人参皂苷Rg1对抗脑缺血再灌注细胞凋亡及p-JNK表达的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:明确人参皂苷Rg1对脑缺血再灌注损伤的保护作用,进一步探讨人参皂苷Rg1调控JNK及其效应分子的表达、抑制神经元凋亡、发挥神经保护作用的机制。
     材料与方法:健康SD大鼠(250~300g)随机分为假手术组、单纯缺血再灌注组(以下简称:模型组)、模型+人参皂苷Rg1治疗组(以下简称:人参皂苷Rg1组)、模型+尼莫地平1 mg/kg阳性药物治疗组(以下简称:阳性药物对照组),其中人参皂苷Rg1组又分为3个亚组(10、20、40 mg/kg组),每组35只。实验模型采用阻断大鼠大脑中动脉致局灶性脑缺血再灌注(MCAO)模型,分别选用栓塞2小时后再灌注4小时、22小时作为观察时间。人参皂苷Rg1各组于术前5天至取材当日分别注射10、20、40 mg/kg的人参皂苷Rg1,阳性药物对照组给予1 mg/kg的尼莫地平,假手术组及模型组给予等体积等渗生理盐水。MCAO术后24小时,通过神经功能评分观察各实验组大鼠神经功能缺损症状的改善情况,动物处死后采用TTC染色观察大鼠脑梗死体积变化,利用干湿重法观察大鼠脑水肿情况,采用HE染色观察大鼠右侧海马CA1区的病理学变化,采用电镜技术观察CA1区神经元超微结构的改变,利用TUNEL法检测CA1区神经元凋亡率,采用Nissl染色观察CA1区神经元尼氏体的变化,计数存活神经元数量,采用免疫组织化学及免疫印迹方法对CA1区的线粒体途径(Bcl-2、Bax)及死亡受体途径(FAS、FAS-L)的凋亡相关蛋白表达情况进行检测,并利用细胞图像分析系统对其进行定量分析。于MCAO术后6小时,采用免疫组织化学及免疫印迹方法对CA1区的p-JNK蛋白表达及其下游效应分子c-jun的活化情况进行检测,并利用细胞图像分析系统对其进行定量分析。
     结果:
     1.人参皂苷Rg1对脑缺血再灌注的保护作用
     (1)假手术组、模型组、人参皂苷Rg1 10、20、40 mg/kg组和阳性药物对照组神经功能评分分别为0.00±0.00、2.80±0.58、1.96±0.74、1.52±0.82、1.24±0.72、1.44±1.00;与模型组比较,人参皂苷Rg1各组神经功能缺损症状显著改善(P<0.05);Rg110 mg/kg组大鼠神经功能缺损症状虽然减轻,但与阳性药物对照组比较仍有显著性差异(P<0.05),而20、40 mg/kg组与阳性药物对照组比较无统计学差异(P>0.05);Rg1组间比较有显著性差异(P<0.05),其中以Rg1 40 mg/kg组改善神经功能缺损症状的程度最为明显。
     (2)假手术组、模型组、人参皂苷Rg1 10、20、40 mg/kg组和阳性药物对照组脑梗死体积百分比分别为(0.00±0.00)%、(36.20±5.77)%、(27.86±3.72)%、(20.24±3.37)%、(15.72±2.83)%、(18.08±3.78)%;Rg1各组脑梗死体积显著缩小,与模型组比较有显著性差异(P<0.05);Rg1 10 mg/kg组大鼠脑梗死体积虽然减少,但与阳性药物对照组比较仍有显著性差异(P<0.05),而20、40 mg/kg组与阳性药物对照组比较无统计学差异(P<0.05);Rg1 20、40 mg/kg组与10 mg/kg组比较均有显著性差异(P<0.05),其中以Rg1 40 mg/kg组脑梗死体积减少的程度最为明显。
     (3)假手术组、模型组、Rg1 10、20、40 mg/kg组和阳性药物对照组脑组织含水量分别为(77.77±1.50)%、(83.42±2.75)%、(81.78±1.10)%、(80.77±0.76)%、(78.80±0.78)%、(81.13±1.64)%;Rg1 20、40 mg/kg组脑组织含水量显著减少,与模型组比较有显著性差异(P<0.05),其中以40 mg/kg组脑水肿减轻的程度最为明显;Rg1 10mg/kg组大鼠脑组织含水量虽然减少,但与模型组比较无显著性差异(P>0.05)。
     (4) Rg1各组右侧海马CA1区细胞排列较整齐,间质水肿程度减轻,神经元胞体肿胀减轻,与模型组比较各项病理改变均有不同程度的改善。
     2.人参皂苷Rg1抑制脑缺血再灌注大鼠海马CA1区的神经元凋亡
     (1)模型组部分神经元坏死,也可见不同时期的神经元凋亡,有时可见凋亡小体形成;Rg1各组与模型组比较,粗面内质网肿胀及线粒体嵴断裂程度均有不同程度的减轻,可见少量早期凋亡细胞,中晚期凋亡细胞较少见。
     (2)假手术组、模型组、Rg1 10、20、40 mg/kg组和阳性药物对照组海马CA1区神经元凋亡率分别为(1.91±1.46)%、(22.80±5.15)%、(17.08±3.15)%、(14.45±3.22)%、(9.70±1.91)%、(12.42±1.93)%;Rg1各组海马CA1区的凋亡细胞数量显著降低,与模型比较有显著性差异(P<0.05);Rg1 10、40 mg/kg组与阳性药物对照组比较均有显著性差异(P<0.05),其中40 mg/kg组抑制凋亡的程度显著优于阳性药物对照组,而20mg/kg组与阳性药物对照组比较无统计学差异(P>0.05)。
     (3)假手术组、模型组、Rg1 10、20、40 mg/kg组海马CA1区存活神经元计数分别为每高倍视野71.57±9.37、45.77±8.11、50.20±10.21、54.37±8.50、59.77±7.88、56.50±8.91;Rg1 20、40 mg/kg组神经元存活数量得到不同程度地提高,与模型组比较有显著性差异(P<0.05),而Rg1 10 mg/kg组神经元存活数量虽然有所增高,但与模型组比较无显著性差异(P>0.05);Rg1各组与阳性药物对照组比较无统计学差异(P>0.05)。
     (4)假手术组、模型组、人参皂苷Rg1 10、20、40 mg/kg组和阳性药物对照组海马CA1区Bcl-2蛋白表达含量分别为1.54±0.06、1.39±0.76、1.72±0.21、2.76±0.15、4.31±0.89、3.11±0.19,Bax蛋白表达含量分别为0.30±0.07、4.31±0.55、2.21±0.12、1.80±0.20、0.93±0.08、1.57±0.09;免疫组织化学与免疫印迹结果显示Rg1 20、40mg/kg组Bcl-2蛋白表达量显著增强,Rg1各组Bax蛋白含量显著降低,Bcl-2/Bax比值显著提高,与模型组比较有显著性差异(P<0.05)。
