微灌滴头微通道内流流场实验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微灌是一种高效节水灌溉技术,滴头是微灌系统的核心部件之一,滴头内流道结构特征直接关系到滴头的性能,决定着微灌系统的优劣。揭示微灌滴头微尺度通道内流运动规律,对优化滴头流道结构设计、提高滴头性能具有重要意义。
     采用Micro-PIV技术分别对600μm×6000μm和800μm×800μm两种方形断面的直通道和平角、尖角和圆角三种齿形微通道在Re=80-300区间内流流场进行实验研究。获得了各流动工况下的流场流线图、速度矢量分布图及速度云图。实验采用Mini:YAG双脉冲激光器、14位灰阶的CCD相机、10倍显微物镜、3μm荧光示踪粒子和仅允许610nm红光透过的滤光镜相配合,通过解决相机与PIV系统的匹配问题,提高了图像信噪比,获取了清晰的微尺度流场粒子图像。并且,通过图像处理技术获得了各流动工况下的流场流线图、速度矢量分布图及速度云图。在图像处理中使用多次测量取平均的方法消除示踪粒子的布朗运动影响,运用系综互相关算法获取微尺度流场分布。实验发现,微尺度流道的壁面粗糙度对内流流动有较大影响,且流道尺度越小,壁面粗糙度的影响越显著;三种齿形微通道内流流场在流道转向内侧都存在低速回流区,内含一个完整的涡;而在平角齿形微通道的左顶角部位另有一个较小范围的低速回流区,也有涡存在;在尖角齿形微通道的顶角区域有较大范围的回流区,并且内部存在大小不同、上下叠加、方向相反的两个涡,下部的大涡结构具有规律性,而叠加于上部的小涡流动结构不稳定,流速更低。低速回流区是固体颗粒容易沉积的区域,是造成堵塞的主要原因。
     采用在商用CFD软件-Fluent,通过人为设定壁面高相对粗糙度和将壁面粗糙元抽象为多孔介质两种方法对直管微通道流动进行建模,分别匹配Fluent提供的标准k-ε模型、RNG k-ε模型、realizablek-ε模型、标准k-ω模型和sst k-ω模型,逐一在Re=100和Re=300流动条件下,对600μm×600μm和800μm×800μm方形断面直管微通道内流流场进行数值模拟,并将计算结果与相同工况下直管微通道Micro-PIV实验结果进行了定量对比分析。结果表明:将微尺度通道壁面粗糙元抽象为多孔介质模型,采用Realizablek-ε两方程湍流模型能够更好的模拟微尺度管流流动,其中多孔介质层的厚度采用微尺度通道的壁面粗糙元厚度进行设定,多孔介质的粘性阻力系数和惯性阻力系数由多孔介质区域内的流态及阻力进行计算。
     利用推荐的微尺度流动数值计算方法,在Re=100和Re=300流动条件下,对平角、尖角和圆角三种不同齿形结构的微灌滴头内流流场进行模拟计算。通过将模拟计算结果与相同工况下Micro-PIV实验测量结果的分析比较,证明了该微尺度模拟方法适用于复杂微通道内流流场的计算。由此进一步建立多种尺度下的平角、尖角和圆角三种齿形流道结构的滴头模型,在Re=100、Re=200和Re=300流动条件下,采用推荐的微尺度流动数值方法进行模拟计算,将计算结果从微通道内流回流区分布,不同流道尺度、不同雷诺数下压力降变化,以及流态指数、流量系数比较等几个方面进行分析评价。结果表明:尖角齿形的流道结构作为微灌滴头内流道在工作性能上具有一定优势,但其尖角顶端的低速小涡区域容易沉积固体颗粒,因此对尖角齿形流道进行局部结构改造。从减少低速回流区和增大流动阻力两方面综合考虑,对尖角齿形流道的微灌滴头做出两种改造方案,一是斜削齿尖方法,二是圆弧削齿尖方法,对改造的流道分别建立滴头流道模型并数值计算其内流流动分布,通过计算结果评价分析获知,改造后的流道结构有助于提高微灌滴头工作性能。
     本研究得到国家“十五”科技攻关项目(2004BA901A21-4)的资助。
Micro-irrigation is a high efficient and water-saving irrigation technology. Emitter is one of the key components of micro-irrigation system. Structural characteristics of internal flow passage are directly related to emitter's performance and micro-irrigation system's quality. Therefore, research on internal flow field of micro channel in micro-irrigation emitter has important significance to optimization design of internal flow passage's structural and performance improvement of emitter.
