.
    19.郭玉华,朱四光,张龙步,等.2003.不同栽培条件对水稻茎秆材料学特性的影响.沈阳农业大学学报,34(1):4-7.
    20.郭兆武,萧浪涛,罗孝和,等.2007.超级杂交稻“两优培九”剑叶叶鞘的光合功能.作物学报,33(9):1508-1515.
    21.郝再彬,苍晶,徐仲.2004.植物生理实验.哈尔滨:哈尔滨工业大学出版社.
    22.何风华.2004.水稻QTL分析的研究进展.西北植物学报,24(11):2163-2169.
    23.胡培松,唐绍清,罗炬,等.1999.美国光身稻品种的利用与超高产品种的选育.作物学报,25(1):32-38.
    24.胡文新,彭少兵,高荣孚,等.2002.国际水稻研究所新株型水稻的气孔特性.中国农业科 学,35(10):1286-1290.
    25.华泽田,郝宪彬,沈枫,等.2003.东北地区超级杂交粳稻倒伏性状的研究.沈阳农业大学学报,34(3):161-164.
    26.黄洪河,张海峰,蔡秋华,等.2004.优质晚籼稻产量因素分析及育种应用探讨.福建稻麦科技,22(4):7-9.
    27.黄璜.1998.水稻穗颈节间组织与颖花数的关系.作物学报,24(2):193-200.
    28.黄农荣,钟旭华,王丰,等.2006.超级杂交稻结实期根系活力与籽粒灌浆特性研究.中国农业科学,39(9):1772-1779.
    29.黄升谋,邹应斌,李淑清.2004.两优培九稻穗枝梗维管束特征及生理特性.湖南农业大学学报(自然科学版),30(1):1-3.
    30.黄耀祥,林青山.1994.水稻超高产、特优质株型模式的构想与育种实践.广东农业科学,(4):1-6.
    31.黄耀祥.1990.水稻超高产育种研究.作物杂志,(4):1-2.
    32.黄耀祥.2001.半矮秆、早长根深、超高产、特优质中国超高产水稻生态育种工程.广东农业科学,(3):2-6.
    33.黄育民,陈启锋,李义珍.1998.我国水稻品种改良过程库源特征的为化.福建农业大学学报,27(3):271-278.
    34.黄振喜,王永军,王空军,等.2007.产量15000 kg·ha~(-1)以上夏玉米灌浆期间的光合特性.中国农业科学,40(9):1898-1906.
    35.黄仲青.1994.水稻高产高效栽培理论与新技术:关于水稻“四少四高”栽培模式的探讨.北京:中国农业出版社.
    36.惠大丰,姜长鉴,莫惠栋.1997.数量性状基因图谱构建方法的比较.作物学报,23(2):129-136.
    37.贾德涛,许明,王楠,等.2007.北方粳型超高产水稻沈农265根系特征的初步研究.华中农业大学学报,26(4):443-447.
    38.姜树坤,王政海,钟鸣,等.2007.辽宁省近十五年部分主栽水稻品种的SSR多态性分析.植物生理学通讯,43(1):69-72.
    39.姜树坤,钟鸣,徐正进.2006.RAPD标记进行水稻籼粳分类的研究.沈阳农业大学学报,37(4):639-641.
    40.蒋彭炎,洪晓富,冯来定,等.1994.水稻中期群体成穗率与后期群体光合效率的关系.中国农业科学,27(6):8-14.
    41.焦德茂,季本华,严建民,等.1996.水稻对高低光强适应的品种间差异.作物学报,22(6):668-672.
    42.荆彦辉,付永彩,孙传清,等.2004.水稻穗颈维管束及产量相关性状的QTL分析.中国农业大学学报,9(5):16-21.
    43.荆彦辉,孙传清,谭禄宾,等.2005.云南元江普通野生稻穗颈维管束和穗部性状的QTL分析.遗传学报,32(2):178-182.
    44.荆彦辉,徐正进.2003.水稻维管束性状的研究进展.沈阳农业大学学报,34(6):467-471.
    45.李得孝,康宏,员海燕.2001.作物抗倒伏性研究方法.陕西农业科学,(7):20-22
    46.李合生.2000.植物生理生化试验原理和技术.北京:高等教育出版社.
