基于颗粒间相互作用的高性能级配碎石基层结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于颗粒物质间的相互作用,采用室内试验、有限元模型分析和离散元模型分析等手段,在宏观和细观尺度上对高性能级配碎石基层的结构与性能进行系统研究。
     基于颗粒材料自锁的形成条件,提出采用逐级填充法和最大密度曲线理论进行级配碎石设计;对比分析了7种常见级配设计方法对级配碎石密度及空隙率的影响;提出了i法和逐级填充法能够使级配碎石具有较高的密度和合理的空隙率的级配。
     对不同空隙率的级配碎石材料进行渗透性能试验,提出基于渗透性能的最小空隙率要求;通过动态循环三轴试验,并根据轴向塑性应变提出了级配碎石材料的最大空隙率要求;对空隙率范围内的级配碎石材料的CBR进行了试验分析,提出了基于永久变形和渗透性能的高性能级配碎石材料的推荐级配;采用安定性理论对变荷载条件下级配碎石材料进行了安定性评价。
     采用室内试验获取的各种级配碎石的性能参数,建立级配碎石混合料的弹塑性连续介质有限元模型,从宏观尺度模拟分析了级配混合料的整体应力、变形的传递及分布,并对比了顶面荷载对模型内部应力及变形的影响。采用均匀化理论方法,建立级配碎石混合料的力学性能、变形特性等宏观动力响应与微观的颗粒间接触力、颗粒的位移等指标之间的联系,提出了级配碎石材料的多尺度关联方法。
     建立三维弹塑性有限元模型,在不同的荷载水平、结构层厚度、结构层模量等条件下,分别对设置高性能级配碎石过渡层和基层的沥青路面结构要应力指标进行了计算分析,并建立了影响因素与应力指标的回归方程;基于应力指标最小化,提出了设置高性能级配碎石过渡层和基层的沥青路面结构组合形式。采用带弯拉反射裂缝的基层和温缩裂缝的面层两种开裂方式建立仿真模型,对路面开裂前后级配碎石过渡层对应力指标的影响进行了对比计算,分析级配碎石层对路面裂缝扩展的影响。
     基于试验研究及模型的模拟分析,提出了具有较高的强度、抗变形能力以及良好的排水性能的高性能级配碎石基层的设计目标、设计指标、设计标准及设计方法,并从级配碎石的均匀性实现、施工厚度与结构层厚度关系、压实方法及压实度控制、施工质量检验等方面提出了对高性能级配碎石的施工工艺要求。
Based on the interaction between granular materials, the indoor test, finite element model and discreteelement model are used to study the structure and properties of high performance graded crushed stonebase in macro-scale and macro-scale.
     To satisfy the self-lock condition between granular materials, gradation design method is proposed bygrading fill test and the theory of maximum density curve. The influence from7common grading designmethods on the density and void fraction are analyzed, and from the comparative analysis result, I methodand grading fill method could make the graded gravel has high density and rational void fraction.
     Permeability of graded gravel with various void content are tested, and the minimum void ratio isproposed. By the dynamic cyclic tri-axial test, the maximum void ratio is determined based on the axialplastic strain demand. The CBR of graded gravel within the rational void ratio scope are tested to confirmthe excellent mechanical performance, and the gradations of high performance graded gravel arerecommended. The stability of graded gravel under variable load conditions is evaluated.
     Using the performance parameters form indoor tests, the elastic-plastic continuum finite elementmodel is established, and the transmission and distribution of the stress and deformation in macro-scale areanalyzed. Using the homogenization theory method, the mechanical properties and deformationcharacteristics in macro-scale are related with the contact force between particles and displacement ofparticles in micro-scale, and the multi-scale correlation method of graded crushed stone material is putforward.
     Three-dimensional elastic-plastic finite element model is set up, in different load level, structure,layer thickness, structure layer modulus, the stress indexes of asphalt pavement with graded gravel astransition layer or base layer are analyzed, and the regression equations of stress indexes are established.Based on the minimum stress index, the structure combinations of asphalt pavement with graded gravel astransition layer or base layer are proposed. Simulation models with top-down crack in surface layer andbottom-up crack in base layer are established respectively, the stress indexes are calculated and comparedwith the initial value, to analyze the influence on the crack propagation from the graded gravel transitionlayer.
     From the experimental study and the simulation model analysis, the design goals, design index,design criteria, and design method of high performance graded gravel with high strength, high deformationresistance ability and good permeability are proposed. And the construction technology requirements inpreparation, transportation, paving and compaction are proposed.
