稀浆封层沥青碎石复合路面路用性能试验及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀浆封层沥青碎石复合路面是指在铺筑沥青碎石后,再在其上摊铺稀浆封层后形成的一种复合式沥青路面,该路面能使稀浆封层和沥青碎石的自身优点同时得到发挥,且又能克服各自不足。到目前为止,有关该复合路面的系统研究还未见报道,基于此,本论文通过室内试验和数值模拟,研究了该复合路面的各项路用性能,然后结合葫六线K29+500-K43+000试验段的施工过程和路用效果调研,对该复合路面的设计参数、施工工艺以及工程造价进行了分析,最后参考相关经验和研究成果,给出了稀浆封层沥青碎石复合路面的设计和施工技术要点。
     本论文主要研究内容及结果如下所述:
     (1)利用渗水试验对稀浆封层沥青碎石复合路面的防水性能进行了研究,结果表明该路面的防渗水性能取决于其表层的稀浆封层,稀浆封层采用较细的级配和较大的用水量时,路面防水性能较好,稀浆封层初凝后对其适当进行碾压,能改善稀浆封层沥青碎石复合路面的防水性能。
     (2)利用车辙试验对稀浆封层沥青碎石复合路面的高温稳定性能进行了研究,研究发现复合路面的高温稳定性能取决于其下部的沥青碎石,沥青碎石采用“S”形级配、粗骨料含量在65%-75%之间时,路面高温稳定性能较好,稀浆封层沥青碎石复合路面的高温稳定性能优于单一的沥青碎石路面。
     (3)利用低温弯曲试验对稀浆封层沥青碎石复合路面的低温抗裂性能进行了试验研究,结果表明复合路面的低温抗裂性能比沥青混凝土差,与沥青碎石路面基本相当,采用SBR改性剂能提高稀浆封层沥青碎石复合路面的低温抗裂性能。
     (4)论文对刹车时在稀浆封层沥青碎石复合路面中产生的剪应力进行了数值分析,分析结果说明,刹车引起的剪应力随着胎压、路面摩擦系数和车轮负荷的增大而递增,随着气温的升高而减低。论文还利用自行设计的剪切仪对稀浆封层沥青碎石复合路面的层间黏结性能进行了研究,试验结果说明,复合路面的层间黏结强度随着温度的升高而下降,喷洒粘层油、基层沥青碎石采用较大公称粒径可以提高稀浆封层与基层之间的黏结强度。
     (5)论文利用有限元方法对稀浆封层沥青碎石复合路面的反射裂缝问题进行了细观数值分析,分析结果表明,稀浆封层沥青碎石复合路面下部的沥青碎石采用较低的沥青含量和间断级配、让复合路面与基层在裂缝附近可以脱开、增大摊铺厚度、加强基层处理质量可以提高复合路面的抗反射裂缝性能。论文还应用脆性涂层法试验分析了稀浆封层沥青碎石复合路面出现反射裂缝时的应力大小和分布,结果表明,脆性涂层裂纹以车轮作用面为发射点向四周扩散,并围绕大粒径碎石扩展,碎石与周围沥青胶砂的界面是拉应力集中的部位。
     (6)论文最后结合葫六线K29+500-K43+000稀浆封层沥青碎石复合路面的试验段施工实践,对该复合路面的设计参数、施工工艺、运营效果以及工程造价进行了研究,结果表明试验段所采用的设计参数和施工工艺是合理可行的,复合路面路用效果较好,工程造价比具有类似效果的细粒式沥青混凝土明显要低,而与粗粒式沥青混凝土基本相当。论文最后总结出了稀浆封层沥青碎石复合路面的设计、施工技术要点,直接用于指导工程实践。
Asphalt macadam pavement sealed by slurry seal consists of a asphalt macadam covered by a slurry seal, the compound pavement can develop strong suit of these two kinds of pavement, while avoiding the shortcoming of them in the mean time. At present, there are not any research reports about the performance, design method, construction technology of the compound pavement, so in the dissertation, the pavement performance of compound pavement are investigated by experiment and numerical simulation. Then, based on the construction process and investigation in-situ of Hu-Liu experiment pavement K29+500-K43+000, design parameter, construction technology and building cost of compound pavement are investigated, a design and construction guide is also given, here some research results and project experiences concerned are considered.
