不同化学物质对番茄耐低温弱光能力的影响及机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国设施园艺业发展迅速,面积居世界第一,但绝大多数为简易型,对环境可控程度低,保温、增温能力差,寒冷季节寒害频发;温室与塑料大棚的平均透光率只能达到50%左右,北方春秋多风沙,使透光率进一步降低,低温弱光并发灾害时有发生,给设施园艺蔬菜生产造成了严重影响;苗期易发生萎蔫、黄化、结冰、死苗、沤根等;开花结果期易发生落花、落果、化瓜等。针对温室内低温弱光采取的措施包括:选用新型滴流膜,适时揭盖草帘,安装镀铝反光膜,人工照明补光,选育温室生产专用品种等,这些措施有的操作麻烦,有的耗资较大;相比之下,施用化学物质防治低温弱光具有操作简便、省时省力的优点。
     研究表明,向植物施加一些外源物质如Ca~(2+)、ABA、GB(甜菜碱)、氯化胆碱等能提高植物的抗冷力,其作用机理大致如下:一是增强细胞膜在低温下的稳定性;二是参与低温信号转导,诱导抗冷基因的表达;三是作为渗透调节物质,维持低温下细胞内外水分平衡,保持细胞的稳定性。ALA(5-氨基乙酰丙酸)作为一种新开发的植物生长活性物质,是所有卟啉化合物的前体,影响叶绿素的合成,提高光合效率,增强植物抗冷性和耐弱光性的能力。
     本研究以四叶期番茄为试材,喷施不同浓度的CaCl_2、GB、ALA,经低温弱光处理后,通过测量番茄幼苗的净光合速率、气孔导度等生理指标和计算冷害指数,筛选出了1.0mmol/L的CaCl_2、2.5mmol/L的GB(甜菜碱)、30mg/L的ALA三种有效浓度;进一步试验表明三种物质增强番茄耐低温弱光能力的贡献各有不同,CaCl_2主要对增强番茄耐低温方面起作用,ALA主要对耐弱光方面贡献大。将上述三种物质按不同比例进行组合,在四叶期番茄上进行试验,筛选出了效果较好的组合Ⅳ。
     低温弱光对植物细胞的伤害是多方面的,首先低温使细胞膜系统受损,破坏植物体内抗氧化酶系统,膜脂过氧化加剧,活性氧积累;SOD作为植物体内主要的抗氧化酶之一,低温易使SOD活性降低,MDA含量积累;本研究表明喷施合适浓度的ALA、GB、CaCl_2能使番茄幼苗在低温弱光下保持SOD酶的活性,同时降低MDA含量,SOD活性与MDA含量呈显著的负相关,此外能降低电解质外渗率,保持膜系统的稳定性。脯氨酸和可溶性糖作为植物细胞内主要的渗调物质,对植物耐冷力具有重要作用;本研究中,喷施ALA、GB和CaCl_2使番茄植株在低温弱光逆境下叶片脯氨酸和可溶性糖含量保持较高水平。光强不足易导致植物叶绿素含量降低,叶绿素a/b降低;研究表明喷施上述三种物质有助于番茄叶片在低温弱光下保持较高的叶绿素含量水平,降低叶绿素a/b值,而叶绿素a/b降低对于提高LHCP1的捕光能力,增强电子传递链电子转移效率,提高逆境下植物光合作用。
Even though China now boast the largest area of fertility horticulture in the world, most of them are simple type with very low level of environmental controlling; the capability of increasing and keeping the temperature in the greenhouse is very weak, so much that chilling are very frequent in the cold season. The photo permeability rate of the greenhouse and plastic shed can only get to 50%. To make things worse, the frequent sandy weather in northern China further lowers the photo permeability. Chilling and low light always happen together, which cause very serious consequences such as wilting, etiolation, freezing, dieing, root-rotting in the seedling period and flower dropping, fruit dropping, fruit withering in the flowering and fruit-bearing period. The measure against chilling and weak light include adopting new-type plastic film, clearing the film timely, opening and cover the grass curtain at regular time, installing light-reflecting aluminizing film or illuminating equipments to increase light intensity etc.. These measures are either troublesome or costly. By contrast, application of chemicals against chilling and low light, if possible, can be much convenient and time and labor-saving.
