弱春性小麦品种越冬期抗冻性差异的生理及分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以目前黄淮冬麦区大面积推广的弱春性小麦品种偃展4110、豫农949、郑麦9023和豫麦34为供试材料,采用分期播种试验的方法,系统观察了不同品种在不同播期条件下的幼穗发育进程,研究了低温胁迫条件下弱春性小麦品种间植株叶片与抗寒性密切有关的部分生理特性及保护酶基因的表达差异,分析了弱春小麦小麦品种对寒胁迫的生理响应。其主要研究结果如下:
     1.小麦的幼穗发育进程与其抗寒性密切相关。同为弱春性品种,其幼穗发育进程越快,遭受寒流侵袭后的冻害越重,如同为第一播期(10月5日)播种的4个弱春性小麦品种,寒流来临前主茎幼穗发育最快的豫麦34和郑麦9023两品种已分别达到小花分化末期和初期,寒流过后主茎幼穗冻死率分别为96%和73%;寒流来临前主茎幼穗发育到二棱后期的偃展4110幼穗冻死率为25%左右;而主茎幼穗发育最慢(二棱初期)的豫农949,仅有部分叶片的叶尖受冻。同时本研究还发现,在不同播期条件下幼穗发育进程相同的品种其受冻害程度却有一定差异,如第一播期的偃展4110和第二播期的豫麦34,寒流发生时其幼穗发育进程均为小花分化初期,前者有25%主茎幼穗冻死,而后者仅部分叶片的叶尖受冻枯死,进一步表明小麦品种的抗冻性与品种本身的遗传特性密切相关。
     2.在寒流发生期间和寒流来临前后,通过测定各供试品种植株叶片内部分与植物抗寒性密切相关的生理指标发现,寒流发生期间植株幼穗发育进程快且受冻害较重的豫麦34,其植株叶片中可溶性糖、可溶性蛋白和抗坏血酸(AsA)的含量均低于幼穗发育进程慢且受冻害较轻的品种豫农949和偃展4110,因此它们可以作为小麦抗寒性的鉴定指标;在寒流发生期间,4个弱春性小麦品种不同播期处理植株叶片内的脯氨酸(Pro)和谷胱甘肽(GSH)含量均比寒流来临之前有较大幅度的增加。同时发现幼穗发育进程快且受冻害较重的豫麦34和郑麦9023植株主茎叶片内上述两种物质的含量却高于幼穗发育进程慢且受冻害较轻的豫农949和偃展4110。因此,这两种物质只能作为评价品种抗冻性的参考指标,而不适合作为小麦抗冻性的鉴定指标。
     3.本试验从小麦叶片中克隆了谷胱甘肽还原酶(GR)、抗坏血酸过氧化酶(APX)、超氧物歧化酶(SOD)和过氧化氢酶(CAT)等保护酶基因的cDNA片段,通过半定量RT-PCR技术,研究了寒流发生期间和来临前后这些基因在小麦植株叶片中的表达特性,结果发现,寒流发生期间,幼穗发育进程慢且受冻害较轻的品种豫农949和偃展4110中的APX和SOD基因的表达量较高,且增幅较大,因此它们可以作为评价小麦抗寒性的鉴定指标;在寒流发生期间4个弱春性小麦品种的GR基因的表达量虽有所升高,但幼穗发育进程快且受冻害较重的豫麦34和郑麦9023第一播期处理的表达量却高于幼穗发育进程慢且受冻害较轻的豫农949和偃展4110,而CAT基因的表达量在寒流发生期间的变化不大,且处理间表达量没有规律。说明GR和CAT基因的表达量可能不适合作为小麦抗寒性的鉴定指标。
     综上所述,小麦的抗寒性与其幼穗发育进程密切相关,当寒流发生时,幼穗发育进程越慢的品种和各播期处理中其抗寒性表现越强;在寒流发生期间,幼穗发育进程较慢的品种叶片内可溶性糖、可溶性蛋白和AsA的含量较高,且APX和SOD两基因的表达量也较高,这些特性可以作为小麦抗寒性的鉴定指标;而Pro和GSH的含量和GR基因的表达量在此期间却低于幼穗发育进程较快且冻害较重的处理,CAT基因的表达量在寒流发生期间变化较小,且处理间没有规律,这些物质的含量及基因的表达量可能不适合作为小麦的抗寒性鉴定指标。
Physiological mechanism on the difference in the antifreezing tolerance among weak springness wheat cultivars with different sowing dates was investigated in this paper.The processes of young spike development,the contents of antifreezing materials(soluble sugar,soluble porteins,proline,ascorbic acid and glutathione),and the expression of four protective enzyme(glutathione reductase, ascorbate peroxidase,catalase,superoxide dismutase genes) were measured under natural chilling current stress conditions,the main results were as follow:
     1.The processes of wheat young spike development were closely related to antifreezing tolerance,and the quicker development process of spike,the more serious freezing damage the wheat plant suffered during chilling current.For example,in the first sowing dates(2005-10-05),the quicker development processes of young spike between Yumai 34 and Zhengrnai 9023 cultivars had reached to the late and initial stages of floret differentiation,respectively,and there appeared more serious freezing injury on the two cultivars during chilling current.The freezing mortality of young spikes of these cultivars at two processes were to 96%and 73%,respectively.The processes of wheat young spike development of Yanzhan 4110 cultivar reached to the late stage of two prisms before this chilling current,and the freezing mortality of young spikes was to 25%.The slower development processes of young spike in Yunong 949 cultivar had only reached to the initial stage of two prisms,and there appeared slight freezing injury at the tip of leaves.