     (5)人参皂苷Rg1 10、20、40 mg/kg组和阳性药物对照组海马CA1区FAS蛋白表达含量分别为0.28±0.05、3.01±0.24、1.76±0.12、1.51±0.60、1.31±0.13、1.53±0.15,FAS-L蛋白表达含量分别为0.14±0.02、0.86±0.19、0.72±0.06、0.62±0.16、0.29±0.09、0.52±0.18;Rg1各组FAS、FAS-L平均灰度明显增高(表达量减少),蛋白含量显著降低,与模型组比较有显著性差异(P<0.05),其中40 mg/kg组FAS、FAS-L蛋白含量最低;10 mg/kg组与阳性药物对照组比较有显著性差异(P<0.05),而20、40 mg/kg组与阳性药物对照组比较无统计学差异(P>0.05)。
     3.人参皂苷Rg1抑制脑缺血再灌注大鼠p-JNK、p-c-jun表达:
     (1)假手术组、模型组、人参皂苷Rg1 10、20、40 mg/kg组和阳性药物对照组海马CA1区p-JNK蛋白表达含量分别为1.21±0.39、2.27±0.28、2.21±0.27、1.93±0.30、1.64±0.31、1.85±0.41;人参皂苷Rg1各组p-JNK蛋白含量显著降低,与模型组比较有显著性差异(P<0.05),其中10 mg/kg组p-JNK蛋白含量最高,40 mg/kg组p-JNK蛋白含量最低;10、40 mg/kg组与阳性药物对照组比较有显著性差异(P<0.05),而20 mg/kg组与阳性药物对照组比较无统计学差异(P>0.05)。
     (2)假手术组、模型组、人参皂苷Rg1 10、20、40 mg/kg组和阳性药物对照组海马CA1区p-c-jun蛋白表达含量分别为0.51±0.07、2.02±0.17、1.21±0.11、0.87±0.22、0.69±0.07、0.80±0.18;模型组大鼠p-c-jun含量最高,假手术组p-c-jun含量最低;人参皂苷Rg1 20、40 mg/kg组p-c-jun蛋白含量显著降低,与模型组比较有显著性差异(P<0.05),其中40 mg/kg组p-c-jun蛋白含量最低;人参皂苷Rg1 10 mg/kg组与阳性药物对照组比较有显著性差异(P<0.05),而Rg1 20、40 mg/kg组与阳性药物对照组比较无统计学差异(P>0.05)。
     结论:
     1.人参皂苷Rg1可以显著改善脑缺血再灌注大鼠的神经功能缺损症状。
     2.人参皂苷Rg1能显著降低脑缺血再灌注大鼠海马CA1区神经元凋亡率;进一步研究显示Rg1可能通过抑制脑缺血后海马CA1区的JNK及其效应分子c-jun的活化,进一步调节死亡受体、线粒体依赖的凋亡途径,抑制脑缺血再灌注后的神经元凋亡,降低缺血后迟发性神经元死亡,控制缺血半暗带向梗死区的发展,以发挥其对脑缺血再灌注损伤的保护作用。
Purpose:To explore the roles and underlying mechanism of ginsenoside Rg1 in the protective effect on the injury caused by cerebral ischemic-reperfusion. Materials and methods:Healthy male Sprage-Dawl rats(250-300 g) were randomly divided into the sham-operative group(sham group),focal cerebral ischemia-reperfusion group(model group),Ginsenoside Rg1 treated group,and Nimodiping treated(1mg/kg) group(n=35 in each group).The Rg1 treated group was further divided into three subgroups according to the Rg1 dosage(10,20, 40mg/kg).The middle cerebral artery occlusion model(MCAO 6 h,24 h) was established by suture method.Rg1(10,20,40mg/kg respectively) was injected as follows:5 days before operation,at the day of operation,24 h after operation (q.d),positive control group(1mg/kg)was injected in Nimodiping group(1mg/kg), NS was injected in the same time point in Sham group and Model group.24 h after operation,the neurological function was evaluated by neurological deficit scoring.Then the rats were sacrificed and the volume change of cerebral infarction was examined by TTC staining,the moisture of brain tissue was detected by dry-wet weight assay,morphological changes in hippocampus CA1 zone were observed by HE staining,the neuron apoptosis status in hippocampus CA1 zone was detected by TUNEL assay,the ultramicrostructure of neurons in hippocampus CA1 zone was detected by transmission electric microscopy,the numbers of neuron was detected by nissle staining.The expression of Bcl-2,Bax,FAS and FAS-L were analyzed by immunohistochemistry and wstern blot.After 6h of focal cerebral ischemia,the expression of p-JNK and p-c-jun were detected by immunohistochemistry staining and wstern blot.