    47.李荣田,姜廷波,秋太权,等.1996.水稻倒伏对产量影响及倒伏和株高关系的研究.黑龙江农业科学,(1):13-17.
    48.李奕松,黄丕生,黄仲青,等.2001.两系籼型杂交水稻根系生理特性的研究.安徽农业大学学 报,28(1):6-10.
    49.李忠营.2003.超高产水稻沈农265高产栽培技术.垦殖与稻作,(1):15-16.
    50.利容千,曾子千.1982.水稻与其三系茎、叶解剖的比较研究.作物学报,8(3):179-183.
    51.梁建生,曹显租.1993.杂交水稻叶片的若干生理指标与根系伤流强度关系.江苏农学院学报,14(4):25-30.
    52.梁建生,曹显祖,张海燕,等.1994.水稻籽粒灌浆期间茎鞘贮存物质含量变化及其影响因素研究.中国水稻科学,8(3):151-156.
    53.梁康迳,王雪仁,章清杞,等.2000.基因型×环境互作效应对水稻茎秆抗倒性杂种优势的影响.福建农业大学学报,29(1):12-17.
    54.凌启鸿,蔡建中,苏祖芳.1982.水稻茎秆维管束数与穗部性状关系及其应用的研究.江苏农学院学报,3(3):7-16.
    55.凌启鸿,张洪程,蔡建中,等.1993.稻高产群体质量及其优化控制探讨.中国农业科学,26(6):1-11.
    56.凌启鸿主编.2000.作物群体质量.上海:上海科学技术出版牡.
    57.刘建丰,袁隆平.2002.超高产杂交稻产量性状研究.湖南农业大学学报(自然科学版),28(6):453-456.
    58.刘军,余铁桥.1998.大穗型水稻超高产产量形成特点及物质生产分析.湖南农业大学学报,24(1):1-7.
    59.刘振业,刘贞琦.1984.光合作用的遗传与育种.贵阳:贵州人民出版社.
    60.吕川根,邹江石.2003.两个超级杂交稻与汕优63光合株型的比较分析.中国农业科学,36(6):633-639.
    61.吕军,王伯伦,孟维韧,等.2007.不同穗型粳稻的光合作用与物质生产特性.中国农业科学,40(5):902-908.
    62.吕艳东,郭晓红,刘丽华,等.2005.水稻的光合特性与高光效育种.黑龙江八一农垦大学学报,17(4):26-30.
    63.罗茂春,田翠婷,李晓娟,等.2007.水稻茎秆形态结构特征和化学成分与抗倒伏关系综述.西北植物学报,27(11):2346-2353.
    64.马均,黎汉云,李仕贵.2002a.重穗型杂交稻D优527的栽培生理特点及调控对策研究.中国水稻科学,16(3):231-235.
    65.马均,马文波,田彦华,等.2004.重穗型水稻植株抗倒伏能力的研究.作物学报,30(2):143-148.
    66.马均,马文波,周开达,等.2002b.水稻不同穗型品种穗颈节间组织与籽粒充实特性的研究.作物学报,28(2):215-220.
    67.马均,明东风,马文波,等.2005.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究.中国农业科学,38(2):290-296.
    68.马均,朱庆森,马文波,等.2003.重穗型水稻光合作用、物质积累与运转的研究.中国农业科学,36(4):375-381.
    69.马文波,马均,明东风,等.2003.不同穗重型水稻品种剑叶光合特性的研.作物学报,29(2):236-240.
    70.穆平,李自超,李春平.2004.水、旱条件下水稻茎秆主要抗倒伏性状的QTL分析.遗传学报,31(7):717-723.
    71.潘晓华,李木英,曹黎明,等.1999.水稻发育胚乳中淀粉的积累及淀粉合成的酶活性变化.江西农业大学学报,21(4):456-462.
    72.全国农业技术推广服务中心.全国农作物品种名录.2003.北京:中国农业科学技术出版社,2005.
    73.沈波,王熹.2000.籼粳亚种间杂交稻根系伤流强度的变化规律及其与叶片生理状况的相互关系.中国水稻科学,14(2):122-124.