     The content and investigation results of dissertation are given as follows.
     (1) Permeability test is performed to study the permeability of slurry seal asphalt macadam compound pavement, test results show that the permeability of compound pavement rest on the slurry seal above it, slurry seal with a fine gradation or more water can acquire a better permeability resistance, and give a proper impaction after initial setting of slurry seal may acquire a better dense surface.
     (2) Rutting experiment results of Slurry seal asphalt macadam compound pavement show that the rutting resistance ability of compound pavement lies on the lower asphalt macadam. Asphalt macadam with an S type gradation can acquire a good rutting resistance ability, and the coarse aggregate content of asphalt macadam should be about 65-85 percent. The rutting resistance ability of compound pavement is better than it of single asphalt macadam pavement.
     (3) Low-temperature bend experiment is performed to investigate the low-temperature cracking resistance of compound pavement. Form the experiment results, it can be gotten that the low-temperature cracking resistance of slurry seal above the compound pavement play an important role in improving the low-temperature cracking resistance of whole compound pavement, and the low-temperature cracking resistance of compound pavement is poorer than it of asphalt concrete pavement, while is as good as it of asphalt macadam pavement. SBR modifier can improve the low-temperature cracking resistance of compound pavement.
     (4) Numerical method has been used to compute shear stress of compound pavement in order to analyze such distress as shoving, sliding and loss of slurry seal. Analysis results indicates that with increasing of tire load, coefficient of friction and tire pressure, shear stress is increment, but shear stress is decreasing while applied a higher temperature, and there is a great probability of shearing yield in hot season. To evaluation the interlayer bonding strength between slurry seal and asphalt macadam, an experimental setup is designed on the basis of improved shear tester, with the aim to model well the actual condition of loaded pavements, experimental results show that the interlayer bonding strength between the slurry seal and asphalt-macadam bottom layer decreases with increasing temperature. Taking some different measures to improve interlayer conditions of pavement can affect obviously the bonding strength, such as using asphalt-macadam mixture with big nominal grain size or making the pavement surface coarse by chisel.
     (5) Mesoscal FEM method is used to analyze the factors in effecting anti-reflective cracking of slurry seal asphalt macadam compound pavement, the relationship between pulling stress of compound pavement and the factor in effecting it is also gotten. The numerical results indicate that the performance of anti-reflective crack of compound pavement with more asphalt content is better than that with less asphalt, the performance would also be better if compound pavement is separable from old pavement near the crack of it or with a deeper depth, numerical results also indicate that the performance of anti-reflective crack of compound pavement with gap-graded asphalt macadam is better than of it with continuous-graded asphalt macadam. The method of brittle coat is also used to analyze the stress distribution of reflective crack of compound pavement, laboratory results show that the crack of brittle coat propagated around the macadam, and stress concentration occurs at the interface between the macadam and asphalt mixture. Interface between macadam and asphalt mixture in the region of stress concentration is most dangerous in pavement.
     (6) Based on the construction process and site investigation of Hu-Liu experiment road K29+500-K43+000, design parameter, construction technology and building cost of the compound pavement are investigated. The research results indicate that the compound pavement is a useful pavement and its pavement performance is good, design parameter and construction technology applied in the experiment pavement is feasible, building cost of compound pavement is lower than it of granule asphalt concrete, while almost correspond with coarse asphalt concrete. A design and construction guide of compound pavement is given based on the investigation results, here some expert's experiences and research results concerned are also considered.