     Research shows that applying some exogenous chemical substances such as Ca~(2+)、ABA(abscisicacid)、GB (Glycine Betaine), CC (Choline Chloride) etc. can enhance the resistance ability of plants against chilling, which function through three mechanics as follows: first, increase the stability of the cellular membrane under chilling, second, function in the signal transduction of chilling and induce expression of cold-resist genes, third, as a osmotic substance, keep the water balance inside and outside the cell and maintain natural condition of the cell. ALA (5-Aminolevulinic Acid), a newly-developed plant active substance, as a necessary precursor for all porphyrin compound, play a significant role in the synthesis of chlorophyll and can increase the net photosynthesis rate, furthermore it can enhance plant against chilling and low light.
     In this study, four-leaved tomato seedlings, as the testing material, were sprayed with solutions of CaCl_2、GB、ALA of different concentrations then treated with chilling and low light simultaneously. By measuring the net photosynthetic rate, conductivity of stomata and calculating the chilling-induce-wilting index, 1mmol/L of CaCl_2, 2.5mmol/L of GB, 30mg/L of ALA were selected as effective concentration. Further experiment shows the function of the 3 chemicals towards single chilling and single low light are different. CaCl_2 mainly functions against the single chilling while ALA mainly contributes to photosynthesis under low light. Combining these 3 chemicals with different proportion into 8 formulas, formula IV was selected as the most effective through testing on four-leaved tomato seedlings.
     Chilling and low light damage plant in many ways, first, it damages the cellular membrane system and increases the leakage rate of electrolyte; second, it destroys antioxidant enzymes system, which cause the lipid peroxidation and accumulation of activate oxygen, third, it affect the level of osmotic regulator; last, low light can cause decrease of chlorophyll content in plant and the ratio of chlorophyll a/b. This study demonstrate that ALA, GB, CaCl_2 of appropriate concentration can alleviate the electrolyte leakage of the tomato seedlings under chilling and low light, and keep the stability of the membrane system. Chilling can lower the activity of SOD and accumulate MDA, This study shows that application of ALA, GB, CaC12 of appropriate concentration can keep the activity of SOD high of tomato seedlings under chilling and low light and keep low level of MDA simultaneously; activity of SOD and MDA content are of significantly negative correlation. Proline and soluable sugar, two major osmotic regulators, play very important roles in the anti-chilling of plant. This study shows that application of ALA, GB, CaCl_2 can help keep high level of praline and soluable sugar in the leaf. Besides, application of the above substances can help keep the level of total chlorophyll high and decrease the ratio of chlorophyll a/b, which exert a very critical function in improving the light-harvesting capability of LHP1 and enhancing the electron-transmitting efficiency of electron-transmitting chain, further increase the photosynthesis of plants under adverse conditions.
引文
1.陈以峰.氯化胆碱对黄瓜子叶期幼苗的影响冲国蔬菜,1996,2:19-21
    2.戴金平,简令成.低温锻炼对黄瓜幼苗几种酶活性的影响.植物学报1991,33(8):627~632
    3.丁国华,秦智伟,周秀艳.植物低温诱导蛋白和诱导基因研究新进展.中国农学通报,2003,19(6):33~36.
    4.董永华,史吉平,李广敏,韩建民,商振清.外施6-BA和ABA提高玉米幼苗抗旱能力的作用及效果.西北植物学报,1998,18(2):202~206.
    5.董永华,史吉平,周慧欣.6-BA对小麦幼苗抗旱性的影响.植物营养与肥料学报,1999,5(1):72~75.
    6.段九菊,郭世荣,康云艳.外源亚精胺对盐胁迫下黄瓜幼苗活性氧水平和抗氧化酶活性的影响.园艺学报,2006,33(3):639~634.
    7.方智远,等.中国主要蔬菜抗病育种进展[M]北京:中国农业出版社,1998:474~477
    8.冯广和.我国设施园艺发展的简要历程[J],温室园艺,2003,4:31~31.