     Results:
     1.Compared with model group,the symptoms of neurological deficit were differentially improved in Ginsenoside Rg1 treated group after 24 h of MCAO. 40 mg/kg subgroup was more significant than 10,20 mg/kg subgroup(P<0.05). Volumes of cerebral infarction were significantly decreased in Rg1 treated group compared with model group.40mg/kg subgroup was more evident(P<0.05).Moisture of brain tissue was significantly decreased in 20,40 mg/kg subgroups after 24 h of MCAO.40mg/kg subgroup was more evident(P<0.05),while the difference between 10mg/kg and model groups is not significant.Compared with model group, cells arranged in order,the extent of edema of interstitial and neurons were decreased in hippocampus CA1 zone in Ginsenoside Rg1 treated group after 24 h of MCAO.Rg1 40 mg/kg subgroup was more evident(P<0.05),while the difference between 10 mg/kg and model groups is not significant.
     2.Compared with model group,apoptosis rate of neuron in hippocampus CA1 zone was significantly decreased in 20,40mg/kg subgroups after 24h of MCAO.40mg/kg subgroup was more evident(P<0.05).Apoptotic neurons of different period were observed in hippocampus CA1 zone in model group,a few viable apoptotic cells were observed in hippocampus CA1 zone in Ginsenoside Rg1 treated group after 24 h of MCAO.Compared with model group,the extent of rER edema in hippocampus CA1 zone was decreased,and the extent of crista mitochondria fracture was improved in Ginsenoside Rg1 treated group after 24 h of MCAO.Compared with model group,neuron number was more in hippocampus CA1 zone in 20,40mg/kg subgroups after 24h of MCAO,while the difference between 10mg/kg and model groups is not significant.Immunohistochemistry revealed that Bcl-2 and Bax were expressed in the cytoplasm of the neurons.Compared with model group,Bcl-2 positive cells were significantly increased.However,Bax positive cells were significantly decreased in hippocampus CA1 zone after 24 h of MCAO in Rg1 treated group.Western blot analysis verified our results of immunohistochemistry.Compared with model group,immunostaining analysis revealed the expression of FAS and FAS-L in hippocampus CA1 zone was significantly decreased after 24h of MCAO in Rg1 treated group.Western blot analysis obtained the consistent results.The differences among 20,40mg/kg and model groups were significant,but 10mg/kg subgroup was not significant.
     3.Compared with model group,expression of p-JNK in hippocampus CA1 zone was significantly decreased in Rg1 treated group compared with model group.40mg/kg subgroup was more evident(P<0.05).Western blot analysis revealed the same tendency as immunohistochemistry.Expression of p-c-jun in hippocampus CA1 zone was significantly decreased in Rg1 treated group compared with model group.40 mg/kg subgroup was more evident(P<0.05).Western blot analysis obtained the consistent results.
     Conclusions,
     1.Ginsenoside Rg1 improved obviously the neurological deficit caused by cerebral ischemic-reperfusion.
     2.Ginsenoside Rg1 inhibited significantly the apoptosis of neurons in ischemic zone caused by cerebral ischemic-reperfusion.Further research revealed that Rg1 suppresses the phosphorylation of JNK and c-jun,inhibits the expression of Bax,FAS,FAS-L and promotes the expression of Bcl-2.
引文
[1]Kuan CY,Yang DD,Samanta Roy DR,et al.The Jnk1 and Jnk2 protein kinases are equired for regional specific apoptosis during early brain development.Neuron,1999,22:667-676.
    [2]Wang ZQ,Wu DC,Huang FP,et al.Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia.Brain Res,2004,996(1):55-66.
    [3]Gu Z,Jiang Q,Zhang G.Extracellular signal regulated kinase 1/2 activation in hippocampus after cerebral ischemia may not interfere with postischemic cell death.Brain Res,2001,901(1):79-84.
    [4]Okuno S,Saito A,Hayashi T,et al.The c-jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia.J Neurosci,2004,24(36):7879-7887.
    [5]Piao CS,Che Y,Han PL,et al.Delayed and differential induction of p38 MAPK isoforms in microglia and astrocytes in the brain after transient global ischemia.Brain Res Mol Brain Res,2002,107(2):137-144.
    [6]MORI T,WANG X,JUNG JC,et al.Mitogen activated protein kinase inhibition in traumatic brain injury:in vitro and in vivo effects.J cereb Blood Flow Metab,2002,22(4):444-452.
    [7]Whitehurst A,Cobb MH,White MA.Stimulus coupled spatial restriction of extracellular signal regulated kinase 1/2 activity contributes to the specificity of signalresponse pathways.Mol Cell Biol,2004,24(23):10145-10150.
    [8]朱正华,黄文晋,王百忍,等.磷酸化的细胞外信号调节蛋白激酶1/2在正常小鼠脑内的免疫细胞化学定位.神经解剖学杂志,2005,21(4):409-414.