     Using Micro-PIV technique, inflow field were measured in straight and jagged micro-channels with cross section of 600μm×600μm and 800μm×800μm under the conditions of the Reynolds number of 80-300. Clear images of particles were obtained by combining Mini:YAG double pulse laser,14-digit grey scale CCD camera, 10x microscope,3μm fluorescence tracer particles and light filtering lens allowing 610nm red light permeation. Using image processing techniques, Flow field streamlined diagrams、velocity vector distribution map and velocity cloud chart were obtained under all kinds of flow conditions. The influence of Brownian motion was eliminated through the average of obtained images. Flow field distribution of micro channel was obtained by the ensemble cross-correlation algorithm. Experiments exposed that the wall roughness of micro channel has a greater effect on internal flow field. The smaller the size of micro channel was, the greater the wall roughness affected. There existed a low speed vortex cavity at the swerving inside with a complete vortex in three jagged micro-channels. However, there existed a smaller scale low speed vortex cavity with a vortex at the left vertex of flat-jagged micro-channel. Furthermore, there are two vortexes, big intact vortex and superposition vortex on the jag peak of cusp-jagged micro-channel, and compared with the former, and the latter is lower speed, converse and unsteady. The impure substance in low-speed region is prone to deposit and block, hence the structure of micro-channels could be altered.
     The essay utilized "Fluent" numerical analytic computing software to design the optimum micro-scales flowing simulating plan. The designing adopted micro-scales affect manipulating approaches setting wall roughness element and the porous medium simulating wall roughness element. By utilization of standard k-εmodel, RNG k-εmodel, realizable k-εmodel, standard k-ωmodel and sst k-ωmodel provided by Fluent software, the experiment executed relatively numerical simulations on the rectangle cross section micro-scales water flowing with section size of 600μm×600μm and 800μm×800μm in the case of Re=100 and Re=300. The comparison of velocity field computed from various numerical analyses and the fitting degree of Micro-PIV experimental outcome was done. The results showed that better flow field of micro channel could be obtained by the optimum case that designing case via the porous medium simulating wall roughness element under the solution of realizable k-s. Thickness of the porous medium was set by wall roughness element of micro channel. Viscous resistance coefficient and inertial resistance coefficient were calculated by fluid state and resistance within the porous medium.
     Using recommend numerical simulating method of flow field of micro channel, internal flow field of micro channel in micro-irrigation emitter was numerical simulated in three jagged micro-channels under the conditions of the Reynolds number of 100 and 300. By the comparison of velocity field computed from various numerical analyses and the fitting degree of Micro-PIV experimental outcome, we can concluded that this numerical simulating method of micro channel was suitable for the calculation of complex internal flow field of micro channel. Using recommend numerical simulating method of flow field of micro channel, further emitter models in three jagged micro-channels were built under the conditions of the Reynolds number of 100,200 and 300. The analysis and evaluation of results were got at the aspects of distribution of recirculation zone of internal flow field of micro channel, different flow channel scales, pressure drop under the conditions of different Reynolds number, fluid index and flow coefficient. The results showed that cusp-jagged micro-channels had advantages in performance as internal channel of micro-irrigation emitter. However, the impure substance in low-speed region is prone to deposit and block. Partial structure of cusp-jagged micro-channels should be modificated. Considering the reduction of low-speed region and the increase of flow resistance, two rehabilitation programs were built of cusp-jagged micro-channels in micro-irrigation emitter. One of them was to rake cut tooth tip and the other was to cut tooth tip by circular arc. Base on micro channel in micro-irrigation emitter after transformation, numerical model was built and internal flow field was calculated. By evaluation and analysis of results, conclusion could be reached that flow channel structure after transformation improved the performance of micro-irrigation emitter.
引文
[1]Richard Feynman. There's plenty of room at the bottom [J]. Journal OF Microelectromechanical Systems.1992,1(1):60-66
    [2]山仑,黄占岐等.节水农业[M].清华大学出版社,2002
    [3]Chih M H, Yu C T微电子机械系统和流体流动[J].力学进展,1998,28(2):250-272.
    [4]Mala G M, Li D Q. Flow characteristics of water in microtubes[J]. Int. J. Heat and Fluid Flow, 1999,20:142-148.
    [5]Qu W L, Mala G M, Li D Q. Pressure-driven water flows in trapezoidal silicon microchannels[J]. Int. J. Heat and Mass Transfer.2000,43:353-364.