    74.松岛省三(庞诚译).1981.稻作的理论与技术.北京:中国农业科学出版社.
    75.松岛省三.1973.水稻栽培新技术.长春:吉林人民出版社.
    76.宋桂云,徐正进,贺梅.2007.氮肥对水稻氮素吸收及利用效率的影响.中国土壤与肥料,(4):44-48.
    77.苏祖芳,郭宏文,李永丰,等.1994.水稻群体叶面积动态类型的研究.中国农业科学,27(4):23-30.
    78.苏祖芳,孙成明,张亚洁,等.2002.高产水稻生育前期株型指标的研究.作物学报.28(5):660-664.
    79.苏祖芳,王辉斌,杜永林,等.1998.水稻生育中期群体质量与产量形成关系的研究.中国农业科学,31(5):19-25.
    80.孙成明,伏广成,董桂春,等.2005.水稻抽穗期叶型特性及其与产量因子关系的研究.中国农学通报.21(10):132-135.
    81.孙成明,苏祖芳,张亚洁,等.2002.水稻拔节期株型特征及其与产量关系的研究.扬州大学学报(农业与生命科学版),23(2):46-58.
    82.孙旭初.1987.水稻茎秆抗倒性的研究.中国农业科学,20(4):32-37.
    83.汤玉庚,张兆兰,张美娟.1994.从江苏太湖地区水稻品种的演变论高产理想株型.江苏农业科学,94(6):1-9.
    84.滕胜,钱前,曾大力,等.2002.水稻穗颈维管束及穗部性状的QTL分析.植物学报,44(3):301-306.
    85.万建民.2006.物分子设计育种.作物学报,32(3):455-462.
    86.王伯伦.1993.水稻优化栽培.北京:中国农业出版社.
    87.王福荣.2005.生物工程分析与检验.北京:中国轻工业出版社.
    88.王嘉宇,范淑秀,徐正进,等.2007.几个不同穗型水稻籽粒灌浆特性的研究.作物学报,33(8):1366-1371.
    89.王娜,陈国祥,吕川根,等.2004.两优培九与其亲本剑叶光合特性的比较研究.杂交水稻,19(1):53-55.
    90.王旭伟,张尧锋,孙健,等.2002.硅肥对水稻的应用效果初探.浙江农业科学,(2):76-77.
    91.王学华.2004.超高产水稻上部叶片光合能力的研究.作物研究,(2):68-71.
    92.王英典,黑田平喜,平野贡,等.1998.日本作物学会纪事,67(4):549-554.
    93.王余龙,蔡建中,何杰升,等.1992.水稻颖花根活量与籽粒灌浆结实的关.作物学报,18(2):81-89.
    94.王余龙,姚友礼,徐家宽,等.1995.稻穗不同部位籽粒的结实能力.作物学报,21(1):29-37.
    95.王志琴,杨建昌,朱庆森,等.1998.亚种间杂交稻籽粒充实不良的原因探讨.作物学报,24(6):782-787.
    96.王志琴,杨建昌,朱庆森.1996.亚种间杂交稻物质积累与运转特性的研究.江苏农学院学报,17(4):1-5.
    97.魏凤珍,黄仲青,蒋之埙.1997.中粳稻分蘖穗率对产量构成和稻米品质的研究.安徽农业大学学报,24(4):344-349.
    98.翁仁宪,武田友四郎,县和一等.1982.水稻抽穗前贮藏碳水化合物和抽穗后干物质生产对籽粒生产的影响.日本作物学会纪事,51(4):500-509.
    99.翁晓燕,蒋德安,张峰.2002.水稻抽穗后剑叶衰老过程中光合关键酶的基因表达.植物生理与分子生物学学报,28(4):311-316.
    100.武志海,徐克章,赵颖君,等.2007.吉林省47年来粳稻品种遗传改良过程中某些农艺性状的变化.中 国水稻科学,21(5):507-512.
    101.籼粳稻杂交理想株型创造与超高产育种及其应用研究课题组.1999.籼粳稻杂交理想株型创造与超高产育种及其应用研究.沈阳农业大学学报,30(4):397-403.