引文
[1]沈金安.高速公路沥青路面早期损坏分析与防治对策[M].北京:人民交通出版社,2004.12.
    [2]沙爱民.公路半刚性基层损坏机理分析与结构适应性研究[R].西安:长安大学.2011.01.
    [3]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.01.
    [4] Coulomb CA. Applieation des regles des maximis et minimis a quelques problems destatique, Relatifs al’architecture. Mem. De l’Aead. des,Sc. Paris:1773.
    [5] Coulomb CA. Essai surune applieation des regles de maximis et minimis a quelques. Problemes destatique,relatifs al’arehitecture. Memoires de Mathematique&de. Physique.1776(7):343-382
    [6] NeddermanRM.Instatieandkinetieofgranularmatter.CambridgeUniversity Press.1992.
    [7]孙其诚,厚美瑛.颗粒物质物理与力学研究[M].北京:科学出版社.2011.06.
    [8]楚锡华.颗粒材料的离散颗粒模型与离散—连续耦合模型及数值方法[D].大连:大连理工大学.2006
    [9] Muhlhaus HB,Vardoulakis I.The thickness of shear bands in granular materials. Geotechnique.1987(37):271-283.
    [10]刘泽佳.多孔介质中化学一热一水力一力学耦合分析与混合元方法[D].大连:大连理工大学.2005.
    [11]武文华.非饱和土中热—水力—力学一传质耦合过程模拟及土壤环境工程中的应用[D].大连:大连理工大学.2002.
    [12] Hill R. Acceleration waves in solids.J.Meeh.Phys.Solids.1963(10):1-16.
    [13] Rice JR.The localization of plastic deformation.Proe.14th IUTAM Congr.1976, Delft,207-220.
    [14] Andrianov I V,Awrejeewiea J, Barantsev R G. Asymptotic approaches in mechanis:New parametersand proeedures[J].Applied Mechanics Reviews,2003,56(1):87-110.
    [15] Zhang H W,Zhang S,Bi J Y,Schrefler B A. Thermo-mechanical analysis of periodic mu1tiphasematerials by a multi-seale asymptotic homogenization approach[J]. International Journal forNumerieal Methods in Engineering,2007,69(l):87-113.
    [16] Wagner G L,Liu W K.Coupling of atomistic and continuum simulations using a bridging scaledecomposition[J].Journal of Computational Physies,2003(190):249-274.
    [17] Park H,Liu W K.An introduction and tutorial on multi-scale analysis in solids[J].Computer Methodsin Applied Mechanics and Engineering,2004(193):1733-1772.
    [18] Hill.R.The essential strueture of constitutive laws for metal composites andpolyerysta1s[J].Journal ofthe Mechanies and Physics of Solids,1967(15):79-95.
    [19] Smit R.J.M,W.A.M.,Meijer H.E.H.,Prediction of the mechanical behaviour ofNon-1inearheterogeneous systems by multi-level finite element modeling[J].Method And Applieations,1998(155):181-192.
    [20] Terada K.,Kikuehi N.A class of general algorithms for multi-seale analyses ofHeterogeneousmedia[J].Computer Methods in Applied MeChanies and Engineering,2001(190):5427-5464.
    [21]刘其鹏.基于平均场理论的颗粒材料离散颗粒集合—Cosserat连续体模型多尺度模拟[D].大连:大连理工大学.2010.07.
    [22]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1998.
    [23]杜珣.连续介质力学引论[M].北京:清华大学出版社,1985.
    [24]吕洪生,曾新吾.连续体力学[M].长沙:国防科技大学出版社,1999.
    [25] Kouznetsova V, Brekelmans W A M, Baaijens F P T. An approach to micro-macro modeling ofheterogeneous materials[J]. Computational Mechanics,2001,27(1):37-48.
    [26] Feyel F, Chaboche J L. FE. multiscale approach for modelling the elastoviscoplastic behaviour of longfibre SiC/Ti composite materials[J]. Computer methods in applied mechanics and engineering,2000,183(3):309-330.
    [27] Smit R J M, Brekelmans W A M, Meijer H E H. Prediction of the mechanical behavior of nonlinearheterogeneous systems by multi-level finite element modeling[J]. Computer Methods in AppliedMechanics and Engineering,1998,155(1):181-192.
    [28] Siripun K, Jitsangiam P, Nikraz H. The effects of moisture characteristics of Crushed Rock Base(CRB)[C]//Proceedings of the geo-frontiers2011conference.2011:4458-4467.