     In addition,there were differences in freezing injuries of young spikes with the same developmentl processes.For example,the development processes of wheat young spikes betweenYanzhan 4110 in the first sowing dates and Yumai 34 in the second sowing dates reached to the same stage(initial stage of floret differentiation), but the freezing mortality rates of spikes in the former were 25%,but there apperaed only slight freezing injury at the tip of leaves in the latter cultivar.The results showed that genetic traits may be also related to freezing resistance of wheat cultivars.
     2.Before,during and afer chilling current in 2005 winter season.,the contents of soluble sugar,soluble portein,AsA in Yumai 34 plants with the quicker development processes of young spikes and more serious freezing injury were lower than those of Yunong 949 and Yanzhan 4110 with the slower development process of spikes.These result showed that they could be used as indexes to detect the freezing resistance of wheat plants.During chilling current,the contents of Pro and GSH in the leaves of four wheat cultivars with the different sowing dates sharply increased but the contents of them in the leaves of Yumai 34 plants with the quicker development processes of young spikes were higher than those of Yunong 949 and Yanzhan 4110 with the slower development process of spikes.The result implied that Pro and GSH could hardly reflect freezing tolerance of wheat cultivars.
     3.cDNA fragments of four protective enzyme genes(GR,APX,SOD,and CAT) were cloned from wheat leaves.Their expression in leaves of the above wheat plants before,during and after chilling current was investigated by semi-quantitative RT-PCR.The result showed that the transcript levels and the increasing amplitude of APX and SOD genes were higher in Yunong 949 and Yanzhan 4110 with slower development processes of spikes with slight freezing injury than those with quicker development processes,indicating that they could be used as the indexes to measure the freezing tolerance of wheat plants.The transcript levels of GR genes slightly increasd in all checked wheat plants,but its transcripts in Yumai 34 and Zhengmai 9023 cultivars with the quicker development process of spikes and more serious freezing injury were higher than those with the slower development process of spikes in Yunong 949 and Yanzhan 4110 cultivars.There appeared little changes and difference in transcript levels of CAT gene in all the checked plants.These results suggested that the changes in transcript levels of GR and CAT genes could not be suitable as the indexes of the freezing tolerance among wheat cultivars.