    [6]Eringen C A. Simple microfields[J]. Engineering. Science,1964 2:205-217
    [7]Ariman T,Turk M A, Sylvester N D. Microcontinuum field mechanics-a review[J]. Engineering. Science,1973,11:905-930
    [8]Turkmann D B, Pease R F W. Optimized convective cooling using micromachined structures[J]. Journal of Electrochemical Society,1981,129(3):98-100
    [9]Israelachvili J N. Measurement of the viscosity of liquids in very thin film[J]. Colloid and Interface Science,1986,110(1):263-271
    [10]Nguyen N T, Wereley S T. Fundamentals and Aplications of MicroFluidics [M]. Artech House Inc.2002
    [11]戈德堡D,戈内特B,里蒙D等.滴灌原理与应用[M].西世良,薛克宗,等译.北京:中国农业机械出版社,1984
    [12]傅琳,董文楚,郑耀泉等.微灌工程技术指南[M].北京:水利电力出版社,1988
    [13]李云开,杨培岭,任树梅等.滴头性能综合测试平台构建及其在水力特性研究中的应用[J].农业工程学报,2005,21(增刊):104-106
    [14]王建东.滴头水力性能与抗堵塞性能试验研究[D].北京:中国农业大学,2004
    [15]张俊,赵万华,粟晓玲等.微灌长流道灌水器结构特性的研究综述[J].农业工程学报2005,21(1):182-185
    [16]Karmeli D. Classification and flow regime analysis of drippers[J]. Journal of Agricultural Engineering Research,1977(22):165-173
    [17]Tal S, Zur B. Flow regime in helical long-path emitters[J]. Journal of Irrigation and Drainage Division, ASCE,1980,106(IRI):27-35
    [18]Claad Y K, Klous L Z. Hydraulic and mechanical properties of drippers[C]. Proceedings of the 2nd International Drip Irrigation Congress,1976
    [19]Ozekici B, Ronald S. Analysis of pressure losses in tortuous-path emitters[M]. America Society of Agriculture Engineering,1991:112-115
    [20]方部玲,赵德菱,韩柏和等.圆片式迷宫长流道滴头的研究[C].中国农业机械学会耕作机械学会论文集,1996:145-150
    [21]王建东,李光永,邱象玉等.流道结构形式对滴头水力性能影响的试验研究[J].农业工程学 报,2005,21(2):100-103
    [22]陈瑾.迷宫滴头流道结构形式的性能研究[D].北京:中国农业大学,2006:9-13
    [23]姚彬,刘志烽,张建萍.流道长度对内镶贴片式浦头性能参数影响的初步研究[J].节水灌溉,2003,28(5):38-39
    [24]仵峰,范永申,李辉等.地下滴灌灌水器堵塞研究[J].农业工程学报,2004,20(1):80-83
    [25]张燕新,陈凤,李华莹.单翼迷宫贴壁式滴灌带水力性能初步试验研究[J].干旱地区农业研究,2004,22(4):25-29
    [26]潘伟,刘立兵,赵毅等,基于RP、RT技术的新型滴灌用滴头模具和产品的设计制造[J].模具技术,2001(3):38-41
    [27]王爱蕾.圆头内镶式系列滴灌管的研制[J].山东机械,2002,(1):15-17
    [28]王瑞环,赵万华,杨来侠等,基于快速成形技术滴头的结构试验研究[J].西安交通大学学报,2003(5):542-545
    [29]魏正英.迷宫型滴灌灌水器结构设计与快速开发技术研究[D].西安:西安交通大学,2003
    [30]李云开.滴头分形流道设计及其流动特性的试验研究与数值模拟[D].北京:中国农业大学2005
    [31]王尚锦,刘小民,席光等.迷宫式滴头内流动的有限元数值分析[J].农业机械学报,2000,31(4):44-46
    [32]魏青松,史玉升,董文楚等.新型灌水器快速自主开发数字试验研究[J].节水灌溉,2004,(1): 10-14
    [33]张俊,魏公际,赵万华等.微灌滴头内圆弧形流道的液固两相流场分析[J].中国机械工程,2007,18(5):589-593
    [34]张俊,洪军,赵万华等.基于正交试验的迷宫流道微灌滴头参数化设计研究[J].西安交通大学学报,2006,40(1):31-35
    [35]孟桂祥,张鸣远,赵万华等.滴灌滴头内流场的数值模拟及流道优化设计[J].西安交通大学学报,2004,38(9):920-924
    [36]Salvador P G, Arverde J, Bralts V F. Hydraulic flow behaviour an in-line emitter labyrinth using CFD techniques[J]. ASAE Paper,2004
    [37]李永欣,李光永,邱象玉等.迷宫滴头水力特性的计算流体动力学模拟[J].农业机械学报,2005,21(3):12-16
    [38]王文娥,王福军,严海军.迷宫滴头CFD分析方法研究[J].农业机械学报,2006,37(10):70-73
    [39]张凯.微器件中流体的流动与混合研究[D].杭州:浙江大学,2007
    [40]Hasegawa T, Suganuma M, Watanabe H. Anomaly of excess pressure drops of the flow through very small orifices[J]. Phys Fiulds,1997,9(1):1-3
    [41]Harley J, Bau H H, Zemel J, etal. Fluid flow in micron and sub micron channels[J]. In:Proc. Of the IEEE,1989,89(THO249-3):25-28
    [42]Choi S B, Barron R F, Warrington R O. Fluid flow and heat transfer in microtubes[J]. ASME Proceedings,1991,32:123-134
    [43]Pfahler J N. Liquid transport in micro and submicron channels [D]. PA:University of Pennsylvania,1992
    [44]Rahman M M, Gui F. Experimental measurements of fluid flow and heat transfer in microchannel cooling passages in a chip substrate [J]. Advances in Electronic Packaging, ASME, 1993,4(2):685-692
    [45]Peng X F, Peterson G P, Wang B X. Friction flow characteristics of water flowing through rectangular microchannels [J]. Exp. Heat Transfer,1994,7:249-264
    [46]Peng X F, Peterson G P, Wang B X. Heat transfer characteristics of water flowing through microchannels [J]. Experimental Heat Transfer,1994,7:265-283