    [9]Jiang Z,Zhang Y,Chen X,et al.Activation of Erk1/2 and Akt in astrocytes under ischemia. Biochem Biophys Res Commun, 2002, 294(4):726-733.
    [10] Otani N, Nawashiro H, Fukui S, et al.Temporal and spatial profile of phosphory- lated mitogen activated protein kinase pathways after lateral fluid percussion injury in the cortex of the rat brain. J Neurotrauma, 2002,19(12): 1587-1596.
    [11] MORI T,WANG X,AOKI T, et al. Downregulation of matrix metalloproteinase-9 and attenuation of edema via inhibition of ERK mitogen activated protein kinase in traumatic brain injury. J Neurotrauma, 2002,19(11):1411-1419.
    [12] Wang Z, Chen X, Zhou L, et al. Effects of extracellular signal-regulated kinase (ERK) on focal cerebral ischemia. Chin Med J, 2003,116(10):1497-1503.
    [13] Borsello T, Clarke PG, Hirt L, et al.A peptide inhibitor of c-jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 2003, 9(9) :1180-1186.
    [14] Wang X, Wang H, Xu L et al. Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis. J Pharmacol Expther,2003,304(1): 172-178.
    [15] Wang X, Zhu C, Qiu L, et al. Activation of ERK1/2 after neonatal rat cerebral hypoxia-ischaemia. J Neurochem, 2003, 86(2):351-362.
    [16] Ferrer I, Friguls B, Dlafo E, et al. Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuorpathol(Bed), 2003,105(5):425-437.
    [17] Piao C S, Kim J B, Han PL,et al. Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res, 2003, 73(4):537-544.
    [18] Hill MM, Hemmings BA. Inhibition of protein kinase B/Akt. implications for cancer therapy. PharmacolTher, 2002, 93:243-251.
    [19] Pene F, Claessens YE,Muller O, et al. Role of the phosphatidylinositol 3-kinase/Akt and mT0R/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma.Oncogene,2002,21:6587-6597.
    [20]Cantrell DA.Phosphoinositide 3-kinase signalling pathways.J Cell Sci,2001,114(8):1439-1445.
    [21]Martelli AM,Tabellini G,Borgatti P,et al.Nuclear lipids:new functions for old molecules[J]?J Cell Biochem,2003,88(3):455-461.
    [22]Kitagawa H,Warita H,Sasaki C,et al.Immunoreactive Akt,PI3-K and ERK protein kinase expression in ischemic rat brain.Neurosci Lett,1999,274(1):45-48.
    [23]Ouyang YB,Tan Y.Comb M.Survival-and death-promoting events after transient cerebral ischemia:phosphorylation of Akt,release of cytochrome C and Activation of caspase-like proteases.J Cereb Blood Flow Metal,1999,9(10):1126-1135.
    [24]Li F,Omori N.Jin G,et al.Cooperative expression of survival p-ERK and p-Akt signals in rat brain neurons after transient MCAO.Brain Res,2003,962(1-2):21-26.
    [25]Jiang Z,Zhang Y,Chen XQ,et al.Apoptosis and activation of Erk1/2 and Akt in astrocytes postischemia.Neuronehem Res,2003,28(6):831-837.
    [26]Nakajima T,Iwabuchi S,Miyazaki H,et al.Preconditioning prevents ischemia-induced neuronal death through persistent Akt activation in the penumbra region of the rat brain.J Vet Med Sci,2004,66(5):521-527.
    [27]Choi JS,Park HJ,Kim HY,et al.Phosphorylation of PTEN and Akt in astrocytes of the rat hippocampus following transient forebrain ischemia.Cell Tissue Res,2005,319(3):359-366.
    [28]Leonard WJ,O'Shea JJ.Jaks and STATs:biological implications.Annu Rev Immnol,1998,16(1):293-322.
    [29]王关嵩,蔡文琴,钱桂生,等.低氧刺激复合培养的平滑肌细胞表达Janus激酶.第三军医大学学报,2003,25(2):101-103.
    [30]王松柏,翟秀珍,姚咏明,等.AG490预先给药对脓毒血症大鼠血清和肾组织肿瘤坏死因子-α水平的影响.中华麻醉学杂志,2005,25(9):699-700.
    [31]刘俊堂,齐绍鸿,曹怀宇,等.脓毒症大鼠肝损伤与信号传导和转录激活子的关系.实用医学杂志,2006,22(5):516-518.
    [32]Yang X,Chung D,Cepko CL.Molecular cloning of the murine JAK1 protein tyrosine kinase and its expression in the mouse central nervous system.J Neurosci,1993,13(5):3006-3017.
    [33]Berhow MT,Hiroi N,Kobierski LA,et al.Influence of cocaine on the JAK-STAT pathway in the mesolimbic dopamine system.J Neurosci,1996,16(24):8019-8026.
    [34]Planas AM,Soriano MA,Berruezo M,et al.Induction of Stat3,a signal transducer and transcription factor,in reactive microglia following transient focal cerebral ischaemia.Eu J Neurosci,1996,8(12):2612-2618.
    [35]Suzuki S,Tanaka K,Nogawa S,et al.Phosphorylation of signal transducer and activator of transcription-3(Star3) after focal cerebral ischemia in rats.Exp Neurol,2001,170(1):63-71.
    [36]Justicia C,Gabriel C,Planas AM.Activation of the JAK/STAT pathway following transient focal cerebral ischemia:signaling through Jak1 and Star3 in astrocytes.Glia,2000,30(3):253-270.