    102.肖德兴,潘晓华,石庆华.1993.二系籼粳杂交稻维管束性状与结实率关系的初步研究.江西农业大学学报,15(3):50-54.
    103.谢光辉,杨建昌,王志琴,等.2001.水稻籽粒灌浆特性及其与籽粒生理活性的关系.作物学报,27(5):557-565.
    104.徐秋生,李卓吾.1994.亚种间杂交稻谷粒灌浆特性与籽粒充实度的研究.杂交水稻,(2):26-29.
    105.徐仁胜,陶龙兴,俞美玉,等.1996.亚种间杂交水稻协优413开花灌浆特性的比较研究.中国水稻科学,10(3):147-152.
    106.徐是雄,徐雪宾,何运康,等.1984.稻的形态与解剖.北京:农业出版社.
    107.徐正进,陈温福,张文忠.2004.北方粳稻新株型超高产育种研究进展.中国农业科学,37(10):1407-1413.
    108.徐正进,陈温福,曹洪任.1998.水稻穗颈维管束数与穗部性状关系的研究.作物学报,24(1):47-54.
    109.徐正进,陈温福,张龙步,等.1990.水稻不同随行群体冠层光分布的比较研究.中国农业科学,23(4):6-10.
    110.徐正进,陈温福,张龙步,等.1996.水稻穗颈维管束性状的类型间差异的研究.作物学报,22(2):168-172.
    111.徐正进,陈温福,张龙步,等.2005.水稻理想穗型设计的原理与参数.科学通报,50(18):2037-2039.
    112.徐正进,陈温福,张文忠,等.2004a.北方粳稻新株型超高产育种研究进展.中国农业科学,37(10):1407-1413.
    113.徐正进,张龙步,陈温福,等.1991.从日本超高产品种(系)的选育看粳稻高产的方向.沈阳农业大学学报,22(增刊):27-330.
    114.徐正进,张树林,周淑清,等.2004b.水稻穗型与抗倒伏性关系的初步分析.植物生理学通讯,40(5):561-563.
    115.许晓明,陆巍,张荣铣,等.2004.超高产水稻协优9308的高效光合功能.南京师范大学学报(自然科学版),27(1):78-81.
    116.严进明,翟虎渠,张荣铣,等.2001.重穗型杂种稻光合和光合产物运转特性研究.作物学报.27(2):261-266.
    117.杨惠杰,李义珍,黄玉民,等.1999.超高产水稻产量构成和冤苦结构.福建农业学报,14(1):1-5.
    118.杨惠杰,李义珍,杨仁崔,等.2001.超高产水稻的干物质生产特性研究.中国水稻科学,15(4):265-270.
    119.杨惠杰,杨仁崔,李义珍,等.2000.水稻茎秆性状与抗倒性状的关系.福建农业大学学报,15(2):1-7.
    120.杨建昌,陈忠辉,杜永.2004.水稻超高产群体特征及其栽培技术.中国农业科技导报,6(4):37-41.
    121.杨建昌,杜永,吴长,等.2006a.超高产粳型水稻生长发育特性的研究.中国农业科学,39(7):1336-1345.
    122.杨建昌,苏宝林,王志琴,等.1998.亚种间杂交稻籽粒灌浆特性及其生理的研究.中国农业科学,31(1):7-14.
    123.杨建昌,王国忠,王志琴,等.2002.旱种水稻灌浆特性与灌浆期籽粒中激素含量的变化.作物学报,28(5):615-621.
    124.杨建昌,朱庆森,曹显祖.1992.水稻群体冠层结构与光合特性对产量形成作用的研究.中国农业科学,25(4):7-14.
    125.杨建昌,朱庆森,王志琴,等.1997.亚种间杂交稻光合特性及物质积累与运转的研究.作物学报,23(1):82-88.
    126.杨建昌,朱庆森,王志琴,等.2006b.亚种间杂交稻籽粒充实不良的一些生理机制.西南农业学报,11(1):31-36.
    127.杨金松,唐元.1994.湖北省早稻主栽品种产量性状的遗传分析.湖北农业科学,(3):11-14.