    [29] Lekarp F, Isacsson U, Dawson A. State of the art. II: Permanent strain response of unboundaggregates[J]. Journal of Transportation Engineering,2000,126(1):76-83.
    [30] Uthus L, Hoff I, Horvli I. A study on the influence of water and fines on the deformation properties ofunbound aggregates[C]//Proceedings,7th Internacional Conference on the Bearing Capacity ofRoads, Railways and Airfields. Trondheim, Norway.2005.
    [31] Ba M, Fall M, Samb F, et al. Resilient Modulus of Unbound Aggregate Base Courses from Senegal(West Africa)[J]. Open Journal of Civil Engineering,2011,1(1):1-6.
    [32] Barksdale R D, Itani S Y. Influence of Aggregate Shape on Base Behavior. In: Transportation ResearchRecord1227, TRB, National Research Council, Washington, D. C.,1989, pp.173-182.
    [33]王龙,冯德成.提高级配碎石基层使用性能的方法[J].中国公路学报,2006,19(4)40-45.
    [34] Vuong B T, Brimble R. Austroads repeated load triaxial test method: determination of permanentdeformation and resilient modulus characteristics of unbound granular materials under drainedconditions[J].2000.
    [35]王哲人,曹建新,王龙,等.级配碎石混合料的动力变形特性[J].中国公路学报,2003,16(1):22-26.
    [36]王树森.级配碎石基层材料组成设计与工艺控制的研究[J].公路,2001,2(2):75-79.
    [37]李福普,严二虎.沥青稳定碎石与级配碎石结构设计与施工技术应用指南[M].人民交通出版社,2009.
    [38] Fuller W B, Thompson S E. The laws of proportioning concrete[J]. Transactions of the AmericanSociety of Civil Engineers,1906,57(2):67-143.
    [39] Weymouth C A. Effects of particle interference in mortars and concretes[J]. Rock Products,1933.
    [40] Dunagan W M. The application of some of the newer concepts to the design of concrete mixes[C]//ACI Journal Proceedings. ACI,1940,36(6).
    [41] Butcher B J, Hopkins H J. Particle Interference in Concrete Mixes[C]//ACI Journal Proceedings. ACI,1956,53(11).
    [42] Mandelbrot B B. The fractal geometry of nature[M]. Times Books,1983.
    [43] Mandelbrot B B. Fractals: form, change and dimension[J]. San Francisko: WH Freemann andCompany,1977.
    [44] Guoqiang L, Xuejun D. On Fractal Gradation of Aggregates[J]. Journal of Chongqing JiaotongInstitute,1995.
    [45]彭勇,孙立军,王元清等.沥青混合料级配集料的分形特性[J].华中科技大学学报(自然科学版),2007,12:025.
    [46]杨群,郭忠印,陈立平等.级配碎石分形特征分析及其在路面工程中的应用[J].建筑材料学报,2006,9(4):418-422.
    [47]杨瑞华,许志鸿,张超等.沥青混合料分形级配理论[J].同济大学学报:自然科学版,2008,36(12):1642-1646.
    [48]陆厚根.粉体工程导论[M].上海:同济大学出版社,1993.
    [49]张少明,翟旭东等.粉体工程[M].北京:中国建材工业出版社,1994.
    [50]牛全林,冯乃谦,杨静.矿渣超细粉作用机理的探讨[J].建筑材料学报,2002,5(1):84-89.
    [51]陈忠达,袁万杰,高春海.多级嵌挤密实级配设计方法研究[J].中国公路学报,2006,19(1):32-37.
    [52]余崇使,查进,吴大湾.粗集料嵌挤填充特性试验研究[J].武汉理工大学学报,2007,29(6).
    [53]杜顺成,戴经梁.基于散体力学理论的多级抗剪密级配设计方法[J].中国公路学报,2008,21(1).
    [54]莫石秀.多年冻土地区级配碎石路用性能及设计方法研究[D].西安:长安大学,2004.
    [55]曹建新.重载交通下级配碎石基层材料组成结构与动力特性的研究[D].哈尔滨,哈尔滨工业大学,2001.
    [56]王哲人,曹建新,王龙等.级配碎石混合料的动力变形特性[J].中国公路学报,2003,16(1):22-26.
    [57]曹建新.级配碎石混合料组成设计的试验研究[J].公路,2004,2:107-110.