    [47]Peng X F, Peterson G P. Forced convection heat transfer of single phase binary mixtures through microchannels[J]. Experimental Thermal and Fluid Science,1996,12:98-104
    [48]Wang B X, Peng X F. Experimental investigation on liquid forced convection heat transfer through microchannels[J]. Int.J.Heat Mass Transfer,1994,37(Suppl.l):73-82
    [49]Eringen A C. Theory of thermomicrofluids[J]. Journal of Mathematical Analysis and Applications,1972,38:480-496
    [50]Arkilic E B, Breuer K S, Schmidt M A. Gaseous flow in microchannels[J]. ASME Appl. Microfab. Fluid Mech,1994,197; 57-66
    [51]Ho C M, Tai Y C. Micro-electro-mechanical systems(MEMS) and fluid flows[J]. Annu. Rev. Fluid Mech,1998,30:579-612
    [52]Hatch A, Kambolz A E, Holman G, Yager P. A ferrofluidic magnetic micropump[J]. Journal of Microelectromechanical systems,2001,10(2):215-221
    [53]Khoo M, Liu C. A novel micromachined magnetic membrane microfiuld pump[J]. Proceedings of the 22th annual EMBS international conference,2000,7:2394-2397
    [54]杨宜民,谭湘强,钟映春.微流体力学几个问题的探讨[J].广东工业大学学报,2001,18(3):46-48
    [55]Stemme G, Kittilaland G, Norden B. A submicron particle filter in silicon channels[J]. Sensors and Actuators,1990,431(4):21-23
    [56]Tretheway D C, Meinhart C D. Apparent fluid slip at hydrophobic microchannel wall[J]. Physics of Fluid,2002,14(3):L9-12
    [57]Tretheway D C, Meinhart C D. A generating mechanism for apparent fluid slip in hydropnobic microchannels[J]. Physics of Fluid,2004,14(5):1509-1515
    [58]章梓雄,董曾男.粘性流体力学[M].北京:清华大学出版社,1998
    [59]Thompsonthe P A, Robinson M O, Shear flow near solid:Epitaxial order and flow boundary conditions[J]. Phys. Rev.A,1990,411:6830-6837
    [60]崔海航,简单液体在微米尺度管道中流动特性的实验研究[D].北京:中国科学院力学研究所,2005
    [61]Eric Lauga, Michael P.Brenner, Howard A.Stone. The no-slip boundary condition:a review. Handbook of Experimental Fluid Dynamics, Springer Page3,2005
    [62]Jia Ou, Blair Perot, Jonathan P.Rothstein. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids,2004,16(12):4635-4643
    [63]Koplik J, Banavar J F, Willemsen J F. Molecular dynamics of fluid flow at solid surfaces[J]. Phys. Fluid A,1989,11:781-794
    [64]Priezjev N V, Trojan S M. Molecular origin and dynamic behavior of slip in sheared polymer films[J]. Phys Rev Letters,2004:9211-9214
    [65]Jabbarzadeh A, Atkinon J D, Tanner R I. Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of coquette shear flow between two sinusoidal walls[J]. Physical Review E,2000,61(1):690-199
    [66]Thompsonthe P.A. Trioian S M. A general boundary condition for liquid flow at solid surfaces[J]. Nature,1997,389:360-362
    [67]Blake T D. Slip between a liquid and a solid:D.M.Tolstoi's theory reconsiderition[J]. Colloids and Surfaces,1990,47:135-145
    [68]Churave N V, Sobolev V D, Somov A N. Slippage of liquid over lyophbic solid surfaces[J]. Journal of Colloids and Interface Science,1984,97(2):575-581
    [69]Pei Yiwu, Littlc W A, Measurement of friction factors for the flow of gases in very fine channels used for microminature[J]. Joule-thomson refrigerators, Cryogenics,1983,23(5):273-277
    [70]Judy J, Maynes D, Webb B W. Characterization of frictional pressure drop for liquid flows through microchannels[J]. International Journal of Heat and Mass Transfer,2002,45:3477-3489
    [71]Sharp K V, Adrian R J. Transition from laminar to turbulent flow in liquid filled micro-tubes[J]. Experiments in Fluids,2004,36:741-747
    [72]CUI Hai-hang, LI Zhan-hua. Flow characteristics of liquids in microtubes driven by a high pressure[J]. Physics fluids,2004,16:1803-1810
    [73]Wu P, Little W A. Measurement of friction factors for the flow of gases in very fine channels Used for microminiature joule-thomson refrigerators [J]. Cryogenics,1983,23:273-277.