     In summary,the antifreezing tolerance of wheat plants was closely related to the development processes of young spikes.The slower development process of spikes, the stronger antifreezing tolerance of wheat plants there appeared during chilling current.The contents of soluble sugar,soluble porteins,AsA and the transcript levels of APX and SOD genes in plant leaves with the slower development process of spikes were higher than those with quicker development processes of spikes.These materials could be used as the indexes of the freezing tolerance of wheat.But the contents of Pro,GSH and the transcript levels of GR gene in plant leaves with the slower development process of spikes were lower than the latter,and there appeared little changes and differences in transcript levels of CAT gene in all the checked plants. These could not be suitable as the indexes of the freezing tolerance among wheat cultivars.
引文
[1]梁宜策,薛理靠,张军峰,等.小麦冻害调查初报[J].陕西农业科学,2003,(5):38-41.
    [2]莱利著.小麦育种的理论与实践[M].北京:农业出版社,1982.
    [3]孙本普,孙士宗,李风云.气候条件对冬小麦穗数的影响研究[J].中国生态农业学报,2005,13,(4):62-64
    [4]Shroyer J P,Mikesell M E,Paulsen G M.Spring Freeze Injury to Kansas Wheat.Kansas State University Agricultural Experiment Station and Cooperative Extension Service,1995,3:646
    [5]Prasil I,Prasilova P,Pankova KT.Relationships among vernalization,shoot apex development and frost tolerance in wheat.[J].Ann Bot,2004,94:413-418.
    [6]Single WV.Variation in resistance to spring frost in Triticum aestivum L.and related species In:Proceeding of Third international Wheat Genetics Symposium.Canberra:Australian Acadenly of Seience,1974:282-287.
    [7]冯玉香,何维勋,饶敏杰,等.冬小麦拔节后霜冻害与叶温的关系[J].作物学报,2000,26,(6):707-712.
    [8]魏凤珍,李金才,王永华,等.小麦冻害类型、诊断特征及其预防对策与补救措施[J].中国农学通报,2006,22(4):345-348.
    [9]孙学成,胡承孝,谭启玲.低温胁迫下钼对冬小麦抗氧化防御系统及膜脂过氧化的影响[J],植物生理与分子生物学学报,2006,32(2):175-182.
    [10]朱佳,梁永超,丁燕芳,等.硅对低温胁迫下冬小麦幼苗光合作用及相关生理特性的影响[J].中国农业科学,2006,39(9):1780-1788.
    [11]张国平.小麦耐寒性研究进展概述[J].农业科技译丛,1991,4:31-33.
    [12]钟秀丽,王道龙,吉田久,等.冬小麦品种抗霜冻力的影响因素分析[J],作物学报,2007,33(11):1810-1814.
    [13]马翎健,胡银岗,宋喜悦,等.小麦幼穗分化及抗寒性杂种优势研究[J].西北植物学报,2000,20(1):86-91.
    [14]王浩,曹红.冬小麦发育时期与抗寒性的关系及防御措施[J].农业科技通讯,1999,10.
    [15]郜庆炉,薛香,梁云娟.暖冬气候条件下调整小麦播种期的研究[J].麦类作物学报,2002,22(2):46-50.
    [16]Li RQ,Wang JB.Plant Cytology and Physiology in Environment Stress.Wuhan:Wuhan.University Press,2002,140-185.
    [17]李新国,张建霞,孙中海.低温下钙对‘Page'橘柚愈伤组织抗寒相关生理指标的影响[J].应用与环境生物学报,2007,13(3):322-326.
    [18]江福英,李延,翁伯琦.植物低温胁迫及其抗性生理[J].福建农报,2002,17(3): 190-195.
    [19]赵军,赵玉田.寒胁迫过程中冬小麦叶片组织可溶性蛋白质含量的变化和功能[J].中国农业科学,1994,27(2):57-61.
    [20]Guy CL,Hummel RL,Haskel L.Induction offreezing tolerance in spinach during cold acclimation[J].Plant Physiol,1987,84:868-871.
    [21]Mohapatra SS,Pode R J,Dhindsa S S.Changes in protein patterns and translatable messenger RNA populations during cold acclima tion of alfafa[J].Plant Physiol,1987,84:1172-1176.