    [58]李福普,严二虎.沥青稳定碎石与级配碎石结构设计与施工技术应用指南[M].人民交通出版社,2009.
    [59]严二虎.沥青路面柔性基层材料设计方法与应用技术研究[D].南京:东南大学.2004.
    [60]李福普,严二虎,陈景等.沥青稳定碎石与级配碎石应用技术研究[J].公路交通科技(应用技术版),2007,7:42-46.
    [61]何兆益.碎石基层防止半刚性路面裂缝及其路用性能研究[D].南京:东南大学,1997.
    [62]何兆益,黄卫,邓学钧.不同成型条件下级配碎石力学特性研究[J].东南大学学报(自然科学版),1997,1.
    [63]林绣贤.CBR设计法的由来与发展[J].中外公路,1981,5:002.
    [64]公路沥青路面设计规范[S].北京:人民交通出版社,2006.
    [65]公路路面基层施工技术规范[S].北京:人民交通出版社,2000.
    [66]王磊.级配碎石基层抗剪强度设计标准的研究[D].哈尔滨,哈尔滨工业大学,2007.
    [67]赵晓彦,胡厚田,冯建林等.导致直接剪切实验强度偏高的原因及改进办法[J].西南交通大学学报,2004,39(4):433-436.
    [68]马骉,莫石秀,王秉纲.基于剪切性能的级配碎石关键筛孔合理范围确定[J].交通运输工程学报,2005,5(4):27-31.
    [69]金刚.级配碎石三轴试验研究[D].大连:大连理工大学,2007.
    [70]陈静云,任瑞波,李玉华,等.沥青路面柔性基层和半刚性基层模量理论研究[J].大连理工大学学报,2004,44(4):536-538.
    [71]王龙,解晓光,冯德成.级配碎石材料强度及塑性变形特性[J].哈尔滨工业大学学报,2007,39(6):944-947.
    [72] Haynes J H. Effects of repeated loading on gravel and crushed stone base course materials used in theAASHO road test[J].1961.
    [73] Dunlap W A. A report on a mathematical model describing the deformation characteristics of granularmaterials[M]. Texas A&M University, Texas Transportation Institute,1963.
    [74] Gray J E. Characteristics of graded base course aggregates determined by triaxial tests[J].1962.
    [75] Allen J J, Thompson M R. Resilient response of granular materials subjected to time-dependent lateralstresses[J]. Transportation Research Record,1974(510).
    [76] Brown S F, Hyde A F L. Significance of cyclic confining stress in repeated-load triaxial testing ofgranular material[J]. Transportation Research Record,1975(537).
    [77] Trollope D H, Lee I K, Morris J. Stresses and deformation in two layer pavement structures under slowrepeated loading[C]//Australian Road Research Board (ARRB) Conference,1st,1962, Canberra.1962,1(2).
    [78] Barksdale R D, Itani S Y. Influence of Aggregate Shape on Base Behavior. In: Transportation ResearchRecord1227, TRB, National Research Council, Washington, D. C.,1989, pp.173-182[J].
    [79] Vuong B. Influence of density and moisture content on dynamic stress-strain behaviour of a lowplasticity crushed rock[J]. Road and Transport Research,1992,1(2).
    [80] Kolisoja P. Resilient deformation characteristics of granular materials[M]. Tampereen teknillinenkorkeakoulu,1997.
    [81] Raad L, Minassian G H, Gartin S. Characterization of saturated granular bases under repeated loads[J].Transportation Research Record,1992(1369).
    [82] Dawson A R, Thom N H, Paute J L. Mechanical characteristics of unbound granular materials as afunction of condition[J]. Gomes Correia, Balkema, Rotterdam,1996:35-44.
    [83] Williams R C, Prowell B D. Comparison of laboratory wheel-tracking test results with wes trackperformance[J]. Transportation Research Record: Journal of the Transportation Research Board,1999,1681(1):121-128.
    [84]张裕卿.沥青混合料高温变形规律及试验方法研究[D].南京:东南大学,2007.
    [85]张泉.碎石化沥青加铺结构力学行为研究[D].成都:西南交通大学,2011.
    [86]柳音.级配碎石柔性基层性能试验研究[D].重庆:重庆交通大学,2008.
    [87]陈国兵.级配碎石材料永久变形预估模型仿真研究[D].西安:长安大学,2009.
    [88] Hicks R G, Monismith C L. Factors influencing the resilient response of granular materials[J].Highway Research Record,1971.