    [74]Wilding P, Phahler J, Bau H H, Zemel J N, Kricka L J. Manipulation and flow of biological fluids in straight channels micromachined in silicon [J]. Clin. Chem.,1994,40:43-47
    [75]Jiang X N, Zhou Z Y, Yao J, Ye X Y. Micro-fluid in microchannel.Tranducers'95:Uurosensor IX, 8th Int. Conf. on Solid-State Sensors and Actuators and Eurosensors IX [C]. Sweden 1995, 317-320
    [76]Flockhart S M, Dhartiwal R S. Experimental and numerical investigation into the flow characteristics of channels etched in<100> silicon [J]. J. of Fluids Eng.,1998,120:291-295
    [77]Sharp K V, Adrain R J, Beebe D J. Anomalous transition to turbulence in microtubes, Proc. Int. Mech. Eng. Cong. Expo.5th Micro-Fluidic Symp. Nov.5-10 [C]. Orlando, FL.2000
    [78]Pfahler J, Harley J, Bau H, Zemel J. Liquid transport in micron and submicro-channels [J]. Sensors and Actuators A21-A23.,1990:431-434
    [79]Pfahler J, Harley J, Bau H, Zemel J. Gas and liquid in small channels, DSC, Microsructures, Sensors and Actuators, ASME Winter Annual Meeting [C]. Dallas, TX,1990,19:149-157
    [80]Pfahler J, Harley J, Bau H, Zemel J. Gas and liquid in small channels, Microsructures, Sensors and Actuators, ASME Winter Annual Meeting [C]. Atlanta, GA,1991,32:49-59
    [81]Yu D, Warrington R, Barron R, Ameel T. An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. Proc. of ASME/JSME Thermal Engineering Joint Conf. March 19-24 [C]. Maui, HI,1995,532-530
    [82]周光坰,严宗毅,许世雄,章克本.流体力学[M].第二版.北京:高等教育出版社,2000
    [83]Brody J P, Yager P, Goldstein R E, Austin R H. Biotechnology at low Reynolds numbers [J]. Biophys. J.1996,71:3430-3441
    [84]Brody J P, Yager P. Low Reynolds number microfluidic devices:technical digest [J]. Solid State Sensors and Actuator Workshop.1996,7:105-108
    [85]Chen Z, Milner T E, Dave D, et al. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett,1997,22:64-66
    [86]Santiago J G, Werely S T, Meinhart C D. A particle image velocimetry system for microfluidics [J]. Exp. in Fluids,1998,25:316-319
    [87]Meinhart C D, Werely S T, Santiago J G. PIV measurements of a microchannel flow [J]. Exp. in Fluids,1999,27:414-419
    [88]Koutsiaris A G, et al. Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries [J]. Meas. Sci. Technol.,1999,10:1037-1046
    [89]Meinhart C D, Zhang H. The flow stucture inside a microfabricated inkjet printhead [J]. Journal of Microelectromechanical systems,2000,9(3):67-75
    [90]Klank H, Goranovic G et al. PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behavior [J]. J. Micromech. Microeng.,2002,12:862-869
    [91]Zeihami R, Laser D, Zhou P, Asheqhi M, et al. Experimental investigation of flow transition in microchannels using micro-resolution particle image velocimetry. Thermomechanical Phenomena in Electronic Systems Proceedings of the Intersociety Conference [C].2000,2 148-159
    [92]王健,郝鹏飞,何枫.梯形截面微管道内流场的PIV测量[J].实验流体力学,2005,19(3):94-98
    [93]Steinrnan D A. Simulated pathline visualization of computed periodic blood flow patterns [J]. Journal of Biommhanics,2000 (33):623-628
    [94]Meinhart C D, Zhang H. The flow stucture inside a microfabricated inkjet printhead [J]. Journal of Microelectromechanical systems,2000,9(3):67-75
    [95]Gomez R, Bashir R, Sarikaya A, et al. Microfluidic bioship for Impedance spectroscopy of biological species [J]. Biomedical Microdevices,2001,3 (3):201-209
    [96]Hohreiter V, Wereley J N, et al. Cross-correlation analysis for temperature measurement[J]. Meas. Sci. Tech,2002,13:1072-1078