    [37]Takagi Y,Harada J,Chiarugi A,et al.STAT1 is activated in neurons after ischemia and contributes to ischemic brain injury.J Cereb Blood Flow Metab,2002,22(11):1311-1318.
    [38]West DA,Valentim LM,Lythgoe MF,et al.MR image-guided investigation of regional signal transducers and activators of transcription-1 activation in a rat model of focal cerebral ischemia.Neuroscience,2004,127(2):333-339.
    [39]Schneider A,Martin Villalba A,Weih F,et al.NF-kappaB is activated and promotes cell death in focal cerebral ischemia.Nat Med,1999,5(5):554-559.
    [40]崔睿,赵宏,丛长慧,等.大鼠缺氧再灌注脑损伤时核因子-κB的表达.中华麻醉学杂志,2004,24(2):142-143.
    [41]Duckworth E A,Butler T,Collier L,et al.NF-kappaB protects neurons from ischemic injury after middle cerebral artery occlusion in mice.Brain Res,2006,1088(1):167-175.
    [1]张晓冬,李万亥,枉前,等.人参皂苷Rg1,Re对β-淀粉样蛋白诱导的原代培养海马及皮质神经元损伤的保护作用.第二军医大学学报,2000,21(10):941-943.
    [2]曾育琦.人参皂甙Rb1和Rg1减轻β淀粉样蛋白25-35诱导的胎鼠皮层神经元Tau 蛋白过度磷酸化的研究(硕士研究生论文).中国:福建医科大学,2004.
    [3]彭小松.人参皂甙Rg1、Rb1对拟AD样大鼠海马神经元Tau蛋白异常磷酸化的影响及其可能机制(硕士研究生论文).中国:福建医科大学,2004.
    [4]陈丽敏,陈晓春,叶钦勇,等.人参皂甙Rg1对抗Aβ1-40诱导大鼠皮层神经元凋亡的实验研究.中国中西医结合杂志,2003,23(1):59-63.
    [5]沈杰.人参皂甙Rb1/Rg1对高表达GSK3 β的SH-SY5Y细胞TaU磷酸化和微管乙酰化水平的影响(硕士研究生论文).中国:福建医科大学,2006.
    [6]李永坤.人参皂甙Rg1/Rb1对冈田酸诱导的SD大鼠海马神经元Tau蛋白AD样异常过度磷酸化的保护作用及其机制(硕士研究生论文).中国:福建医科大学,2004.
    [7]邬伟.人参皂甙Rg1联合骨髓间充质干细胞对大鼠痴呆模型的保护作用及机制的研究(硕士研究生论文).中国:吉林医科大学,2007.
    [8]杨翊研.人参皂甙Rg1对抗帕金森病细胞凋亡作用的研究(硕士研究生论文).中国:吉林大学,2005.
    [9]周宜灿.人参皂甙Rg1对PD鼠黑质多巴胺能神经元凋亡的保护作用及其机制(硕士研究生论文).中国:福建医科大学,2003.
    [10]方芳.人参皂甙Rg1对MPP+介导的多巴胺能神经元凋亡的保护作用及其机制(硕士研究生论文).中国:福建医科大学,2002.
    [11]陈滢,陈晓春.Bcl-2家族是人参皂甙Rg1抗黑质神经元凋亡的重要调控蛋白.解剖学报,2002,33(5):496-499.
    [12]Chen Xiao-chun,Zhu Yuan-gui,Wang Xiao-zhong,et al.Protective effect of ginsenoside Rg1 on dopamine-induced apoptosis in PC12 cells.Actaa Pharmacol Sin,2001,22(8):673-678.
    [13]Chen XC,Zhu YG,Wang XZ,et al.Possible mechanism of the protective effects of ginsenoside Rg1 on apoptosis in PC12 cells.Yao Xue Xue Bao,2001,36(6):411-414.
    [14]李源莉.人参皂甙Rg1对脑缺血再灌注致小鼠皮质神经元损伤的保护作用及其机制探讨(硕士学位论文).中国:第四军医大学,2007.
    [15]胡霞敏,严常开,胡先敏.人参皂苷Rg1对脑缺血再灌注损伤大鼠脑线粒体功能的影响.中国新药杂志,2006,15(7):514-517.
    [16]吴兰鸥,詹合琴,后文俊,等.人参皂苷Rg1对脑缺血影响的行为指标分析.中国比较医学杂志,2004,14(5):283-285.
    [17]崔荣太.人参皂苷Rg1诱导神经干细胞分化及促进缺血后脑组织神经干细胞功能的研究(博士研究生论文).中国:军医进修学院,2007.
    [18]李君庆.人参皂甙Rg1抗凋亡、抗衰老作用及其机制研究(博士研究生论文).中国:中国协和医科大学,1997.
    [19]彭涛,刘英辉,陈绍宏,等.人参皂甙Rg1对原代培养胎鼠脑神经细胞存活和可塑性的影响.华西医学,2008,23(1):106-107.
    [20]曲婷婷.人参皂苷主要成份Rb1、Rg1与5-氟脲嘧啶协同抗肿瘤作用的实验研究(硕士学位论文).中国:辽宁中医药大学,2005.
    [21]王国红.人参皂甙Rg1、肉桂酸、丹参酮ⅡA及其组合对人成骨肉瘤MG-63细胞终末分化的诱导研究(硕士学位论文).中国:厦门大学,2003.
    [22]李朝晖.人参皂甙Rg1诱导HL-60细胞凋亡的初步研究.广东药学,2005,15(4):63-65.