    [89] Siripun K, Jitsangiam P, Nikraz H. Ultimate Design of Unbound Granular Base Courses for FlexiblePavements[C]//Emerging Technologies for Material, Design, Rehabilitation, and Inspection ofRoadway Pavements. ASCE,2011:158-165.
    [90] Barksdale R D, Itani S Y. Influence of aggregate shape on base behavior[J]. Transportation ResearchRecord,1989(1227).
    [91] Jorenby B N, Hicks R G. Base course contamination limits[J]. Transportation Research Record,1986(1095).
    [92] Ohiduzzaman M, Lo S C R, Craciun O. Influence of initial matric suction on the deformation behaviorof unbound granular base materials (UGB)[C]//Proceedings of13th International Conference of theInternational Association for Computer Methods and Advances in Geomechanics, Melbourne,Australia.2011.
    [93] Boulbibane M, Weichert D. Application of shakedown theory to soils with non associated flow rules[J].Mechanics Research Communications,1997,24(5):513-519.
    [94] Werkmeister S, Dawson A R, Wellner F. Pavement design model for unbound granular materials[J].Journal of Transportation Engineering,2004,130(5):665-674.
    [95] Nazzal M, Abu-Farsakh M, Mohammad L. Laboratory characterization of reinforced crushedlimestone under monotonic and cyclic loading[J]. Journal of Materials in Civil Engineering,2007,19(9):772-783.
    [96]何成勇.云南高海拔地区级配碎石基层材料组成及性能研究[D].重庆:重庆交通大学,2008.
    [97] El-Sayed M, L. Dullien F. Investigation of Transport Phenomena and Pore Structure of SandstoneSamples[C]//Annual Technical Meeting.1977.
    [98]薛守义.论连续介质概念与岩体的连续介质模型[J].岩石力学与工程学报,1999,18(2):230-232.
    [99] Anderson T B, Jackson R. Fluid mechanical description of fluidized beds. Equations of motion[J].Industrial&Engineering Chemistry Fundamentals,1967,6(4):527-539.
    [100] Enwald H, Peirano E, Almstedt A E. Eulerian two-phase flow theory applied to fluidization[J].International Journal of Multiphase Flow,1996,22:21-66.
    [101] Szabo B, Babu ka I. Finite element analysis[M]. Wiley-Interscience,1991.
    [102] Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beams[C]//ACI JournalProceedings. ACI,1967,64(3).
    [103]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [104]周成虎,孙战利,地理信息系统,等.地理元胞自动机研究[M].北京:科学出版社,1999.
    [105]文玉华,朱如曾,周富信等.分子动力学模拟的主要技术[J].力学进展,2003,33(1).
    [106] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique,1979,29(1):47-65.
    [107]张为民,张淳源,张平.微观力学中的平均场理论[J].湘潭大学自然科学学报,2003,4.
    [108] Fish J, Chen W, Nagai G. Non‐local dispersive model for wave propagation in heterogeneous media:one‐dimensional case[J]. International Journal for Numerical Methods in Engineering,2002,54(3):331-346.
    [109] Zhang H W, Zhang S, Bi J Y, et al. Thermo‐mechanical analysis of periodic multiphase materials bya multiscale asymptotic homogenization approach[J]. International journal for numerical methods inengineering,2007,69(1):87-113.
    [123]段淑敏,孔艳平.摩擦中的自锁现象[J].力学与实践,2004,26(5):81-83.
    [124]杨益梅,黄霞春.摩擦与自锁条件的确定[J].机械研究与应用,2007,20(3):35-36.
    [125]王润勇.滑动物体自锁分析的几种方法比较[J].唐山学院学报,2004,17(2):75-76.
    [126]唐永光.摩擦角与自锁[J].力学与实践,2010,6:037.
    [127] Tatsuoka F, Goto S, Tanaka T, et al. Particle size effects on bearing capacity of footing on granularmaterial[J]. Deformation and Progressive Failure in Geomechanics,1997:133-138.
    [128] Brown S F, Pappin J W. Modeling of granular materials in pavements[J]. Transportation ResearchRecord,1985(1022).
    [129] Thompson M R, Nauman D. Rutting rate analyses of the AASHO road test flexible pavements[M].1993.
    [130]鲁华征.级配碎石设计方法研究[D].西安:长安大学,2006.
    [131]鲁华征,陈飞.变k法间断级配碎石体积设计方法研究[J].公路交通科技(应用技术版),2010,12:056.