引文
[1]Campbell, R. Slurry Seal in New Construction[R]. Shell Bitumen Review No.56, Shell International Petroleum Company, September 1977;
    [2]张俊,朱浮声,李庆昌.基于脆性涂层法的沥青路面反射裂缝试验研究[J].公路交通科技,2007,24(4):50-74;
    [31虎增福.乳化沥青及稀浆封层技术[M].北京:人民交通出版社,2001;
    [4]傅香如.稀浆封层和微表处施工技术研究[D].西安:长安大学,2006;
    [5]交通部公路科学研究院.微表处和稀浆封层技术指南[M].北京:人民交通出版社,2006;
    [6]江慧娟.沥青稳定碎石级配设计方法及性能研究[D].西安:长安大学,2006;
    [7]赵新坡.密级配沥青稳定碎石基层材料与性能研究[D].西安:长安大学,2006;
    [8]交通部公路科学研究院.公路沥青路面施工技术规范[S].北京:人民交通出版社,2005;
    [9]Mansour Solaimanian, Thomas W. Kennedy. Evaluation of the Cape Seal Process as a Pavement Rehabilitation Alternative[R]. Austin:Center for Transportation Research, the University of Texas, October 1998;
    [10]Shuler, S. Chip Seals for High-traffic Volume Asphalt Concrete Pavement[R]. National Cooperative Highway Research Program, June 1996;
    [11]Mills, W. H. Evaluation of Surface Treatment and Slurry seal[J].Proceedings of the Association of Asphalt Paving Technology,1983;
    [12]D. Y. Lee, Ordemir Orhan. Slurry Seal Texture as Affected by Aggregate Gradation[J].Bulletin of Engineering Geology and the Environment,1984,30(1):89-92;
    [1]李九苏,罗耀芦.沥青路面水损害机理及防治对策[J].公路交通技术,2006,(1):41-44;
    [2]赵江,张林洪.沥青路面水损害机理研究及其防治[J].辽宁交通科技,2005,(3):1-3;
    [3]郭再龙,吴昊.如何预防高速公路沥青路面出现水损害[J].北方交通,2006,(8):36-38;
    [4]陈景,孙澎涛,李福普,沈金安.沥青混合料渗水系数的研究[J].公路交通科技,2006,23(1):5-8:
    [5]G.W.Maupin,Jr. Investigation of Test Methods.Pavements and Laboratory Design Related to Asphalt Permeability[R],Virginia Transportation Research Council,VTRC00 R24,2000;
    [6]交通部公路科学研究院.公路沥青路面施工技术规范[S].北京:人民交通出版社,2005;
    [7]薛桂娥,吴茂林.稀浆封层路面成型机理与压实工艺[J].筑路机械与施工机械化,2007,1:40-42:
    [8]鲁忠藩,李荫国.辽宁省稀浆封层技术应用后评估[J].辽宁工程技术大学学报,2005,24(增刊):114-116:
    [9]Zube, E. Compaction Studies of Asphalt Concrete Pavements as Related to the Water Permeability Test[R]. Highway Research Board, Bulletin 358, January 1962;
    [10]Button, J. Permeability of Asphalt Surface Seals and their Effect on Aging of Underlying Asphalt Concrete[R]. Washington, D.C:Transportation Research Record 1535,1996;
    [11]Izzo, R. P and J. W. Button. Permeability of Coarse Matrix-high Binder Mixtures and its Effects on Performance[R].Texas:Texas Transportation Institute, November 1994;
    [1]王艳丽.改善沥青混合料高温稳定性的措施[J].黑龙江交通科技,2006,(2总144):39-41;
    [2]问秀荣.沥青混合料的高温强度和稳定性浅析[J].山西交通科技,2006,(5总182):42-43;
    [3]朱洪洲,黄晓明.沥青混合料高温稳定性影响因素分析[J].公路交通科技,2004,21(4):1-8;
    [4]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2001;
    [5]沈金安.沥青及沥青混合料的路用性能[M].北京:人民交通出版社,2001;