    128.杨仁崔,杨惠杰.1998.国际水稻研究所新株型稻研究进展.杂交水稻,13(5):29-31.
    129.杨守仁,张龙步,陈温福,等.1996.水稻超高产育种的理论与方法.中国水稻科学,10(2):115-120.
    130.杨守仁.1987.水稻超高产育种新动向—理想株型与优势利用相结合.沈阳农业大学学报,18(1):1-5.
    131.杨守仁.1988.水稻理想株型育种新动向.中国水稻科学,2(3):1-5.
    132.姚立生,高恒广,杨立彬,等.1990.江苏省五十年代以来中釉稻品种产量及有关性状的演变.江苏农业学报,6(3):38-44.
    133.殷宏章,王天铎,李有则,等.1961.水稻田的群体结构与光能利用.稻麦群体研究论文集.上海:上海科技出版社.
    134.袁江,王丹英,廖西元,等.2008.早籼稻品种更替过程中农艺性状的演变特征.作物学报,34(11):2041-2045.
    135.袁隆平.1990.两系法杂交水稻研究的进展.中国农业科学,23(3):1-6.
    136.袁隆平.1996.从育种角度展望我国水稻的增产潜力.杂交水稻,(4):1-2.
    137.袁隆平.1997.杂交水稻超高产育种.杂交水稻,12(6):1-6.
    138.袁隆平.2000.超级杂交稻.中国水稻研究通报,8(1):13-14.
    139.袁平荣,孙传清,杨从党,等.2000.云南籼稻每公顷15吨高产的产量及其结构分析.作物学报,26(6):756-762.
    140.张秋英,欧阳由男,戴伟民,等.2005.水稻基部伸长节间性状与倒伏相关性分析及QTL定位.作物学报,31(6):712-717.
    141.张声函,雷雪方,朱普年.1995.水稻穗重高产育种的效应研究.江西农业大学学报,17(4):386-389.
    142.张文忠,徐正进,张龙步,等.2002.直立穗型水稻研究进展.沈阳农业大学学报,33(3):161-166.
    143.张西科,尹君,刘文菊,等.2002.根系氧化力不同的水稻品种磷锌营养状况的研究.植物营养与肥料学报,8(1):54-57.
    144.张英,徐正进,宋桂云.2005.氮素水平对水稻穗颈组织的影响.土壤肥料,(6):45-47.
    145.张云华,王荣富,陈炳松,等.2003.超高产水稻两优培九生育后期的光能利用和同化产物分配.安徽农业大学学报,30(3):269-272.
    146.张忠旭,陈温福,杨振玉,等.1999.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响.沈阳农业大学学报,30(2):81-85.
    147.章志宏,陈明明,唐俊,等.2002.水稻穗颈维管束和穗部性状的遗传分析.作物学报,28(1):86-89.
    148.赵步洪,张文杰,常二华,等.2004.水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系.中国农业科学,37(8):1123-1129.
    149.赵全志,黄丕生,凌启洪,等.2000.水稻颖花伤流量与群体质量的关系.南京农业大学学 报,23(3):9-12.
    150.郑柏林.2004.两优培九千亩高产示范栽培技术总结.温州农业科技,(1):23-24.
    151.周开达,马玉清,刘清.1995a.杂交水稻亚种间重穗型组合的选育一交水稻超高产育种的理论与实践.四川农业大学学报,13(4):403-407.
    152.周开达,马玉清,刘太清.1995b.穗重型杂交稻育种.四川农业大学学报,13(4):403-407.
    153.周丽华,吴厚雄,刘辉,等.2006.杂交水稻茎秆形态学优势性状与抗倒伏能力的研究.种子,25(6):10-13
    154.朱庆森,张祖建,杨建昌,等.1997.亚种间杂交稻产量源库特征.中国农业科学,30(3):52-59.
    155.朱庆森,曹显祖,骆亦其.1988.水稻籽粒灌浆的生长分析.作物学报,(3):4-9.
    156.朱庆森,王志琴,张祖建,等.1995.水稻籽粒充实程度的指标研究.江苏农学院学报,16(2):1-4.