    [132]王立久,刘慧.矿料级配设计理论的研究现状与发展趋势[J].公路,2008,1:170-174.
    [133]申爱琴,蒋庆华,祁秀林.矿料级配对沥青混合料路用性能的影响[J].长安大学学报:自然科学版,2002,22(6):1-4.
    [134]彭波.基于变i法理论的级配组成设计方法[J].武汉理工大学学报(交通科学与工程版),2005.
    [135]林绣贤.柔性路面结构设计方法[M].北京:人民交通出版社,1988.
    [136]公路沥青路面设计规范[S].北京:人民交通出版社,1997.
    [137]李福普,严二虎.沥青稳定碎石与级配碎石结构设计与施工技术应用指南[M].北京:人民交通出版社,2009.
    [138]李福普,李健.级配碎石配合比设计指标研究[J].公路交通科技,2011(12).
    [139]王修山.级配碎石基层沥青路面材料与结构特性研究[D].西安:长安大学,2010.
    [140]袁聚云,徐超,赵春风.土工试验与原位测试[M].上海:同济大学出版社,2004.
    [141]李炜,郑南翔,付宏伟.级配碎石排水性能及基层排水系统研究[J].公路交通科技,2010,27(10):11-16.
    [142] Cedergren H R, O'Brien K H, Arman J A. Guidelines for the design of subsurface drainage systemsfor highway structural sections[R].1972.
    [143]姚爱玲,郑鹏飞.沥青混合料压缩动态弹性模量试验方法与影响因素[C]//2010年海峡两岸材料破坏/断裂学术会议暨第十届破坏科学研讨会/第八届全国MTS材料试验学术会议论文集.2010.
    [144]沙爱民,江晓霞.路面动态特性分析[J].交通运输工程学报,2001,1(2):63-67.
    [145]公路土工试验规程[S].北京:人民交通出版社,2007.
    [146]苏凯,孙立军.沥青路面车辙产生机理[J].石油沥青,2006,20(4):1-7.
    [147]王哲人,曹建新,王龙等.级配碎石混合料的动力变形特性[J].中国公路学报,2003,16(1):22-26.
    [148] Morgan J R. The response of granular materials to repeated loading[J]. Australian Road ResearchBoard Proc,1966.
    [149] Raad L, Weichert D, Haidar A. Shakedown and fatigue of pavements with granular bases[J].Transportation Research Record,1989(1227).
    [150] García-Rojo R, Herrmann H J. Shakedown of unbound granular material[J]. Granular Matter,2005,7(2-3):109-118.
    [151] Arnold G, Dawson A, Hughes D,et al. The application of shakedown approach to granular pavementlayers[C]//Proceedings of the9th International Conference on Asphalt avements,Copenhagen.2002,1.
    [152] Werkmeister S. Permanent deformation behaviour of unbound granular materials in pavementconstructions[J]. Fakult t Bauingenieurweser der Technischen Universit t Dresden zur Erlangung derWürde eines Doktor-Ingenieurs Genehmigte,2003.
    [153] Habiballah T, Chazallon C. An elastoplastic model based on the shakedown concept for flexiblepavements unbound granular materials[J]. International journal for numerical and analytical methodsin geomechanics,2005,29(6):577-596.
    [154] Werkmeister S, Dawson A R, Wellner F. Permanent deformation behavior of granular materials andthe shakedown concept[J]. Transportation Research Record: Journal of the Transportation ResearchBoard,2001,1757(1):75-81.
    [155] Werkmeister S. Permanent deformation behaviour of unbound granular materials in pavementconstructions[J]. Fakult t Bauingenieurweser der Technischen Universit t Dresden zur Erlangung derWürde eines Doktor-Ingenieurs Genehmigte,2003.
    [156] Tao M, Mohammad L N, Nazzal M D, et al. Application of shakedown theory in characterizingtraditional and recycled pavement base materials[J]. Journal of Transportation Engineering,2010,136(3):214-222.
    [157] Werkmeister S, Dawson A R, Wellner F. Pavement design model for unbound granular materials[J].Journal of Transportation Engineering,2004,130(5):665-674.
    [158] Bathe K J, Wilson E L. Numerical methods in finite element analysis[J].1976.
    [159] Burnett D S. Finite element analysis: from concepts to applications[M]. Reading, Massachusetts:Addison-Wesley,1987.
    [160] Zienkiewicz O C, Taylor R L. The finite element method[M]. London: McGraw-hill,1977.
    [161] Moaveni S.Finite element analysis: theory and application with ANSYS[M].Pearson Education India,2003.