    [22]Kazuoka T,Oeda K.Heat-stable COR(cold-regulated)proteins associated with freezing tolerance in spinach[J].Plant Cell Physiol,2000,33(8):1107-1114.
    [23]李荣富,王丽雪,张华.果树抗寒性的细胞生物学研究进展[J].北京农学学报,1996,11(2):79-83.
    [24]陈杰忠,徐春香,粱立峰.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报,1999,2(3):54-58.
    [25]彭艳华,刘成运,卢大炎,等.低温胁迫下风眼莲叶片的适应[J].武汉植物学研究,1992,10(2):123-127.
    [26]刘鸿先,王以柔,李晓萍,等.低温诱导植物基因表达的改变与耐寒性.中科院华南植物所集刊,1991,7:54-61.
    [27]刘祖祺,王洪春主编.植物耐寒性及防寒技术[M].北京:学术书刊出版社,1990,20-27.
    [28]潘杰,简令成,钱迎倩.小麦抗寒力诱导过程中特异性蛋白质的合成.植物学集刊。1994,7:144-157.
    [29]Levitt J.Responses of plants to conviromental stress[J].Physiol Ecology,1980,1.
    [30]Uemura S,Gilmour S J,Thomashow MF,et al.Efects of COR 6.6 and COR 15a polypeptides encoded by COR gene of Arabidopsis thaliana[J].Plant physiol,1996,111:313-327.
    [31]简令成.植物抗寒性的细胞及分子生物学研究进展[J].细胞生物学进展,1990,(2):296-320.
    [32]王红星,古红梅,周琳,等.不同生长时期叶片中可溶性糖含量与抗寒性关系[J].周口师范学院学报,2003,20(5):51-52.
    [33]郑大玮,龚绍先.冬小麦冻害及其防御[M].北京:气象出版社,1985:166-188.
    [34]陈贵,康宗利,张立军.低温胁迫对小麦生理生化特性的影响[J].麦类作物,1998,18.
    [35]张南,秦智伟.低温处理对菠菜生理生化指标的影响[J].中国蔬菜,2007,11:22-24.
    [36]范月仙,李生泉.棉花苗期抗冷级的生化指标之一[J].棉花学报,1995,7(2):126-127.
    [37]Jacob G,Valentina Mittova R,George R.The Response of Carbohydrate Metabolism in Potato Tubers to Low Temperature[J].Plant & Cell Physiology,2006,47(9):1309.
    [38]Dunn JH,Neslon C G.Chemical changes occurring in three bermudagrass turf cultivals in relation to cold hardiness[J].Agron J,1974,66:28-31.
    [39]Bush EP,Wislon D,Pbepard J,.Freezing tolerance and nonstructural carbohydrate composition of carpetgrass[J].Hort Sci,2000,35:187-189.
    [40]]Fry GD,lang NS,Clifton RGP.freezing resistrance and carbohydrate composition of"Floratam"st.Augustinegrass[J].Hort Sci,1991,26:1537-1539.
    [41]Maier FP,lang NS,Fry GD.Freezing tolerance of three Augustinegrass Cultivals as affected by stolon carbohydrate and water content[J].HortSci,1994,119,473-476.
    [42]Xin ZG,Li PH.Relationship between proline and ABA in the induction of chilling tolerance in maize[J].Plant Physiol,1992,99:7996-7998.
    [43]王红星,吴诗光.寒胁迫对小麦幼苗生理生化特性的影响[J].周口师范高等专科学校学报,2000,17(2):4-5.
    [44]高志强,张国红.不同小麦品种对低温的生理反应研究[J].山西农业大学学报,2002,22(2):109-112.
    [45]Borman HC,Janshan EVN.Nicotianana tabacum callus studies X.ABA increase resistance to cold damage[J].Physiol Plant,1982,48:491-493.
    [46]李建设,耿广东,程智慧,等.低温胁迫对茄子幼苗抗寒性生理生化指标的影响[J].西北农林科技大学学报,2003,31(1):90-93.