    9.冯乃杰,郑殿峰,张玉先,等.化控种衣剂对大豆籽粒灌浆过程及产量形成的影响.2005,21(7):334~337.
    10.冯孝严,李淑珍,石英.设施栽培桃树落花落果原因及对策.山西果树,1999,4:10~12.
    11.关军锋,李广敏.Ca~(2+)与植物抗旱性的关系.植物学通报,2001,18(4):473~478.
    12.郭爱民,谭益民,汪小伟.我国设施园艺的现状及发展对策.西南园艺,2001,29(4):62~63.
    13.郭风鸣.弱光条件下黄瓜的生长解析.吉林农业大学学报,1990,12(1):32~35
    14.郭确,潘瑞炽.ABA对水稻幼苗抗冷性的影响.植物生理学报,1984,10(4):295~299
    15.郭文韬,曹隆恭.中国近代农业科技史[M].北京:中国农业科技出版社,1989.
    16.何洁,刘鸿先,王以柔,等.低温与植物的光台作用.植物生理学通讯.1986(2):1~6
    17.何维明,钟章成.攀缘植物绞股蓝幼苗对光照强度的形态和生长反应.植物生态学报,2000,24(3):375~378
    18.胡春梅,王秀峰.不同抗冷剂叶面喷施对瓜尔豆幼苗耐寒性的影响.山东农业科学,2003,5:16~17
    19.黄涛,陈大洲,夏凯,等.抗冷与不抗冷水稻在低温期间叶片ABA与GA水平变化的差异.华北农学报,1998,13(1):56~60
    20.简令成.植物冻害和抗冻性的细胞生物学研究.植物生理生化进展,1987,5:1~6
    21.简令成.植物抗寒机理研究的进展.植物学通报,1992,9:17~22
    22.简令成,孙龙华.早稻育秧抗寒剂的研制.植物学通报,1991,8(5):60~61
    23.简令成,孙龙华,卫翔云.等,从细胞膜系统的稳定性与植物抗寒性关系的研究到抗寒剂的研制.植物学通报,1994,11(特刊):122~128
    24.简令成,孙龙华,卫翔云.水稻育秧抗寒剂的研制及其应用.辽宁农业科学1992,2:6~10
    25.简令成,王红.钙(Ca2)在植物抗寒中的作用.细胞生物学杂志,2002,24(3):166~171.
    26.姜敏,吴铮.我国设施园艺为何“大而不强”.瞭望[J],2006,33:49~50
    27.巨换梅.浅谈我国设施园艺业发展现状.科技情报开发与经济[J],2004,14(3):113~114
    28.康国章,王正询,孙谷畴.几种外源物质提高植物抗冷力的生理机制.植物生理学通讯,2002,38(2):193~197
    29.匡廷云.叶绿体膜的结构与功能I,叶绿体膜的结构、组成与PSⅡ功能的关系.植物生理学报,1979,5(2):99~107
    30.李建英,郑殿峰,冯乃杰.植物激素与逆境的关系.黑龙江八一农垦大学学报,2003,15(4):35~39
    31.李俊明.玉米自交系苗期耐冷性影响[J].华北农学报,1988,3(1):7~121
    32.李美茹,刘鸿先,王以柔.植物细胞中的抗寒物质及其与植物抗冷性的关系.植物生理学通讯,1995,31(5):328~333
    33.李美茹,刘鸿先,王以柔.氧化胁迫对水稻幼苗抗冷力的影响[J].热带亚热带植物学报,1999,7(4):323~328.
    34.王富,李景富.不同叶龄期低温处理对番茄花粉发育影响.北方园艺,1999,2:1~2
    35.李新安.我国设施园艺的发展现状及未来发展对策.农业科技,2006,21:115~115
    36.李智念,王光明,曾之文.水稻等作物抗寒中ABA的相关研究.耕作与栽培,2003(3):17~19
    37.梁长梅,姚满生,郭平毅.试论我国农作物化控技术的研究进展.山西农业科学2002,30(1):84~88
    38.林定波,刘祖祺,张石城.多胺对柑桔抗寒力的效应.园艺学报,1994,21(3):222~226.