    [162] Hibbit K A S. ABAQUS Theory and User Manuals Version6.9[J]. USA: ABAQUS Inc,2009.
    [163]廖公云.ABAQUS有限元软件在道路工程中的应用[M].南京:东南大学出版社,2008.
    [164]曹金凤,石亦平. ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009.
    [165]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [166]刘展,祖景平,钱英莉等. ABAQUS6.6基础教程与实例详解[M].北京:中国水利水电出版社,2008..
    [167] Fowles R, Williams R F. Plane stress wave propagation in solids[J]. Journal of Applied Physics,1970,41(1):360-363.
    [168]卢文波.应力波与可滑移岩石界面间的相互作用研究[J].岩土力学,1996,17(3):70-75.
    [169]吴斌,韩强等.结构中的应力波[M].北京:科学出版社,2001.
    [170]郭伟国,李玉龙,索涛.应力波基础简明教程[M].西安:西北工业大学出版社,2007.
    [171] Wasley R J. Stress Wave Propagation in Solids: An Introduction[M]. M. Dekker,1973.
    [172]丁科,岳英.应力波在基桩中的传播特性[J].振动与冲击,2004,23(3)121-123
    [173]王礼立.应力波基础[M].北京:国防工业出版社2005.
    [174] Knauss W G, Ravi-Chandar K. Some basic problems in stress wave dominated fracture[J].International Journal of Fracture,1985,27(3-4):127-143.
    [175] Sansalone M, Carino N J. Stress wave propagation methods[J]. Handbook on Nondestructive Testingof Concrete,1991:275-304.
    [176] Witkin A. Scale-space filtering: A new approach to multi-scale description[C]//Acoustics, Speech,and Signal Processing, IEEE International Conference on ICASSP'84. IEEE,1984,9:150-153.
    [177] Starck J L, Murtagh F D, Bijaoui A. Image processing and data analysis: the multiscale approach[M].Cambridge University Press,1998.
    [178] Godin C, Caraglio Y. A multiscale model of plant topological structures[J]. Journal of theoreticalbiology,1998,191(1):1-46.
    [179] Bends e M P, Kikuchi N. Generating optimal topologies in structural design using a homogenizationmethod[J]. Computer methods in applied mechanics and engineering,1988,71(2):197-224.
    [180] Suzuki K, Kikuchi N. A homogenization method for shape and topology optimization[J]. Computermethods in applied mechanics and engineering,1991,93(3):291-318.
    [181] Allaire G. Shape optimization by the homogenization method[M]. Springer Verlag,2002.
    [182] Zhikov V V, Kozlov S M, Ole nik O A. Homogenization of differential operators and integralfunctionals[M]. Springer Verlag,1994.
    [183] Hertz H.{über} die {B} erührung fester elastischer {K} rper[J]. J. für die reine u. angew. Math.,1882,92.
    [184] Bowden F P, Tabor D. Mechanism of metallic friction[J]. Nature,1942,150:197-199.
    [185] Archard J F. Elastic deformation and the laws of friction[J]. Proceedings of the Royal Society ofLondon. Series A. Mathematical and Physical Sciences,1957,243(1233):190-205.
    [186] Onions R A, Archard J F. The contact of surfaces having a random structure[J]. Journal of Physics D:Applied Physics,1973,6(3):289.
    [187] Bradley C J, Cracknell A P. The mathematical theory of symmetry in solids: representation theory forpoint groups and space groups[M]. Oxford: Clarendon Press,1972.
    [188] Derjaguin B V, Muller V M, Toporov Y P. Effect of contact deformations on the adhesion ofparticles[J]. Journal of Colloid and interface science,1975,53(2):314-326.
    [189] Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids[J].Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1971,324(1558):301-313.
    [190] Maugis D. Adhesion of spheres: the JKR-DMT transition using a Dugdale model[J]. Journal ofColloid and Interface Science,1992,150(1):243-269.
    [191] Johnson K L. Contact mechanics[M]. Cambridge university press,1987.
    [192] Johnson K L, Greenwood J A. An adhesion map for the contact of elastic spheres[J]. Journal ofColloid and Interface Science,1997,192(2):326-333.
    [193] Popov V L. Contact mechanics and friction: physical principles and applications[M]. Springer,2010.
    [194] Mindlin R D. Influence of Damping on the Response to Shock of Distributed Mass Systems[J]. Proc.Soc. Exp. Stress Analysis,1947,5(2).