    [47]Songstad DD,Duncan DR,Widholm JM.Proline and polyamine involvement in chilling tolerance of maize suspension cultures[J].Exp Bot,1990,224:289-294.
    [48]zhang X,Munshaw GC,Ervin EH.Influence of late-season jasmonic acid and sodium chloride treatments on seeded bermudagrass cold hardiness[J].Exp Bot,2004.
    [49]陈翠莲,马平福.抗冷性不同的小麦、水稻品种脯氨酸含量的比较试验[J].华中农业大学学报,1982,8(2):176-179.
    [50]王玉玲,康沽.低温胁迫对冬小麦苗期和拔节期生理生化特性的影响[J].河南农业科学,2004.5:3-6.
    [51]孙金月,赵玉田,梁博文,等.HRGP在小麦抗寒锻炼过程中的变化及其与抗寒性的关系[J].植物遗传资源学报,2004,5(1):6-11.
    [52]郭确,潘瑞炽.ABA在水稻苗抵抗冷害的作用[J].植物生理学报,1984,10(4):295-302.
    [53]李梅,徐瑾,刘志礼,等.锶诱导的氧化胁迫对叉鞭金藻的影响[J].海洋与湖沼,2004,35(5):467-472.
    [54]缪锦来,王全富,阚光锋,等.温度对南极衣藻ICE-L谷胱甘肽含量及其相关酶活性的影 响[J].海洋与湖沼,2006,37(2):155-159.
    [55]Kwang-Hyun Beak,Daniel Z,Skinner H.Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines[J].Plant Sci,2003,165:1221-1227.
    [56]Leipner J,Fracheboud Y,Stamp P,et al.Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance[J].Environ Exp Bio,1999,42:129-139.
    [57]Kocsy G,Brunner M,Ruegsegger A,et al.Glutathione synthesis in maize genotypes with different sensitivity to chilling[J].Planta,1996,198:365-370.
    [58]Collen J,Davison I R.Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Masto-carpus stellatus and Chondrus.[J]Plant Cell and Environment,1999,22:1143-1151.
    [59]Barry A,Logan,Gary M,et al.Transgenic overproduction of glutathione reductase does not protect cotton.Gossypium hirsutum(Mal-vaceae) from photoinhibition during growth under chilling conditions[J].Am J Bot,2003,90:1400-1403.
    [60]Gabdela MP,Philip MM,Christine H F,et al.Post-transcriptional regulation prevents accumulation of gluta-thione reductase protein and activity in the bundle sheath cells of maize[J],Plant Physiol,2000,122:667-675.
    [61]罗娅,汤浩茹,张勇.低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响[J],园艺学报,2007,34(6):1405-1410.
    [62]Edwards E A,Rawsthorne S,Mullineaux P M,et al.Subcellular distribution of multiple forms of glutathione reductase in leaves of pea sativum[J].Planta,1990,180(1):278-284.
    [63]Alfred H,Ruth C A.Purification and characterization of glutathione reductase isozymes specific for the state of cold hardiness of red spruce[J].Plant Physiol,1994,105:205-213.
    [64]Kunert KJ,Foyer CH.Thiol/disulphide exchange in plants.ln:De Kok LJ,Stulen I,Rennenberg H,Brunold C,Rauser W,eds.Sulfur nutrition and assimilation in higher plants,regulatory,agricultural and environmental aspects.The Hague:SPB Academic Publishers,1993,139-151.
    [65]Okuda T,Matsuda Y,Yamamaka A.and S.Sagisaka:Abrupt increase in the level of hydrogen peroxide in levels of wheat is caused by cold treatment[J].Plant Physiol,1991,97,1265-1267.
    [66]Kendall EJ,Mckersie BD.free radical and freezing injury to cell membranes of winter wheat[J].Plant Physiol,1989,76:86-94.
    [67]Bowler C,Van Montagu M D.Superoxide dismu-tase and stress tolerance[J].Plant Physiol, 1992,43,83-116.