    157.邹德堂,邱太权,赵宏伟,等.1997.水稻倒伏指数与其他性状相关和通径分析.东北农业大学学报,28(1):112-118.
    158.Aluko G,Martinez C,Tohme J,et al.2004.QTL mapping of grain quality traits from the interspecific cross Oryza sativa×O.glaberrima.Theor Appl Genet,109(3):630-639.
    159.Anindita B,Bharati G.1995.Effect of heat stress on ribulose 1,5-bisphosphate carboxylase in rice.Phytocherulstry,38(5):1115-1118.
    160.Ashikari M,Sakakibara H,Lin S,et al.2005.Cytokinin oxidase regulates rice grain production.Science,309(5735):741-745.
    161.Ayahiko Shomura,Takeshi Izawa,Kaworu Ebana,et al.2008.Deletion in a gene associated with grain size increased yields during rice domestication.Nature Genetics,40:1023-1028.
    162.Bridgesm W C.1993.Proceedings of the statistical education secation.American statistical ASSU.
    163.Brondani C,Rangel P,Brondani R,et al.2002.QTL mapping and introgression of yield related traits from Oryza glumaepatula to cultivated rice using microsatellite markers.Theor Appl Genet,104:1192-1203.
    164.Fan C C,Xing Y Z,Mao H L,et al.2006.GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein.Theor Appl Genet,112(6):1164-1171.
    165.FAO.2004.Statistical databases,Food and Agriculture Organization(FAO) of the United Nations,(10):1407-1413.
    166.Feng T,De J L,Qiang F,et al.2006.Construction ofintrogression lines carrying wild rice segments in cultivated rice background and characterization of introgressed segments associated with yield-related traits.Theor Appl Genet,112:570-580.
    167.Gabrielsen E K.1948.Effects of different chlorophyll concentrations on photosynthesis in foliage leaves.Physiol Plant,(1):5-37.
    168.GUO Zhao Wu,LI He Song,WANG Ruo Zhong,et al.2007.Photosynthesis of the Flag Leaf Blade and Its Sheath in High-yielding Hybrid Rice ‘Liangyoupeijiu'.Journal of Plant Physiology and Molecular Biology,33(6):531-537.
    169.He G M,Luo X J,Tian F,et al.2006.Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice.Genome Research,16(5):618-626.
    170.Huang N,Parco A,Mew T,et al.1997.RFLP mapping of isozymes,RAPD,and QTLs for grain shape,brown planthopper resistance in a doubled haploid rice population.Molecular Breeding,3:105-113.
    171.IRRI.1994.IRRI redesigns rice plant to yield more grain.IRR Reporter(4):1.
    172. Ji B H, Jiao D M.2000.Relationships between D1 protein,xanthophylls cycle and photedamage resistant capacity in rice.Chin Sci Bull,45(l7): 1569-1575.
    173. Jianchang Yang, Shaobing Peng, Zujian Zhang, et al.2002. Grain and Dry Matter Yields and Partitioning of Assimilates in Japonica/Indica Hybrid Rice.Crop Sci,42:766-772.
    174. Jiao D M. 1992.Mass screening for rice germplasm tolerated to photo inhibition. Phytosynthetica , 26:399-404.
    175. Kamisaka S, Takeda S, Takahashi K.1990. Diferulic and ferulic acid in the cell wall of Avena coleoptiles-Their relationships to mechanical properties of the cell wall. Physiologia Plantarum, 78:1-7.
    176. Kashiwagi T, Ishimaru K.2004. Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiology, 134: 676-683.
    177. Kashiwagit T, Yukam M, Naokih K, Ken I.2006.Locus prl5 improves lodging resistance of rice by delaying senescence and increasing carbohydrate reaccumulation. Plant Physiol Biochem,44:152.
    178. Ken I, Eiji T, Taiichro O.2008. New target for rice lodging resistance and its effect in a typhoon. Planta, 227(3): 601-609.
    179. Ken I, Takayuki K, Naoki H, et al.2005.Identification and physiological analyses of a locus for rice yield potential across the genetic background. Journal of Experimental Botany, 56(420): 2745-2753.