    [195] Mindlin R D, Deresiewicz H. Elastic spheres in contact under varying oblique forces[J]. J. of Appl.Mech.,1953,20.
    [196] Vu-Quoc L, Zhang X. An elastoplastic contact force–displacement model in the normal direction:displacement–driven version[J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,1999,455(1991):4013-4044.
    [197] Drucker D C. Coulomb friction, plasticity, and limit loads[R]. BROWN UNIV PROVIDENCE RIDIV OF APPLIED MATHEMATICS,1953.
    [198] L tstedt P. Coulomb Friction in Two‐Dimensional Rigid Body Systems[J]. ZAMM‐Journal ofApplied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,1981,61(12):605-615.
    [199] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique,1979,29(1):47-65.
    [200] Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary treetopologies from DNA sequence data, and the branching order in Hominoidea[J]. Journal of molecularevolution,1989,29(2):170-179.
    [201] Borja J, Belil M, Castells M, et al. Local and global: The management of cities in the informationage[M]. Earthscan,1997.
    [202] Kuhn W. Modeling the semantics of geographic categories through conceptual integration[M]//Geographic Information Science. Springer Berlin Heidelberg,2002:108-118.
    [203] Emeriault F, Cambou B. Micromechanical modelling of anisotropic non-linear elasticity of granularmedium[J]. International journal of solids and structures,1996,33(18):2591-2607.
    [204] Nemat-Nasser S, Li J Y. Electromechanical response of ionic polymer-metal composites[J]. Journalof Applied Physics,2000,87(7):3321-3331.
    [205] Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneousmedia[J]. Computer methods in applied mechanics and engineering,2001,190(40):5427-5464.
    [206]周汉荣,土力学,赵明华.土力学地基与基础[M].武汉工业大学出版社,1988.
    [207] Satake M. Constitution of mechanics of granular materials through the graph theory[C]//US-Japan Seminar on Continuum-Mechanics and Statistical Approaches in the Mechanics ofGranular Materials.1978:47-62S.
    [208] Li X, Yu H S, Li X S. Macro–micro relations in granular mechanics[J]. International Journal ofSolids and Structures,2009,46(25):4331-4341.
    [209] Bagi K. Stress and strain in granular assemblies[J].Mechanics of materials,1996,22(3):165-177.
    [210] Kruyt N P, Rothenburg L. Statistical theories for the elastic moduli of two-dimensional assemblies ofgranular materials[J]. International journal of engineering science,1998,36(10):1127-1142.
    [211] Kruyt N P, Rothenburg L. Statistics of the elastic behaviour of granular materials[J]. InternationalJournal of Solids and Structures,2001,38(28):4879-4899.
    [212] Kruyt N P, Rothenburg L. Probability density functions of contact forces for cohesionless frictionalgranular materials[J]. International journal of solids and structures,2002,39(3):571-583.
    [213]孟岩,郭林泉,谈至明.路面载重车辆的荷载特征[J].公路交通科技,2007,24(4):1-6.
    [214]孟书涛,徐建伟.轴载,轮胎内压与轴载换算的研究[J].公路交通科技,2004,21(6):4-7.
    [215] Himeno K, Kamijima T, Ikeda T, et al. Distribution of tire contact pressure of vehicles and itsinfluence on pavement distress[C]//Eighth International Conference on Asphalt Pavements.1997(Volume I).
    [216]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [217]方开泰.均匀设计——数论方法在试验设计的应用[J].应用数学学报,1980,3(4):363-372.
    [218]方开泰.均匀设计及其应用[J].数理统计与管理,1994,13(1):57-63.
    [219] Tu S, Sha A M. Influence on the Stress of Pavement with Crack in Base from Flexible TransitionLayer under Dynamic Loading[J]. Advanced Materials Research,2013,602:2189-2192.
    [220] Tu S. Mechanical Property of Pavement with Crack in Base and High Modulus Asphalt Layer[J].Applied Mechanics and Materials,2013,256:1785-1788.
    [221] Tu S, Sha A M. Influence on the Stress of Pavement with Crack in Surface from Flexible TransitionLayer under Dynamic Loading[J]. Advanced Materials Research,2013,602:2185-2188.
    [222]严二虎,沈金安等.沥青路面级配碎石基层的设计与施工工艺[J].公路交通科技,2004,21(3):9-13.
    [223]王树森.级配碎石基层材料组成设计与工艺控制的研究[J].公路,2001,2(2):75-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700