    [68].A.del Rio,Lyon DS,Salin M.L.Immuno-cytochemical evidence for a peroxisomal localization of man-ganese-superoxide dismutase in leaf protoplast from a bighter plant[J].Planta,1983,158,216-224.
    [69]Palma JM,Sandalio LM,A del Rio.man-ganese-superoxide dismutase and highter plant chloroplasts:a reappraisal of a controverted cellular localization[J].Plant Physiol,1986,125:427-439.
    [70]Sandalio LM,Palma JM,l.A.del Rio.Localization of an-ganese-superoxide dismutase in peroxisomes isolated from pisum sativum L[J].Plant Sic,1987,51:1-8.
    [71]Bueno P,A.del Rio.Purification and properties of glyoxyso-mal cuperozinc superoxide dismutase from water melon[J].Plant Physiol,1992,98:331-336.
    [72]Bowler C,Alliotte T,Loose MD,et al.Inze,The induction of in response to stress in Nicotiana plumbginifolia,EMBO J.1989,8:31-38.
    [73]Van Camp W.Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutasein chloroplasts[J].Plant Physiol,1996,112:1703-1714.
    [74]Allen RD.Dissection of oxidase stress tolerance using transgenic plants[J].Plant physiol,1995,107:1049-1054.
    [75]Mckersie BD.Manipulating freezing tolerance in transgenic plants[J].Acta Physiol Planta,1997,19(4):17-19.
    [76]Breusegem F V,Slooten L,Stassart JM,et al.Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize[J].Plant Physiol,1999,40(5):515-523.
    [77]Garibela P,Christine H F,Philip M.Low temperature-induced changes in the distribution of H_2O_2 and antioxidants between the bundle sheath and mesophyll cells of maize leaves[J].Exp Bot,2000,50:107-113.
    [78]刘艳阳,崔党群.低温胁迫对小麦叶片细胞膜脂质过氧化产物及相关酶活性的影响[J].麦类作物学报,2006,26(4):70-73.
    [79]张燕,方力,李天飞,等.钙对低温胁迫的烟草幼苗某些酶活性的影响[J].植物学通报,2002,19(3):342-347.
    [80]刘汉梅,张怀渝,谭振波,等.玉米catalase3基因克隆及低温表达研究[J].四川农业大学学报,2006,3(24):273-275.
    [81]Saruyama H,Tanida M.Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and tolerant cultivars of rice(Oryza sativa L.).Plant Sci,1995,109: 105-113.
    [82]Prasad TK.Role of catalase ininducing chilling tolerance in Preemergent maize seedlings[J].Plant Physiol,1997,114(4):1369-1376.
    [83]陈禅友,汪汇东,丁毅.低温胁迫下长豇豆幼苗可溶性蛋白质和细胞保护酶活性的变化[J].园艺学报,2005,32(5):911-913.
    [84]Allen R D,Webb R P,Schake S A.Use of transgenic plants to study antioxidant defences[J].Free Radical Biology and Medicine,1997,23:473-479.
    [85]Back K H,Skinner D Z.Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines[J].Plant Science,2003,165:1221-1227.
    [86]Kuk YI,Shin JS,Burgos NR,et al.Antioxidative enzymes offer protection from chilling damage in rice plants[J].Crop Science,2003,43:2109-2117.
    [87]杜朝昆,李忠光,龚明.水杨酸诱导的玉米幼苗适应高温和低温胁迫的能力与抗氧化酶系统的关系[J].植物生理学通讯,2005,41(1):19-22.
    [88]任丽丽,高辉远.低温弱光胁迫对野生大豆和大豆栽培种光系统功能的影响[J].植物生理与分子生物学学报,2007,33(4):333-340.
    [89]曾韶西,王以柔.低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响[J].植物生理与分子生物学学报,1990,16(1):37-42.
    [90]Pearce RS.Molecular analysis of acclimation to cold.Plant Growth Regulation,1999,29:47-76.
    [91]刘祖祺,张石城主编.植物抗性生理学.中国农业出版社,1994.
    [92]胡廷积.小麦生态与技术.郑州:河南科技出版社,1986.