    [23]赵朝晖.人参皂甙Rg1对抗三丁基过氧化氢诱导的细胞衰老作用及其可能机制(硕士学位论文).中国:福建医科大学,2003.
    [24]王莹.人参皂甙Rg1及其配伍1,6二磷酸果糖抗疲劳作用实验研究(硕士学位论文).中国:第二军医大学,2006.
    [25]唐晖,申伟华,彭光辉,等.人参皂甙Rg1调节大鼠运动中及运动后糖代谢的机制研究.沈阳体育学院学报,2006,25(4):3-6.
    [26]周亮.人参皂甙Rg1对大鼠运动时糖代谢及相关激素的影响(硕士学位论文).中国:湖南师大,2002.
    [27]李志刚,蓝荣芳,关丽,等.人参皂甙Rg1抗Ox LDL诱导内皮细胞凋亡及分子机制.中国组织化学与细胞化学杂志,2002,11(3):248-253.
    [28]王毅.人参皂甙Rg1及其代谢产物Rh1对树突状细胞功能的影响及其机制研究(博士研究生论文).中国:北京中医药大学,2002.
    [29]刘忞.人参皂甙Rg1抗衰老、促智作用及其机制研究(博士研究生论文).中国:中国协和医科大学,1994.
    [30]申丽红.人参皂甙Rg1对海马神经前体细胞增殖能力的影响及其机制研究(博士研究生论文).中国:中国协和医科大学,2003.
    [31]马岚青,梁兵,柳波,等.人参皂苷Rg1抗肝纤维化的实验研究.中国中西医结合消化杂志,2007,15(3):165-168.
    [32]柯昌兴.人参皂甙Rg1对梗阻肾Bax、PCNA、TGF-β1表达作用的实验研究(硕士学位论文).中国:昆明医学院,2003.
    [33]郝杰,王应雄,何俊琳,等.人参皂甙Rg1对镉诱导的大鼠睾丸损伤的保护作用.重庆医科大学学报,2007,32(3):236-238.
    [34]金岩.人参皂甙Rg1对大鼠心肌梗死后血管新生及抗凋亡作用的研究(硕士学位论文).中国:中国医科大学,2007.
    [35]王宁元,吕传江,陈学海,等.人参皂甙Rg1诱导骨髓干细胞游走分化促进家兔心肌梗死后心肌血管内皮细胞再生的研究.中国中西医结合杂志,2005,25(10):916-919.
    [36]何勇川.人参皂甙Rg1抑制晶体上皮细胞凋亡的实验研究(硕士学位论文).中国:重庆科大学,2006.
    [1]Wei CB,Jia JP,Liang P,et al.Ginsenoside-Rg1 inhibits cell apoptosis induced by beta amyloid.Zhonghua Yi Xue Za Zhi,2008,88(25):1763-1766.
    [2]Wei C,Jia J,Liang P,Guan Y.Ginsenoside Rg1 attenuates betaamyloidinduced apoptosis in mutant PS1 M146L cells.Neurosci Lett,2008,443(3):145-149.
    [3]崔荣太,蒲传强,刘洁晓,等.人参皂甙Rg1对大鼠脑源性神经干细胞分化作用的实验研究.中国神经精神疾病杂志,2008,34(2):109-111.
    [4]王海波,李源莉.人参皂甙Rg1神经保护作用的研究进展.白求恩军医学院学报,2008,6(5):291-293.
    [5]张晓冬,李万亥,枉前,等.人参皂苷Rg1,Re对β-淀粉样蛋白诱导原代培养海马及皮质神经元损伤的保护作用.第二军医大学学报,2000,21(10):941-943.
    [6]方芳.人参皂甙Rg1对MPP~+介导的多巴胺能神经元凋亡的保护作用及其机制(硕士学位论文).中国:福建医科大学,2002.
    [7]刘江,李冉,刘丽娜,等.JNK通路介导帕金森病小鼠黑质神经元丢失及人参皂甙Rg1的保护作用.现代预防医学,2008,35(10):1973-1975.
    [8]周宜灿,陈晓春,朱元贵,等.人参皂苷Rg1对帕金森病小鼠黑质JNK细胞凋亡通路的影响.解剖学报,2003,34(5):477-481.
    [9]胡霞敏,严常开,胡先敏.人参皂苷Rg1对脑缺血再灌注损伤大鼠脑线粒体功能的影响.中国新药杂志,2006,15(7):514-517.
    [10]李源莉.人参皂甙Rg1对脑缺血再灌注致小鼠皮质神经元损伤的保护作用及其机制探讨(硕士学位论文).中国:第四军医大学,2007.
    [11]Longa EZ,Weinstein PR,Carlson S,et al.Reversible middle cerebral artery occlusion without craniectomy in rats.Stroke.1989,20(1):84-91.
    [12]周晓棉.人参皂甙Re对脑缺血再灌注损伤的保护作用及机制探讨(博士学位论文).中国:沈阳药科大学,2006.
    [13]Lin TN,He YY,Wu G,et al.Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats.Stroke,1993,24(1):117-121.
    [14]王平,顾振纶,周文轩,等.心脑通胶囊对实验性脑缺血的保护作用.中成药,2000,22 (9):636-639.
    [15]Castellanos M,Puig N,Carbonell T,et al.Iron intake increases infarct volume after permanent middle cerebral artery occlusion in rats.Brain Res,2002,952(1):1-6
    [16]Masada T,Hua Y,Xi G,et al.Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat.J Cereb Blood Flow Metab,2001,21(1):22-33.