    [6]叶遇春.沥青混合料高温稳定性评价指标的试验研究[J].中外公路,2004,24(3):87-90;
    [7]邬瑞光,孔繁盛,虞文景.汾柳高速公路密级配沥青混凝土矿料级配设计[J].中外公路,2006,26(3):247-250;
    [8]许志鸿,刘红,王宇辉,马卫民.细集料对沥青混合料性能的影响[J].中国公路学报,2001, 14(增刊):27-30;
    [9]卢永贵,赵可,张登良.SMA骨架标准研究[J].长安大学学报(自然科学版),2002,22(1):4-9;
    [10]严军,黄彭,叶奋.排水沥青混合料高温稳定性能的研究[J].石油沥青,2002,19(3):35-37;
    [11]Wael Bekheet, A.O. Abd ET Halim, and Said M. Easa. Investigation of Shear Stiffness and Rutting in Asphalt Concrete Mixes[J]. Canada Civil Engineering,2004,Vol.31:253-262;
    [12]Robert Otto Rasmussen, Robert L.Lytton and George K. Chang. Method to Predict Temperature Susceptibility of an Asphalt Binder[J]. Journal of Materialsin Civil Engineering,2002, Vol.14, No.3:246-252;
    [13]Zahw, M. A. Development of Testing Framework for Evaluation of Rutting Resistance of Asphalt Mixes[D]. Ottawa, Ont.:Carleton University,1995;
    [14]US-SHRP. Permanent Deformation Response of Asphalt Aggregate Mixes[R]. Washington, D.C: United States Strategic Highway Research Program, National Research Council,1994;
    [1]建设部.沥青路面面层分哪几种类型[EB].北京:建设部,2006,网络检索;
    [2]吴涛,崔伟,顾良军,程莉.沥青混合料低温性能评价指标研究[J].公路交通技术,2006,(2):32-35:
    [3]张俊,朱浮声,王晓初.沥青混合料低温抗裂性能影响因素的试验研究[J].公路,2007,(1):135-137:
    [4]交通部公路科学研究院.改性乳化沥青稀浆封层养护技术[R].北京:交通部公路科学研究院,2006:
    [5]李江,封晨辉.乳化沥青混合料成型强度评价方法研究[J].公路,2005,(1):169-173:
    [6]武明章.复合式改性乳化沥青稀浆封层技术的实验研究[J].东北公路,2003,26(2):64-65;
    [7]杨柳,孟庆武.SBR胶乳改性乳化沥青稀浆封层技术研究[J].辽宁省交通高等专科学校学报,2005,7(4):12-13:
    [8]曹丽萍,谭忆秋,董泽蛟.改性剂对SBS改性沥青低温性能的影响[J].同济大学学报,2006,34(5):607-612:
    [9]湖南大学土木系.公路柔性路面疲劳问题[M].北京:人民交通出版社,1980;
    [10]Kwang W. kim, Yong Churl Park. Tensile Reinforcement of Asphalt Concrete Using Polymer Coating[J]. Construction and Building Materials, Vol.10,No.2:141-146;
    [11]Sushanta Dhar Roy. An Improved Asphalt Binder Specification Development for Low-Temperature Pavement Cracking[D]. Kingston, Ontario, Canada:Queen's University,2003;
    [12]Anderson, D. A., Lapalu, L. C., Marasteanu. Low Temperature Thermal Cracking of Asphalt Binders as Ranked by Strength and Fracture Properties[J]. Journal of Transportation Research Board, Vol.1766:1-6;
    [13]Bahia, H. U., Anderson, D. A., The Bending Beam Rheometer-A Simple Device for Measure Low-Temperature Rheology of Asphalt Binders[J].Association of Asphalt Paving Technologists, Vol.61:117-152;
    [14]Fortier, R.,Vinson. Low-Temperature Cracking and Aging Performance of Modified Asphalt Concrete Specimens[J]. Transportation Research Record, Vol.1630:77-86;