    180. Ken I.2003 .Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiology, 133:1083-1090.
    181. Khush G S.Breeking the yield frontier of rice.Geo J, 1995, (35):329-332.
    182. Kong F N, Wang J Y, Zou J C, et al.2007. Molecular tagging and mapping of the erect panicle gene in rice. Mol Breed, 19:297-304.
    183. Ku M S B, Cho D, Ranade U.2000.Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzymes. In:Redesigning Rice Photosynthesis to Increase Yield.Anrsterdana:Elsevier Science,193-204.
    184. Kubo T, Takano-kai N, Yoshimura A.2001.RFLP mapping of genes for long kernel and awn on chromosome 3 in rice.Rice Genetics Newsletter, 18:26-28.
    185. Kuroda E, Ookawa T, Ishihaa K.1989.Analysis on difference of dry matter production between rice cultivars with different plant height in relation to gas diffusion inside stands. Japanese Journal of Crop Science, 58(3):374-382.
    186. Lander E S, Botstein D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics, 121:185-199.
    187. Lander E S, Green P, Abrahamson J, et al.1987.MAPMAKER: an interactive computer for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1:174-182.
    188. Lee S J, Oh C S, Su J P, et al.2005. Identification of QTLs for domestication-related and agronomic traits in an Oryza sativa×O. rufipogon BC1F7 population. Plant Breed, 124:209-219.
    189. Li D J, Sun C Q, Fu Y C, et al.2002.Identification and mapping of genes for improving yield from Chinese common wild rice using advanced backcross QTL analysis. Chinese Sci Bui, 47(18) :1533-1537.
    190. Li J M, Thomson M, McCouch S R.2004.Fine mapping of a grain weight quantitative trait locus in the pericentromeric region of rice chromosome 3.Genetics, 168(4):2187-2195.
    191. Li X Y, Qian Q, Fu Z M, et al.2003 .Control of tillering in rice.Nature, 422: 618-621. Maruyama K, H. Nakane.1992.High yielding In Kushibuchi, Ked,Rice Breeding in Japan. Agri. And Tech .Society, Tokyo, 231-243.
    192. Matsuo T M.1990.Great Achievement of Rice Science.Tokyo Nousangyoson Culture Society,(1):419-423.
    193. McCouch S R, Kochert G, Yu Z H, et al.l988.Molecular mapping of rice chromosome.Theor Appl Genet,76: 815-829.
    194. Nelson J C.1997. QGENE: software for marker-based genomic analysis and breeding. Mol Breed, 3: 239-245.
    195. Ou Zhi-Ying, PENG Chang-Lian, LIN Gui-Zhu, et al.2003 .Relationship between PS II excitation pressure and content of Rubisco large submfit or small subunit in flag leaf of super high yielding hybrid rice.Acta Botanica Sinica,45(8):929-935.
    196. Panaud O,Chen X,McCouch SR.1996.Development of microsatellite markers and characterization of sample sequence length polymorphism (SSLP) in rice. Mol Gen Genet, 252: 597-607.
    197. Peng S, Hardy B.2001.Rice research foe food security and poverty alleviatior.phillipines: IRR press:43-50.
    198. Peng S, Khush G S, Cassman K G.1994.Breeding the yield barrier. Philipines: Edited by KG cassman.IRRI.
    199. Redona E D, Mackill D J.1998.Quantitative trait locus analysis for rice panicle and grain characteristics.Theor Appl Genet, 96:957-963.
    200. Sasahara T K, Kodama K I, Kambayashi M H K. 1982.Studies on structure and function on the rice ear. Jpn J Crop Sci,51(1):26-34.
    201. Septiningsih E M, Prasetiyono J, Lubis E, et al.2003. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet, 107:1419-1432.
    202. Shailaja H, Huang N, Courtois B, et al.2003. Identification of QTL for growth and grain yield related traits in rice across nine locations of Asia. Theor Appl Genet, 107: 679-690.
    203. Shailaja H, Shashidhar H E, Prashanth G B, et al.2002. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica 125: 207-214.
    204. Sherratt M J, Baldock C, Haston J I.2003. Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. Journal of Molecular Biology, 332(1): 183-193.