    [97]Gui L. Wereley S T. Lee S Y. Simultaneous. Spatially-resolved temperature and velocity measurements using cross-correlation PIV. Proceedings of the 11th International Symposium on the Appliction of Laser Techniques to Fluid Mechanics[C]. Lisbon,2002
    [98]Park H, Pak J J, Son S Y, et al. Fabrication of a microchannel integrated with inner sensors and the analysis of its laminar flow characteristics[J]. Sensors and Actuators A,2003,103:317-329
    [99]王飞,王健,何枫.无移动部件微泵的设计、制造及基于微PIV技术的流动测量[J].实验流体力学,2005,19(3):67-72
    [100]傅新,谢海波,杨华勇Micro-DPIV技术在微型无阀泵瞬变流场检测中的应用[J].自然科学进展,2005,15(3):336-342
    [101]Webb A, Maynes D. Velocity profile measurements in microtubes.30th AIAA Fluid Dyn. Conf., June 28-July 1 [C]. Norfolk, VA, AIAA,1999,3803
    [102]Lanzillotto A M, Leu T S, Amabile M, Wildes R. An investigation of microstructure and microdynamics of fluid flow in MEMS. AD, Proc. of ASME Arrospace Division [C]. Atlanta, GA,1996,52:789-796
    [103]Chen Z, Milner T E, Dave D, Nelson J S. Optical doppler tomographic imaging of fluid flow velocity in highly scattering media.1997,22:64-66
    [104]Yazdanfar S, Kulkarni M D, Izatt J A. High resolution imaging of in vivo cardiac dynamics using color doppler optical coherence tomography [J]. Opt. Exp.1997,1:424-431
    [105]Tieu A K, Mackenzie M R, Li E B, Measurements in microscopic flow with a solid-state LDA [J]. Exp. Fluids,1995,19:293-294
    [106]Wereley S T, Gui L, Santiago C D. Advanced algorithms for microscale particle image velocimetry [J].AIAA Journal,2002,4(6):1047-1055
    [107]Keane R D, Adrian R J. Optimization of particle image velocimeters. Part Ldouble pulsed systems. Meas Sci Technol.1990,1(11):1202-1215
    [108]Grant I. Particle image velocimetry:a review. Proc Instn Mech Engrs,1997,211:55-76
    [109]Keane R D, A drian R J, Zhang Y. Super-resolution particle imaging velocimetry [J]. Measurement Science Technology,1995,(6):754-768
    [110]Maclnnes J M, Du X, Allen R W K. Prediction of electrokinetic and pressure flow in a microchannel T-junction [J]. Physics of Fluids,2003,15(7):1992-2005
    [111]TSI. INSIGHTTM Particle Image Velocimetry Software Operation Manual [S].2003
    [112]TSI. INSIGHTTM Particle Image Velocimetry Software Instruction Manual [S].2004
    [113]Cooke. PCO.CamWare User's Manual [S].2004
    [114]Cooke. PCO.CamWare Software Operation Manual [S].2004
    [115]Wereley S T, Meinhart C D, Gray M H B. Depth effects in volume illuminated particle image velocimetry. In:The Third International Workshop on Particle Image Velocimetry [C]. Santa Barbara,1999,545-550
    [116]Paul P H, Arnold D W, Rakestraw D J. Electrokinetic generation of high pressures using porous microstructures. Micro Total Analysis Systems [C]. Ed. Harrison D J and Van den Berg A.1998, 49-52
    [117]Meinhart C D, Wereley S T, Gray M H B. Volume illumination for two-dimensional particle image velocimetry [J]. Meas. Sci. Tech.,2000,11(6):809-814
    [118]Wereley S T, Meinhart C D, Santiago J G. Velocimetry for MEMS applications. Micro-Fluidics Symposium [C]. Anaheim,1998,453-459
    [119]Inoue S, Spring K. Video Microscopy:The Fundermentals [M]. Plenum Publishing Corp. NY, 1997
    [120]Born M, Wolf E. Principles of Optics [M].7th ed. Cambridge University Press,1999
    [121]Meinhart C D, Wereley S T, Santiago J G. A PIV algorithm for estimating time-averaged velocity fields [J]. J. Fluids Eng.,2000,122(2):285-289