    [17]Zausinger S,Hungerhuber E,Baethmann A,et al.Neurological impairment in rats after transient middle cerebral artery occlusion:a comparative study under various treatment paradigms.Brain Res,2000,863(1-2):94-105.
    [18]Wei EQ,Zhu CY,Xu QQ,et al.An improved quantitative method for evaluating neurological deficits in mice with focal cerebral ischemia.Sheng Li Xue Bao,2003,55(6):742-747.
    [19]宋含平.气虚与中风关系浅探.新中医,2004;36(7):75-77.
    [20]刘树权.开窍通腑法治疗缺血性中风的作用机制研究(博士学位论文).中国:辽宁中医药大学,2006.
    [21]王均宁,刘更生.论人参在方剂中的配伍应用.中国中药杂志,1999,24(6):370-373.
    [22]MacManus JP,Hill IE,Huang ZG,et al.DNA damage consistent with apoptosis in transient focal ischaemic neocortex.Neuroreport,1994,5(4):493-496.
    [23]Memezawa H,Smith ML,Siesj(o|¨) BK.Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats.Stroke,1992,23(4):552-559.
    [24]Kristal BS,Dubinsky JM.Mitochondrial permeability transition in the central nervous system:induction by calcium cycling-dependent and independent pathways.J Neurochem,1997,69(2):524-538.
    [25]Henshall DC,Simon RP.et al.Epilepsy and apoptosis pathways.J Cereb Blood Flow Metab,2005,25(12):1557-1572.
    [26]Federici T,Boulis NM.Gene-based treatment of motor neuron diseases.Muscle Nerve,2006,33(3):302-323
    [27]Schulz JB.Anti-apoptotic gene therapy in Parkinson's disease.J Neural Transm Suppl,2006,(70):467-476.
    [28]Yanagisawa K.Neuronal death in Alzheimer's disease.Intern Med,2000,39(4):328-330.
    [29]Kodaka M,Mori T,Tanaka K,et al.Depressive effects of propofol on apoptotic injury and delayed neuronal death after forebrain ischemia in the rat comparison with nitrous oxide-oxygen-isoflurane.Masui,2000,49(2):130-138.
    [30]Li Y,Chopp M,Jiang N,et al.Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat.J Cereb Blood Flow Metab,1995,15(3):389-397.
    [31]吕莹,张德禄,张宏.细胞凋亡检测方法研究进展.Journal of Northwest Normal University,2007,43(2):82-87.
    [32]彭黎明,江虹.细胞凋亡检测方法的研究进展.中华病理学杂志,2001,30(2):135-136.
    [33]Zhao J,Zhao Y,Zheng W,et al.Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats.Brain Res,2008,1229:224-232.
    [34]Rudakewich M,Ba F,Benishin CG.Neurotrophic and neuroprotective actions of ginsenosides Rb(1) and Rg(1).Planta Med,2001,67(6):533-537.
    [35]Liao B,Newmark H,Zhou R.Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro.Exp Neurol,2002,173(2):224-234.
    [36]Shen LH,Zhang JT.Ginsenoside Rg1 promotes proliferation of hippocampal progenitor cells.Neurol Res,2004,26(4):422-428.
    [37]Xu L,Liu LX,Chen WF.Effect and mechanism on dopamine contents of striatum in rat model of Parkinson's disease ginsenoside Rg1.Zhongguo Zhong Yao Za Zhi,2008,33(15):1856-1859.
    [38]Wang J,Xu HM,Yang HD,et al.Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins.Neurochem Int,2009,54(1):43-48.
    [39]Wang Q,Zheng H,Zhang ZF,et al.Ginsenoside Rg1 modulates COX-2 expression in the substantia nigra of mice with MPTP-induced Parkinson disease through the P38 signaling pathway.Nan Fang Yi Ke Da Xue Xue Bao,2008,28(9):1594-1598.
    [40]Li WK,Ran WB,Su YW,et al.Effects of ginsenoside Rg1 on expression of insulin-like growth factor-1 in brain of rats with brain contusion.Zhong Xi Yi Jie He Xue Bao,2008,6(9):911-914.
    [41]Shen L,Zhang J.NMDA receptor and iNOS are involved in the effects of ginsenoside Rg1 on hippocampal neurogenesis in ischemic gerbils.Neurol Res,2007,29(3):270-273.
    [42]Leung KW,Yung KK,Mak NK,et al.Neuroprotective effects of ginsenoside-Rg1in primary nigral neurons against rotenone toxicity.Neuropharmacology,2007,52(3):827-835.
    [43]李君庆,张香阁.人参皂甙Rg1抗神经细胞凋亡作用机制的研究.中国医学科学院,1997,32(6):406-410.
    [44]陈滢,陈晓春.Bcl-2家族是人参皂甙Rg1抗黑质神经元凋亡的重要调控蛋白.解剖学报,2002,33(5):496-499.
    [45]Chen XC,Zhu YG,Wang XZ,et al.Protective effect of ginsenoside Rg1 on dopamine induced apoptosis in PC12 cells.Acta Pharmacol Sin,2001,22(8):673-678.
    [46]陈晓春,朱理安,黄春.人参皂甙Rg1对多巴胺诱导PC12细胞凋亡的保护作用.中药药理与临床,2000,16(2):13-15.
    [47]Chen XC,Zhu YG,Wang XZ,et al.Possible mechanism of the protective effects of ginsenoside Rg1 on apoptosis in PC12 cells.Yao Xue Xue Bao,2001,36(6):411-414.