    [15]Hesp, S.A.M, Cai, H. low Temperature performasnce testing of polymer-modified asphalt concrete[J].Barcelona, spain:2nd Eurasphalt and Eurobitume Congress:320-326;
    [1]胡小弟,孙立军.非均布水平及竖向力下沥青路面力学响应分析[J].华中科技大学学报(城市科学版),2004,21(1):20-24;
    [2]胡小弟,孙立军.实测重型货车轮载作用下沥青路面力学响应[J].同济大学学报(自然科学版),2006,34(1):64-68;
    [3]胡小弟,孙立军.重型货车轮胎接地压力分布实测[J].同济大学学报(自然科学版),2005,33(31):1443-1448;
    [4]胡小弟,孙立军.非均布轮载下沥青路面计算参数变化应力分析[J].同济大学学报(自然科学版),2002,30(12):1472-1477;
    [5]胡小弟,孙立军.不同车型非均布轮载作用力对沥青路面结构应力影响的三维有限元分析[J].公路交通科技,2003,20(1):1-5;
    [6]胡小弟,孙立军.轻型货车轮胎接地压力分布实测[J].公路交通科技,2005,22(8):1-11;
    [7]程钢,赵国群,管延锦.子午线轮胎静态接触有限元分析及试验研究[J].汽车工程,2004,26(5):588-592;
    [8]程钢,赵国群,管延锦.子午线轮胎静态接触三维非线性有限元分析[J].汽车技术,2004,(3):19-22;
    [9]胡小弟,孙立军.重型货车轮胎接地压力分布实测[J],同济大学学报(自然科学版),2005,33(11):1443-1448;
    [10]谭忆秋.基于沥青路面应力场分布沥青混合料抗剪特性的研究[R].上海:同济大学(博士后),2002;
    [11]M. de beer, C. Fisher and Fritz J. Jooste, Determination of Pneumatic Tire/Pavement Interface Contact Stress Under Moving Loads and Some Effects on Pavements With Thin Asphalt Surfacing Layers[J].8th International Conference on Asphalt Pavement,1996;
    [12]John T. Tielking and Freddy L. Roberts. Tire Contact Pressure and its Effect on Pavement Strain[J].ASCE,113(1):56-71;
    [13]Wael Bekheet. Investigation of In-site Shear Properties of Asphalt Concrete[D].Ottawa, Ontario, Canada:Carleton University,2002;
    [14]Abd El Halim AO, Zahw M, Influnce of Type of Asphalt Beinder on the Tensile and Shear Strength of Asphalt Mixes[J]. Charlottetown:Proceedings, Canadian Technical Asphalt Association, Vol. 40:291-304;
    [15]Abd El Halim AO, Haas R. Evaluation of Design and Construction Effects on Asphalt Pavement Performance Through a Portable In-Situ Ahear Test Device[J].Seattle, Wasshingion:proceedings,8th International Conference on Asphalt Pavements:1311-1327;
    [1]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法[M].北京:人民交通出版社,2003;
    [2]K.Majidzadeh. Improved Methods to Eliminate Reflection Cracking, FHWA/RD-86/075, Federal Highway Administration, Washington. D.C,1985;
    [3]于宝明.反射裂缝研究与旧水泥混凝土道面上沥青混凝土加铺层的设计[D].上海:同济大学,1991;
    [4]周德云,姚祖康.旧水泥混凝土路面上加谱层结构的三维有限元分析[J].中国公路学报,1990,(3);
    [5]Chang H.S, Lytton R.L. Prediction of the Thermal Reflection Cracking in West Texas[R]. Texas Transportation Institute, Research Report 18-3,Study 2-8-73-18, march 1976;
    [6]周富杰,孙立军.复合路面荷载型反射裂缝的力学分析和试验路验证[J].土木工程学报,2002,35(1)50-56;
    [7]王金昌,朱向荣.软土地基上含反射裂缝沥青道路的动力响应分析[J].中国公路学报,2004,17(1):
    [8]廖卫东,陈拴发.疲劳荷载下沥青加铺层抗反射裂缝试验研究[J].武汉理工大学学报,2005,27(12);