    [122]Wereley S T, Santiago J G, Chiu R. Micro-resolution particle image velocimetry. SPIE's Bios'98-International Biomedical Optics Symposium [C].1998,122-123
    [123]Michael G O, Ronald J A. Brownian motion and correlation in particle image velocimetry [J].. Optics&Laser Technology,2000,(32):621-627
    [124]Merkle C L, Kubota T, Ko D R S. An analytical study of the effects of surface roughness on boundary-layer transition [R]. AF OAce of Scin. Res. Space and Missile Sys. Org., AD/A004786.1974
    [125]Wereley S T, Gui L, Meinhart C D. Flow measurement techniques for the microfrontier [J]. AIAA Journal,2002,40(6):1047-1055
    [126]Wereley S T, Hohreiter V P. Digital filters for reducing background noise in micro PIV measurements. Proceedings of the 11th International Symposium on the Application of Laser Techniques to Fluid Mechanics [C]. Lisbon,2002
    [127]王昊利,王元Micro-PIV技术:粒子图像测速技术的新进展[J].力学进展,2005,35(1):77-99
    [128]谢海波,傅新,杨华勇等.典型微管道流场数值模拟与Micro-PIV检测研究[J].机械工程学报,2006,42(5):32-38
    [129]水利部农村水利司、水利部农田灌溉研究所.节水灌溉技术规范(SL207-98).北京:中国水利水电出版社,1999
    [130]中华人民共和国水利部.微灌工程技术规范(SL103-95)北京:中国水利水电出版社,1996
    [131]秦为耀等.节水灌溉技术[M].北京:中国水利水电出版社,2000
    [132]周卫平等.微灌工程技术[M].北京:中国水利水电出版社,1999
    [133]王启杰.对流传热传质分析[M].西安:西安交通大学出版社,1986
    [134]Gad-el-Hak M. The fluid mechanics of microdevices:the freeman scholar lecture[J]. Journal of Fluids Engineering,1999,121:5-33
    [135]Bridgman P W. Thermal conductivity of liquids under pressure[C]. Proc. Am. Acd. Arts Sci. 1923,59:141-169
    [136]Vinogradova O I. Slippage of water over hydrophobic surfaces[J]. Int. J. Miner. Process, 1999,56:31-60
    [137]Cottin-Bizonne C, Barrat J L, Bocquet L, et al. Low friction liquid flows at nanopatterned interfaces[J]. Nat,Mater,2003,2:237-240
    [138]Lauga E, Stone H A. Effective slip in pressure-driven Stokes flow[J]. Journal of Fluid Mech., 2003,489:55-77
    [139]Yang C, Li D Q. Analysis of electronkinetic effects on the liquid floe in rectangular microchannels[J]. Colloids Surf, A,1998,143(2-3):339-353
    [140]Pit R, Herver H, Leger L. Direct experimental evidence of slip in hexadecane:Solid interfaces[J]. Phys. Rev. Lett,2000,85:980-983
    [141]Sharp K V, Adrian R J, Santiago J G, et al. Chapter 6:Liquid flows in microchannels[P]. Microscale Thermophysical Eng.5,2001
    [142]Choi C H, Westin K J A, Breuer K S. To slip or not to slip-water flows in hydrophilic microchannels[C]. Proc. ASME IMECE, New Orleans, LA, Pap.2002-33707
    [143]Panton R L. Incompressible Flow[M]. Second Edition, Wiley-Interscience,NY,1996
    [144]A. S. Rawool, Sushanta K, Mitra. S. G. Kandlikar, Numerical simulation of flow through microchannels with designed roughness[J]. Microfluid Nanofluid,2006(2):215-221.
    [145]张大林,秋穗正,苏光辉,贾斗南.梯形微通道内充分发展层流摩擦阻力特性的数值研究[J].原子能科学技术.2008,42(8):739-742
    [146]陈建华,张会强张贵田.含人为粗糙元微小冷却通道内的流动与换热[J].清华大学学报(自然科学版).2008,48(5):900-903
    [147]王玮,李志信,过增元.粗糙表面对微尺度流动影响的数值分析[J].工程热物理学报,2003,24(1):85-87.
    [148]陈强,杨静宇,董涛,陈运生,戈肖鸿,解健芳.微管道换热器多孔介质模型分析及应用[J].机械工程学报,2004,40(4):108-113.
    [149]郝鹏飞,姚朝晖,何枫.粗糙微管道内液体流动特性的实验研究[J].物理学报,2007,56(08):4728-4733
    [150]郝鹏飞,何枫,朱克勤.微管道内湍流转捩的实验研究[J].工程力学,2006,23(6):30-34
    [151]C.P.Tso, S.P.Mahulikar, Experimental verification of the role of Brinkman number in microchannels using local parameters[J]. International Journal of Heat and Mass Transfer, 2000.43:1837-1849
    [152]聂磊,史玉升,魏青松,芦刚,董文楚.基于灌水器流量的湍流模型适应性研究[J].节水灌溉,2008(1):13-17.