    39.刘大永,王维香.过氧化氢对水稻幼苗中CAT和POD活性的影响.作物学报,1998,24(3):320~324.
    40.刘富林,韩润林,张凤瑞.Ca离子对小麦叶片保水能力及膜功能的影响.河北农业大学学报,1991,14(4):28~32.
    41.刘广宇,魏令波,陈吉龙,等.植物脱水素研究进展.生物工程进展.2001,21(2):24~27
    42.刘鹏,刘庆忠,王勇,等.喜温作物的低温损伤及其抗冷性的研究进展.山东农业科学,2004,1:74~79
    43.刘延吉,文言,李秉超.作物化控栽培技术展望.辽宁农业科学,1999(3):31~33
    44.刘友良,等.植物抗冻性测定技术的原理和比较[J].植物生理学通讯,1985,21(1):40~43.
    45.卢林纲.黄腐酸及其在农业上的应用.现代化农业,2001,5:9~10.
    46.罗正荣.植物激素与抗寒力的关系[J].植物生理通讯,1989,(3):1~51
    47.梅镇安.离体叶绿体中不同叶绿素a/b比值与光合磷酸化活性的关系,植物生理学报,1965,2(3):179~184
    48.潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2001,162~165
    49.沈漫,王明庥,黄敏仁.植物抗寒机理研究进展.植物学通报,1997,14(2):1~8.
    50.尚湘莲.蔬菜低温胁迫与抗冷性研究进展.长江蔬菜,2002,COO:18~20.
    51.沈文云,马德华,候锋.弱光处理对黄瓜叶绿体超微结构的影响.园艺学报,1995,22(4):397~298
    52.孙大业,郭艳林,马力耕.细胞信号转导[M].北京:科学出版社,1991,42~50
    53.孙忠富.中国设施园艺工程发展现状与主要研究领域初步探讨[M].北京:中国农业科技出版.
    54.檀建新,董永华,张伟,李广敏.钙对渗透胁迫下玉米幼苗内源激素和多胺含量的影响.植物生理学通讯,1998,34(2):94~96
    55.谈建中,承建平,孙丙耀等.外源甜菜碱对桑树抗盐生理的影响及其作用机理的研究.蚕业科学,2005,31(4):404~408.
    56.谭云,叶庆生,李玲.植物抗旱过程中ABA生理作用的研究进展.植物学通报,2001,18(2):197~201.
    57.王宝山.生物自由基与植物膜伤害.植物生理通讯[J],1988,33:73~96
    58.王炳奎,曾广文.表油菜素内酯对水稻幼苗抗冷性的影响.植物生理学报,1993,19(1):38~42
    59.王春乙,马树庆.玉米耐低温助长剂田间试验研究.自然灾害学报,2001,10(1):80~85
    60.王洪春.植物对温度逆境的适应,见:余叔文主编.植物生理与分千生物学.北京:科学出版社,1992,395~395.
    61.王康,冯有胜.H2O2对过氧化氢酶和过氧化物酶活性的影响.西南农业大学学报,1988,10(1):101~103.
    62.汪良驹,姜卫兵,黄保健.5-氨基乙酰丙酸对弱光下甜瓜幼苗光合作用和抗冷性的促进效应.园艺学报,2004,31(3):321~326
    63.汪良驹,姜卫兵,章镇.5-氨基乙酰丙酸的生物合成和生理活性及其在农业中的潜在应用.植物生理学通讯,2003,39(3):185~192
    64.王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报,2001,18(4):459~465
    65.王熹.试论我国作物化控研究的发展.作物杂志,1993,(2):1~4
    66.王熹,陶龙兴.大田作物化控技术研究进展与应用前景.中国农业科技导报,2000(2):55~57
    67.王孝宣,等.低温胁迫对番茄苗期和花期若干性状的影响.中国蔬菜,1996,23(4):349~354。
    68.王孝宣,李树德,东惠茹,等.番茄品种耐寒性与ABA和可溶性糖含量的关系,园艺学报,1998,25(1):56~60
    69.王秀芹,黄卫东,战吉宬.水杨酸对弱光下“大久保”桃果实库强的影响.中国农学通报,2004,20(3):169~172
    70.王以柔,等.冷锻炼对水稻和黄瓜幼苗SOD、GR活性及GSH、AsA含量的影响[J].植物学报,1995,37(10):776~780.