    [93]罗东亮,袁文先,赵朝峰.小麦冻害研究初报[J].河南农业科学,1997,2:8-9.
    [94]崔金梅,吉凌芬.冬小麦幼穗分化不同时期形态特征的图解[J].植物学通报,1985,3(4):60-64.
    [95]张振清.植物材料中可溶性糖的测定.植物生理实验手册C上海:上海科技出版社,1985:134-138.
    [96]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:258-261.
    [97]邹琦主编.植物生理生化实验指导[M].北京:中国农业出版社,1995.
    [98]Tanaka K,Suda Y.O_3 tolerance and ascorbate-dependent H_2O_2 decomposing system in chloroplasts[J].Plant and Cell Physiology,1985,26:1425-1431.
    [99]Ellman GL.Tissue sulfhydryl groups Arcbives of Biochemistry and Biophysica.1959,82:70-77.
    [100]戴玉池,邓霞玲,姜孝成,等.不同水稻品种幼苗期的耐寒生理鉴定及其利用[J].湖南师范大学自然科学学报,2004,27(3):87-89.
    [101]马纯艳,李胡莹,邹建秋.低温对高梁后代选系苗期生理生化的影响[J].沈阳农业大学学报,2006,37(2):147-150.
    [102]Garaham D,Pattern B D.Responses of plants to low nonfreezing temperature proteins,metabolism and acclimation[J].Annual Review of Physiology,1982,33:347-372.
    [103]季作梁,戴宏芬,张昭其,等.芒果果实冷害过程中谷胱甘肽和抗坏血酸含量的变化[J].园艺学报,1998,25(4):324-328.
    [104]麦维军,王颖,梁承邺.谷胱甘肽在植物抗逆中的作用[J].广西植物,2005,25(6):570-575.
    [105]Smimoff N.The role of active oxygen in the response of plants to water deficit and desiccation[J].New Phyotolist,1993,125:27-28.
    [106]李茂富,李绍鹏,赵维峰.壳聚糖提高香蕉幼苗抗冷性的效应[J].植物生理学通讯,2005,41(4):465-468.
    [107]季书勤,吕印谱,宋保谦.不同生态型小麦品种的温光反应特性[J].华北农学报,2000,15(2):63-66.
    [108]赵旭灵,武绍波,杜孝字,等.人工低温条件下滇砀山酥梨休眠花芽及其着生处枝条中糖类含量的变化[J].植物生理学通讯,2000,36(5):414-416.
    [109]李晓萍,胡文玉.超氧自由基与植物膜伤害[J].植物生理学通讯,1988,19(2):67-70.
    [110]喻敏,萧洪东,陈跃进,等.硼、对低温下海滨雀稗可溶性糖和游离脯氨酸含量的影响[J].作物学报,2004,30,(8):847-848.
    [111]Delauney A J,Verma DPS.Proline biosynthesis and osmoregulution in plant[J].Plant J,1997,12:133-142.
    [112]Wanner L A,Junttla O.Cold-induced freezing tolerance in Arabidopsis[J].Plant Physiol,1995,107:621-630.
    [113]Yang W J,Wood K V.Near-isogenic lines of maize differing for glycinbetaine[J].Plant Physiol,1999,120:391-400.
    [114]张圣平,顾兴芳,王烨,等.低温胁迫对以野生黄瓜(棘瓜)为砧木的黄瓜嫁接苗生理生化指标的影响[J].西北植物学报,2005,25(7):1428-1432.
    [115]艾希珍,于贤昌,王绍辉,等.低温胁迫下黄瓜嫁接苗与自根苗某些物质含量的变化[J].植物生理学通讯,1999,35(1):26-28.
    [116]郭丽红,王定康,王德斌,等.抗坏血酸和谷胱甘肽在小麦幼苗冷激诱导抗冷性中的变化[J].昆明师范高等专科学校学报,2007,29(4):66-68.
    [117]李美茹,刘鸿先,王以柔.植物抗冷性分子生物学研究进展[J].热带亚热带植物学报,2008,8(1):70-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700