    205. Sirithunya P, Tragoonrung S, Vanavichit A, et al.2002. Quantitative Trait Loci Associated with Leaf and Neck Blast Resistance in Recombinant Inbred Line Population of Rice. DNA Research, 9: 79-88.
    206. Song X J, Huang W, Shi M, et al.2007. A QTL for rice grain width and weight encodes a reviously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 39(5), 623-630.
    207. Tan Y F, Xing Y Z, Li J X, et al.2000.Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet, 101:823-829.
    208. Thomson M J, Tai T H, McClung A M, et al.2003. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 107:479-493.
    209. Tian F, Zhu Z F, Zhang B S,et al.2006.Fine mapping of a quantitative trait locus for grain number per panicle from wild rice .Theor Appl Genet, 113:619-629.
    210. Tian R, Jiang GH, Shen LH, et al.2005. Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population.Mol Breed,15:117-124.
    211.Wan X Y,Wan J M,Jiang L,et al.2006.QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects.Theor Appl Genet,112(7):1258-1270.
    212.Wang E,Wang J J,Zhu X D,et al.2008.Control of rice grain-filling and yield by a gene with a potential signature of domestication.Nature Genetics,40:1370-1374.
    213.Welton F A.1928.Lodging in oats and wheat.Botanical Gazatte,85(2):121.
    214.Weng J,Gu S,Wan X,et al.2008.Isolation and initial characterization of GW5,a major QTL associated with rice grain width and weight.Cell research,18(12):1199-209.
    215.Xiao J,Li J,Yuan L,et al.1996.Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross.Theor AppI Genet,92:230-244.
    216.Xie X B,Song M H,Jin F X,et al.2006.Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon.Theor Appl Genet,113(5):885-894.
    217.Xie X B,Jin FX,Song M H,et al.2008.Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa×O.rufipogon cross.Theor Appl Genet,116:613-622.
    218.Xing Y Z,Tan Y F,Hua J P,et al.2002.Characterization of the main effects,epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice.Theor Appl Genet,105:248-257.
    219.Xue W,Xing Y,Weng X,et al.2008.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.Nat Genet,40(6):761-767.
    220.Yan C J,Zhou J H,Feng S Y,et al.2007.Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice.Theor Appl Genet,115(8):1093-1100.
    221.Yan J Q,Zhu J,He C X,et al.1998a.Quantitative trait loci analysis for developmental behavior of tiller number in rice.Theor Appl Genet,97:267-274.
    222.Yan J Q,Zhu J,He C X,et al.1998b.Molecular dissection of developmental behavior of plant height in rice.Theor Appl Genet,150:1257-1265.
    223.Ymnmnoto T I,Horisue N,Iketa Y K.1996.Rice Breeding Manual.Tokyo:Yokendo ltd,5-20.
    224.Yoon D B,Kang K H,Kim H J,et al.2006.Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O.sativa japonica cultivar Hwaseongbyeo.Theor Appl Genet,112:1052-1062.
    225.Yu S B,Li J X,Xu C G,et al.1997.Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid.Proc Natl Acad Sci U S A,94:9226-9231.
    226.Yuan Longping.2000.Super hybrid rice,CRRN,8(1):13-15.
    227.Yumiko S O,Tamizi S,Dmsau Y,et al.2006.The effect of planting pattern on the rate of photosynthesis and related processes during ripening in rice plants.Field Crops Res,96(1):113-124
    228.Zeng Z B.1994.Precision mapping of quantitative trait loci.Genetics,136:1457-1468.
    229.Zou J,Zhang S,Zhang W,et al.2006.The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds.Plant J,48:687-698.
    230.#12
    231.村田吉男.1961.农林技术研究所报告:1-69.
    232.#12
    233.濑古秀生.1962.水稻の倒伏た关する研究.九州农业试验场汇报,(7):419-495.
    234.齐藤邦行,柏木仲哉,木下孝岩,等.1993.水稻多收性品种の干物质生产特性の解析.日本作物学会纪事,61(1):61-73.
    235.#12
    236.#12
    237.#12
    238.佐藤尚雄.超多收作用の开发と栽培技术の确立.1991.农林水产技术会议纪要.农林水产技术会议事务局:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700