    71.王一鸣.黄腐酸—简易有效的抗旱剂.腐殖酸,1991,1:27~30.
    72.魏瑞江.日光温室低温寡照灾害指标.气象科技,2003,31,(1):50~53
    73.武兰芳,低温下玉米幼苗叶片某些细胞器可溶性蛋白质的变化.华北农学报1990,5(2):38~43
    74.吴能表,钟永达,肖文娟.零上低温对甘蓝幼苗逆境指标的动态影响.西南师范大学学报(自然科学版),2005,30(3):525~528.
    75.许春辉.光逆境对叶绿体叶绿素蛋白质复合物的影响.植物学通报,199111(4):8~11
    76.许长成,邹琦,樊继莲等.抗旱性不同的两个品种对外源H2O2的响应.植物生理学报,1996,22(1):13~18.
    77.许旭旦.黄腐酸(FA)研究的意义与成就.腐殖酸,1996,1:32~34.
    78.杨根平,高向阳,荆家海.干旱胁迫下钙对大豆叶片光合作用的改善效应.作物学报, 1995,21:711~716
    79.杨廷良,崔国贤,罗中钦,等.钙与植物抗逆性研究进展.作物研究,2004(5):380~384.
    80.喻方圆,徐锡增.植物逆境生理研究进展.世界林业研究,2003,16(5):6~11.
    81.余叔文,汤章诚.植物生理与分子生物学.科学出版社,1998,405~409.
    82.于贤昌,邢禹贤,马红,等.低温胁迫下黄瓜嫁接苗和自根苗内源激素的变化.园艺学报,1999,26(6):406~407。
    83.袁清昌,1999.钙提高植物抗旱能力的研究进展.山东农业大学学报,30(3):302~306.
    84.曾纪晴,等.黄瓜幼苗子叶在低温下的光抑制及其恢复[J].植物生理学报,1997,23(1):15~20
    85.查仁明.植物细胞第二信使研究进展.渝西学院学报,2002,1(2):18~21
    86.战吉宬,黄卫东,王利军.植物弱光逆境生理研究综述.植物学通报2003,20(1):43~50
    87.战吉宬,王利军,黄卫东,弱光环境对葡萄叶片生长及其在强光下光合特性的影响.中国农业大学学报,2002,7(3):75~78
    88.张福墁.农业现代化与我国设施园艺工程.设施园艺,2002,12:9~10
    89.张红萍,张法瑞.中国设施园艺的历史回顾与思考.农业工程学报[J],2004,20(6):291~295
    90.张立新,李生秀.甜菜碱与植物抗旱/盐性研究进展.西北植物学报2004,24(9):1765~1771
    91.张其德.光强度对小麦幼苗光合特性的影响.植物学报,1988,30(5):508~514
    92.张世光,韦建福.云南植物上冰核细菌多样性研究.植物病理学报,1999,29(3):206~210
    93.张士功,高吉寅,宋景芝.6-苄基腺嘌呤对盐分胁迫条件下小麦幼苗体内Na~+、K~+和Cl~-的含量及其分布的影响.华北农学报1999,14(4):39~44.
    94.张士功,高吉寅,宋景芝.水杨酸对提高小麦抗盐效应的研究.中国农业科技导报,1999,1:32~35.
    95.张宪政.作物生理研究法.北京:农业出版社,1992.150~152,195~200,206~207
    96.张跃群,余德琴.设施园艺发展现状及对策.世界农业,2002,11:41~43
    97.甄伟,张福墁.弱光对黄瓜功能叶片光合特性及超微结构的影响.园艺学报,2000,27(4):290~292.