    [9]周富杰.反射裂缝的足尺疲劳试验研究及其力学分析[J].土木工程学报,2001,34(3);
    [10]符冠华,倪富健.旧水泥混凝上路面上沥青加铺层反射裂缝疲劳试验研究[J].公路交通科技,2000,17(增刊):17-21;
    [11]谢军,李宇峙.荷载型反射裂缝的APA疲劳模拟试验研究[J].公路交通科技,2003,2(6):5-12:
    [12]顾强康、冷培义.水泥混凝土道面上沥青加铺层反射裂缝试验研究[J].中国公路学报,1999,12(1):21-27:
    [13]武贤慧,张登良.沥青路面反射裂缝足尺试验[J].长安大学学报(自然科学版),2003,23(6):4-6:
    [14]李月光,胡小弟.沥青加罩路面荷载型反射裂缝的有限元分析[J].武汉理工大学学报(交通科学与工程版),2005,29(2):211-214;
    [15]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报(自然科学版),1996,36(1):84-89:
    [16]陆金燕.轮胎接地面三向力的动态测量[J].橡胶工业,1992,(10):29-34;
    [17]中交公路规划设计院.公路沥青路面设计规范JTGD 50-2004[S].北京:人民交通出版社,2004:
    [18]朱照宏,许志鸿.柔性路面设计理论与方法[M].上海:同济大学出版社,1987;
    [19]张如一,陆耀桢.实验应力分析[M].北京:机械工业出版社,1981:
    [20]Kwang W. Kim, Young S. Doh, Sungbin Lim. Mode I reflection cracking resistance of strengthened asphalt concrete[J]. Construction and building materials,1999, Vol.13:243-251;
    [21]Molenaar AAA. Evaluation of Pavement Structure with Emphasis on Reflective Cracking[J]. Proceeding of 2nd International RILEM Conference on Reflective Cracking in Pavements,1993,:21-48;
    [22]Halim AOAE, Razaqpur A, Minimization of Reflection Cracking Through the Use of Georid and Better Compaction[J]. Proceedings of 2nd international RILEM conference on reflective cracking in pavement,1993:299-306;
    [23]Joseph PE. Low Temperature Reflection Cracking Through Asphalt Overlays[D]. Ontario:The University of Waterloo,1987;
    [24]Sousa JB, Shatnami S, Cox J. An Approach for Investigation Reflective Fatigue Cracking in Asphalt-Aggregate Overlays[J].Proceedings of 3rd International RILEM Conference on Reflective Cracking in Pavements,1996:103-112;
    [1]刘中卿,谢贻飞,李成.改性稀浆封层在新建沥青碎石路面上的应用[J].石油沥青,2003,17(增刊):56-60;
    [2]李荫国,才华.辽宁省稀浆封层技术应用情况评估[J].辽宁工程技术大学学报,2005,24(增刊):114-116;
    [3]迟恩先.浅析稀浆封层施工技术[J].辽宁交通科技,2006,(1):23-25;
    [4]李宇峙,邵腊庚.路基路面工程检测技术[M].北京:人民交通出版社,2003;
    [5]苏德昆,王洪玉.浅谈影响稀浆封层施工质量的几个问题及解决办法[J].辽宁交通科技,2005,(10):21-22;
    [6]李荫国,李桂芝,周玉芝,陈素丽.对微表处原材料选用及技术要求的建议[J].石油沥青,2004,18(6):37-42;
    [7]武泽峰,王磊.加粗型稀浆封层技术在低等级公路路面中的应用[J].吉林交通科技,2003,(2):16-19;
    [8]王晓伟.稀浆封层施工技术手册[M].沈阳:沈阳三鑫公路工程公司,2003;
    [9]中交公路规划设计院.公路沥青路面设计规范JTG D 50-2004[S].北京:人民交通出版社,2004:91;
    [10]李健.沥青路面离析成因分析及控制[J].北方交通,2007,(4):30-32;
    [11]苏德昆,王洪玉,于磊.浅谈影响稀浆封层施工质量的几个问题及解决办法[J].辽宁交通科技,2005,(10):21-22;
    [12]邢艳新.慢裂快凝型乳化沥青稀浆封层机几个技术问题的探讨[J].辽宁交通科技,2000,23(3):16-17;
    [13]李荫国,卢长虹,张兰竹.铁四高速公路微表处混合料设计[J].石油沥青,20(2):11-18;
    [14]霍海涛.浅谈改性沥青稀浆封层施工技术的应用[J].科技情报开发与经济,2005,15(22):295-296;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700