    [48]陈丽敏,陈晓春,叶钦勇,等.人参皂甙Rg1对抗Aβ_(1-40)诱导大鼠皮层神经元凋亡的实验研究.中国中西医结合杂志,2003,23(S1):59-63.
    [49]Rosenbaum DM.Gupta G.D' Amore J.et al.Fas(CD95/APO-1) plays a role in the pathophysiology of focal cerebral ischemia.J Neurosci Res,2000,61(6):686-692.
    [50]Sch(a|¨)bitz WR,Sommer C,Zoder W,et al.Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia.Shock,2000,31(9):2212-2217.
    [51]Becher B,Barker PA,Owens T,et al.CD95-CD95L:can the brain learn from the immune system[J]? Trends Neurosci,1998,21(3):114-117.
    [52]陈滢,陈晓春.Bcl-2家族是人参皂甙Rg1抗黑质神经元凋亡的重要调控蛋白.解剖学报,2002,33(5):496-499.
    [53]何勇川,李平华.人参皂甙Rg1对氧化损伤兔晶状体上皮细胞凋亡相关基因Bcl-2和Bax表达影响.重庆医科大学学报,2006,31(5):662-665
    [54]方芳,陈晓春,朱元贵.抗氧化作用可能是人参皂甙Rg1抗细胞凋亡的机制.中国临床药理学与治疗学,2002,7(5):412-416.
    [55]张铭,司少艳,韩瑞刚等.免疫组化SP法与PicTureTM两步法的比较.诊断病理学杂志,2004,11(1):58-59.
    [56]王凤岩,夏潮涌.组织原位肿瘤细胞DNA含量与倍体分析的某些方法学问题.中华病理学杂志,2000,29(5):381-382.
    [57]Okuno S,Saito A,Hayashi T,et al.The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia.J Neurosci,2004,24(36):7879-7887.
    [58]Farrokhnia N,Roos MW,Terent A,et al.Differential early mitogen-activated protein kinase activation in hyperglycemic ischemic brain injury in the rat.Eur J Clin Invest,2005,35(7):457-463.
    [59]Tournier C,Hess P,Yang DD,et al.Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway.Science,2000,288(5467):870-874.
    [60]Okuno S,Saito A,Hayashi T,et al.The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci, 2004,24(36):7879-7887.
    [61]Esneault E,Castagne V, Moser P, et al.D-JNKi, a peptide inhibitor of c-Jun N-terminal kinase, promotes functional recovery after transient focal cerebral ischemia in rats. Neuroscience, 2008, 152(2):308-320.
    [62]Wang Z, Chen X, Zhou L, et al. Effects of extracellular signal-regulated kinase(ERK) on focal cerebral ischemia. Chin Med J, 2003,116(10): 1497-1503.
    [63]Ginet V, Puyal J, Magnin G, et al. Limited role of the c-Jun N-terminal kinase pathway in a neonatal rat model of cerebral hypoxia-ischemia. J Neurochem, 2009,108(3): 552-562.
    [64]Borsello T, Clarke PG, Hirt L, et al.A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med, 2003, 9(9): 1180-1186
    
    [65]Esneault E, Castagne V, Moser P, et al. D-JNKi, a peptide inhibitor of c-Jun N-terminal kinase, promotes functional recovery after transient focal cerebral ischemia in rats. Neuroscience, 2008,152(2):308-320.
    [66]Wang ZQ,Wu DC, Huang FP, et al. Inhibition of MEK/ERKl/2 pathway reduces proinflamematory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res, 2004, 996(1):55-66.
    [67]Repici M, Centeno C, Tomasi S, et al. Time-course of c-Jun N-terminal kinase activation after cerebral ischemia and effect of D-JNKI on c-Jun and caspase-3 activation. Neuroscience, 2007, 150(1):40-49.
    [68]Ferrer I, Friguls B, Dlafo E, et al. Early modifications in the expression of mitogen-activated protein kinase(MAPK/ERK), sterss-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuorpathol(Bed), 2003,105 (5):425-437.
    [69]Saporito MS, Brown EM, Miller MS, et al. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the -methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons In vivo. J Pharmacol Exp Ther, 1999. 288(2):421-427.
    [70]Xia XG, Harding T, Weller M, et al. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson' s disease. Proc Natl Acad Sci USA, 2001.98(18):10433-10438.
    [71]GaoY, Signore AP, Yin W,et al. Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab, 2005, 25(6): 694-712.
    [72]0kuno S, Saito A, Hayashi T, et al. The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci, 2004,24(36):7879-7887.
    [73]Guan QH, Pei DS, Liu XM, et al. Neuroprotection against ischemic brain injury by SP600125 via suppressing the extrinsic and intrinsic pathways of apoptosis. Brain Res, 2006,1092(1):36-46.
    [74]Guan QH, Pei DS, Zong YY, et al. Neuroprotection against ischemic brain injury by a small peptide inhibitor of c-Jun N-terminal kinase (JNK) via nuclear and non-nuclear pathways. Neuroscience, 2006,139(2):609-627.
    [75]Guan QH, Pei DS, Zhang QG, et al. The neuroprotective action of SP600125, a new inhibitor of JNK, on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 via nuclear and non-nuclear pathways . Brain Res, 2005, 1035(1):51-59.
    [76]Gao Y, Signore AP, Yin W, et al. Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis signaling pathway. J Cereb Blood Flow Metab, 2005, 25(6): 694-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700