    98.朱蕙香,张宗俭,陈虎保等.常用植物生长调节剂应用指南.化学工业出版社,2002.
    99.钟秀丽,崔德才,李玉中.磷脂酶D的细胞信号转导作用.植物生理与分子生物学学报,2005,31(5):451~460
    100.周佩珍.叶绿体中不同叶绿素a/b比例对还原2,6-二氯酚靛酚能力的影响.植物生理学报,1964,1(2):154~159
    101.周艳虹,喻景权,钱琼秋,黄黎锋.低温弱光对黄瓜幼苗生长及抗氧化酶活性的影响.应用生态学报,2003,14(6):921~924.
    102.朱洪涛.中国古代的温室栽培技术[J].农业考古,1984,2:235~238.
    103.朱龙英,徐悌惟,康高强,陈龙英.番茄耐低温和弱光性能影响方法初探.上海农业学报,1998,14(1):45~50.
    104. Allard, F, Houde, M, Krol, M, Ivanov, A, Huner, N P A Sarhan, F, 1998. Betaine improves freezing tolerance in wheat. Plant Cell Physiol. 39:1194~1202
    105. Anderson MD, Prasad TK, Martin BA et al. Differential gene expression in chilling-induced maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol, 1994,105:331-332
    106. Baber J, Anderson B. Too much of a good thing: light can be bad for photosynthesis[J] TIBS, 1992, 17:61-66
    107. Bradley DJ, Jellbom P, Lamb CJ . Elicitor and wound induced oxidative cross linking of a plant cell wall proline rich protein: A moveable rapid defense response. Cell, 1992, 70: 21-30
    108. C.B. Rajashekar a,, H. Zhou a, K.B. Marcum b, O. Prakash. Glycine betaine accumulation and induction of cold tolerance in strawberry (Fragaria X ananassa Duch.) plants Plant Science, 1999, 148: 175-183
    109. Chen Z, Silva H, Klessig D F,. Active oxygen species in the induction of plant systemic acquired resistance by Salicylic Acid. Science, 1993, 262:1883-1886
    110. Clarkson D T , et al. Phospholipid composition and fatty acid desaturation in the roots of rye during acclimatization of low temperature[J] Planta, 1980,149:464 -471
    111. Dhindsa R S, Matowe W. Drought tolerance in two mosser : Correlated with enzymatic defence against lipid per oxidation[J]. Exp.Bot, 1981,32:79-91
    112. Eklund L. Relations between indoleacetic acid,calcium ions and ethylene in the regulation of growth and cell wall composition in Picea abies[J] .Exp.Bot, 1991,42,785-789
    113. Eklund L, Eliasson L. Effects of calcium ion concentration on cell wall synthesis [J]. Exp. Bot. 1990 41:863-867;
    114. Flore J A, Kesner C, Orchard design for stone fruit based on light interception. Compact Fruit Tree, 1982,25:159-165
    115. Erlandson, A. G. L., Jensen, P. Influence of low temperature on regulation of Rb~+ and Ca~(2+) influx in roots of winter wheat Pkysiol. Plant. 1989,75: 114-120
    116. Gast RT, Jacobsen SE. Olszewske NE et al. Calcium channel blockers have opposite effects upon Cast 1 and Dad 1,2 and 3 Mrna levels. Plant Physiol, 1993,102(Supp): 115-124.