    [153]Ozekici, Bulent, Sneed, et al. Analysis of pressure losses in tortuous path emitters[J]. America Society of Agriculture Engineering, Paper No.912155.1991.
    [154]杨培岭,雷显龙.滴灌用灌承器的发展及研究[J].节水灌溉,2000(3):15-17.
    [155]杨培岭,任树梅.发展我国设施农业节水灌溉技术的对策研究[C].21世纪中国微灌发展战略研讨会论文,北京:1999.11.
    [156]Murray S P. Velocities and vertical diffusion of particles in turbulence water[J]. Journal of Geophysics Research,1970,75(9):73-84.
    [157]杨华勇,谢海波,傅新.微流体机械全流场数字粒子图像测速技术[J].机械工程学报,2001,37(10):31-35
    [158]谢海波.微流场可视化测速技术及其应用[J].中国机械工程,2007,18(9):1100-1103
    [159]谢海波,傅新,杨华勇.微流场可视化测速技术及其应用[J].机械工程学报,2007,18(9):1100-1103
    [160]Paulau S G, Arviza V G, Bralts V F. Hydmulic flow behaVior through an in-line emitter labyrinth usillg CFD techniques[A]. ASAE/CSAE Meeting[C]. Canada, ASAE/CSAE,2004:1-8
    [161]Lueptow R M, Akonur A, Shinbrot T. PIV for granular flows[J]. Experiments in Fluids,2000, 28:183-186
    [162]Wei Zhengying, Wang Xinkun, Tang Yipng, et al. Rapid Finalization for Drip Irrigation Emitters Based on Rapid Prototyping& Manufacturing(RP&M)[J]. Transactions of the CSAE,2002, 18(5):102-105
    [163]魏青松,史玉升,董文楚等.滴灌灌水器流体流动机理及其数字可视化研究[J].中国农村水利水电,2004,(3):1-4
    [164]李永欣,李光永,邱象玉等.迷宫滴头水力特性的计算流体动力学模拟[J].农业工程学报,2005,21(3):12-16
    [165]魏正英,赵万华,唐一平等.滴灌灌水器迷宫流道主航道抗堵设计方法研究[J].农业工程学报,2005,21(6):1-7
    [166]魏正英,唐一平,温聚英等.灌水器微细流道水沙两相流分析和微PIv及抗堵实验研究[J].农业工程学报[J],2008,24(6):1-9
    [167]王文娥,王福军.片状迷宫滴头中悬浮颗粒浓度分布规律数值分析[J].农业工程学报,2007,23(3): 1-6
    [168]穆乃君,张昕,李光永等.内镶片式齿型迷寓滴头抗堵塞试验研究[J].农业工程学报,2007,23(8):34-39
    [169]曹建生,张万军.微灌节水技术与机理研究[J].节水灌溉,2000,(6),5-7
    [170]李勇,江小宁.微管道流体的流动特性[J].中国机械工程,1994,5(3):24-25
    [171]王建东,李光永.齿形迷宫流道结构参数对滴头水力性能影响的试验研究[J].第六次全国微灌大会论文汇编,2004,5:246-266
    [172]王建东,李光永.迷宫流道结构对滴头抗堵性能影响的试验研究[J].第六次全国微灌大会论文汇编,2004,5:253-261
    [173]李光永,王建东,付敬娥.迷宫流道结构对滴头抗堵性能影响的试验研究[J].第六次全国微灌大会论文汇编,2004,5:262-266
    [174]王昊利.微通道流动的理论分析和实验研究[D].西安交通大学博士论文,2006
    [175]王昊利,王元Micro-PIV技术:粒子图像测速技术的新进展[J].力学进展,2005,35(1):77-99
    [176]Wang H L, Wang Y. Influence of ribbon structure rough wall on the Microscale Poiseuille flow. [J].,Journal of Fluid Engineering. ASME,2005,127(6):1140-1145.
    [177]Haoli Wang, Yuan Wang, Flow in the microchannel with rough wall:flow pattern and pressure drop, [J].Journal of Micromechanics and Microengineering,2007,17 (3):586-596
    [178]HaoLi Wang, Yuan Wang, Influence of three-dimensional wall roughness on the laminar flow in microtube, [J].Heat and Fluid Flow 2007 28(2):220-228
    [179]王昊利 王元 邢丽燕,微通道内流的微尺度粒子图象测速技术实验研究[J].西安交通大学学报.2007 41(11):1355-1359
    [180]Tuckmann D B. Heat transfer microstructure for Integrated circuit[D]. U.S.A.:Stanford University, 1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700