    117. Gilmour SJ, Thomashow MF. Cold acclimation and cold-regulated gene expression in ABAmutants of Arabidopsis thalianan. Plant. Mol. Biol. 1991,17:1233-1235
    118. Grappadelli L C , Lakso A N , Flore J A,. Early season patterns of carbohydrate pardoning in exposed and shaded apple branches[J]. Amer Soc Hort Sci, 1994,119(3): 596-603
    119. Greer D H, et al. Photoinhibition of photosynthesis in intact bean leaves: role of light and temperature and requirements for chloroplast-protein synthesis during recovery[J] Planta, 1986,168:253-258
    120. GUO Q, PAN R C. Effect of ABA on the resitance of rice seedlings to chilling in jury. Acta-Phytop ysiologica-Sinica. 1984,10:4, 295-303 ;25
    121. Guy CL. Cold acclimation and freezing stress tolerance: role of protean metabolism. Annu Rev Plant Physiol, Plant mol. Boil. 1990:187-182
    122. Hartt C E. The effect of temperature upon translocation of 14C in sugarcane. Plant Physiol, 1965, 40: 74-81
    123. Hodges DM, Andrews CJ, Johnson DA et al.all Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines[J]. Exp. Bot,1997,48(310):1105-1113
    124. Hodgson R A L , et al. Inhibition of photosynthesis by chilling in light[J]. Plant Sci. Lett, 1987,49:75-80
    125. Horvath 1, van Hansselt P R. Inhibition of chilling-induced photo oxidative damage to leaves of Culumis satius L by treatment with amino alcohols. Ptanta. 1985. 184: 83-88
    126. Hwang SY, VanToai TT. Abscisic acid induces anaerobiotic tolerance in corn. Plant physiol , 1991,97:593-597
    127. Jackson J E, Palmer J W. Effects of shade on the growth and cropping of apple trees[J]. Hort Sci 1977, 52: 253-266
    128. Jian L C, Li P H, Chen T H. Alterations in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy. J Exp Bot, 1997, 48: 1195-1207
    129. Jonak C, Kiegerl S, Ligterink W, etc. Stress signaling in plants: a mitogen activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci U S A, 1996, 93: 11274-11279
    130. Knight H , Trewavas AJ , Knight MR. Cold calcium signaling in A rab dopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell ,1996, 8:489-503
    131. Koblet W, Stress and stress recovery by grapevines. Botanica Helvetica, 1996,106(1): 73-84
    132. Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics[J]. Ann. Rev. Plant Physiol. Plant Mol. BioL.,1991,42: 313-318
    133. Kurkela, S. Borg-Franck, M. Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol. Biol. 1992,19: 689-92
    134. Kushad MM, Yelennosky G .Evaluation of polyamine and praline levels during low temperature ace acclimation of citrus. Plant Physiol, 1987, 84:692-695
    135. Kuwabara T, Murata N. Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystem II particles of spinach chloroplasts[J] Plant Cell Physioll,1982,23:533-539.
    136. LAM E. et al. Characterization of Phytochrome-Regulated Gene Expression in a Photoautotrophic Cell Suspension: Possible Role for Calmodulin. Mol. Cell Biol. 1989, 9: 4819-4831
    137. Lasley S E, et al. After effects of light and chilling temperature on photosynthesis in excised cucumber cotyledons[J] Amer. Hort. Sci. 1979,104: 477-486.
    138. Leong T Y. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes. Photosyn res, 1984. 5 :105-115.
    139. LIANG ZH. The response and adaption of plant on osmotic stress, complementary teaching materials of plant physiology science[J]. Physiology Science Committee, China Plant Institute, 1996: 22-25.
    140. Lyons JM. et al. 1973 .Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants[J]. Amer. Oil. Chem. Soc. 42 :1056- 1058
    141. Malkin S ,. Estimation of the light drstribution between photosystem I and II in intact wheat leaves by fluorescence and photoacoustia measurements. Photosynthesis research 1986,17: 257-267
    142. Minorsky PV. An heuristic hypothesis of chilling in plants: a role for calcium as the primary physiological transducer of injury. Plant cell review, 1985,8: 75-77
    143. Minorsky PV. An heuristic hypothesis of chilling in plants : a role for calcium in temperature sensing by roots of cucumber seedlings. Plant Cell Envi ron ,1986,12:137-143
    144. Mohapatra SS, Wolfraim L. Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant physiol, 1989,89:375-378
    145. Monroy, A. F, Dhindsa. R. S, Low-temperature signal transduction: induction of cold accclimation-specific genes of Alfalfa by calcium at 25℃ Plant. Cell. 1995, 7:321-332
    146. Monroy A F, Sarhan F, Dhindsa R. Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression, evidence for a role calcium. Plant physiol, 1993,102:1227-1228
    147. Murata N. Molecular species composition of phosphatidyl glycerolsfrom chilling - sensitive and chilling - resistant plants[J] Plant Cell Physiol,1983,24:81-86
    148. Naidu, B P, Paleg LG, Aspinall, D, Jennings, A C, Jones, GP, Amino acid and glycine betaine accumulation on cold-stressed wheat seedlings. Phytochemistry. 1991, 30:407-409.
    149. Nordin K, Heino P, Palva ET. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana. Plant Mol Biol. 1991,18: 1061-1063
    150. Ody Y,. Effects of light intensity , CO2 concentration and leaf temperature on gas exchange of strawbery plants : feasibility studies on CO2 enrichment in Japanese conditions Acta Horticultrae , 1997, 439:563-573
    151. Owen JH. Role of abscisic acid in a Ca2+ second messenger system. Plant Physiol, 1988, 72: 637-639
    152. Powles S B, et al. Interaction between light and temperature on the photoinhibition of photosynthesis in chilling sensitive plants[J] Plant Cell and Environ, 1983, 6:117-123.
    153. Prasad TK, Anderson MP, Martin BA et al. Evidence for chilling induced oxidative stress in maize seedlings and a regulatory rolefor hydrogen peroxide. Plant Cell, 1994, 6: 65-74
    154. Raison J K, Chapman E A. Membrane phase changes in chilling sensitive Vigna radiata and their significance to growth [J] Aust J Plant Physiol ,1976,3:291-299
    155. Ryu S B,Wang X M. Activation of phosphor lipase D and the possible mechanism of activation in wound-induced lipid hydrolysis in castor bean leaves[J]. Biochem Biophys Acta, 1996, 1303: 243-250.
    156. SAKAMOTO A, MURATA N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants[J]. Plant, Cell and Environment, 2002,25:163-171
    157. SASAKI K, Marquez F J, Nishio N , et al. Promotive effects of 52aminolevulinic acid on the growth and photosynthesis of S pi ruli naplatensis. J . Ferm. Bioeng, 1995, 79: 453-457
    158. Shepherd V A, Goodwin P B. Seasonal patterns of cell-to-cell communication in Chara corallina Klein ex Wild. I Cell-to-cell communication in vegetative branches during winter and spring. Plant Cell Environ, 1992,15: 137-150
    159. Sonoike K. Photoinhibition of photosystem I : its physiological significance in the chilling sensitivity of plant[J]. Plant Cell Physiol, 1996,37: 239-247
    160. Steponkus, P. L. Role of the plasma membrane in freezing injury and cold acclimation[J] Annu Rev. Plant Physiol, 1984, 35: 543-584
    161. Tanaka Y, Tanaka A, Tsuji H. Effects of 5-aminolevulinic acid on the accumulation of phlorophyll b and apoproteins of the light-harvesting chlorophyll a/b-protein complex of photosystem II. Plant Cell Physio. 1993, 34:465-472.
    162. Tardieu F, Davies WJ, Integration of hydraulic and chemical signaling in the control of stomatal conductance and water status of droughted plant. Plant Cell Environ, 1993., 16:341-349
    163. Thomas D S, Eamus D. The influence of predawn leaf water potential on stomatal responses to atmospheric water content at constant Ci and on stem hydraulic conductance and foliar ABA concentrations. J Exp Bot, 1999. 50 :243-251
    164. Tognetti R. Ecophysiological responses of Fagus sylvatica L. Seedings to changing light conditions I. Interactions between photosynthetic acclimation and photoinhibition during stimulated canopy gap formation. Physiologia Plantarum,1997, 101(1): 115-123
    165. Weibing Xing, C.B. Rajashekar. Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana Environmental and Experimental Botany, 2001,46: 21-28
    166. Wise R R. Chilling-enhanced photooxidation[J]. Plant Physiol, 1987, 83: 278—282
    167. Zhang J H, Jia W, Zhang D P,. Effect of leaf water status and xylem pH on metabolismof xylem-transported abscisic acid Plant Growth Regulation, 1997, 21 :51-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700