滴灌灌水器水力性能与快速制造方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灌水器产品性能的好坏直接影响微灌系统的灌水质量和使用寿命,其堵塞与开发、运行成本高的问题使得微灌技术的推广应用受到一定限制。如何实现灌水器试验样件的快速制造是开发具有自主知识产权新型灌水器的关键问题之一。本文在国家863重大专项等项目资助下,构建了灌水器结构快速定型的快速制造成套技术,揭示了灌水器迷宫流道的局部阻力特征与流道结构、工作水压、流场特征之间的变化规律,分析了不同流道断面尺寸及流道结构对灌水器堵塞的影响规律,研究了在微压条件下灌水器的流态特征、出水均匀度及其抗堵塞性能,并提出了一种变过流截面压力补偿结构的新型流道,为新型灌水器开发与性能评价奠定了理论和技术基础。
     在灌水器产品快速制造方面:构建了灌水器“一体式”、“分体式”快速制造方法以及小批量快速制造方法的成套技术,可用于不同类型灌水器产品结构的快速定型;系统分析了快速成形得到的灌水器产品样件表面台阶效应引起的粗糙度变化规律对灌水器结构定型精度的影响规律。
     在灌水器内流道局部阻力特征方面:针对五种产品的流道结构形式(齿形流道、矩形流道、菱形绕流流道、矩形绕流流道和涡流流道)分别设计1-5个流道单元的试验件,并进行了快速制造;实施了试验件在9组工作水压下的压力-流量试验,分析了流道结构、工作水压、流场特征对局部阻力特征的影响规律;比较了各流道结构局部阻力系数的试验计算值与经验值,发现对于具有复杂形状的流道,应视为一个流道整体来计算局部水头损失。
     在灌水器结构对堵塞性能的影响规律方面:设计并制造了6种流道结构形式13种流道断面尺寸的组合流道板,实施了从16mH20-2mH20的8组工作水压条件下的清水及强化堵塞试验;试验结果表明,0.4mm的断面深度尺寸仍可以保证6种流道形式都不容易发生堵塞;流道的宽度与深度之比大于2:1时灌水器可以获得较好的抗堵塞性能
     在灌水器微压特性方面:试验发现,补偿式滴头在微压阶段补偿效果较常压时差;部分补偿式滴头由于启动临界水压的存在,导致出水均匀度也较差,但超过启动水压后则与常压时基本一致;非补偿式滴头、滴箭和滴灌带产品在微压时的出水均匀度与常压时相比没有明显变化;在强化堵塞试验中微压与常压时灌水器堵塞率有很大变化,Plastro黑色滴头、Netafim灰色滴头与大禹节水三角滴灌带这三种产品在微压条件下的抗堵塞性能良好。
     在新型压力补偿式灌水器的快速制造方面:提出了一种新型流道结构形式,能够直接实现流道内的过流截面随工作压力的变化而变化的压力补偿功能;设计了四组不同弹性挡片设置的流道,快速制造出流道放大模型的试验样件,并进行了压力-流量试验;试验发现等距、间隔分布弹性挡片,且挡片长度尺寸较大时,出水流量最小,并在4mH_2O~12mH_2O压力范围内具有较好的压力补偿效果。
     综上所述,本文对灌水器结构快速定型与快速制造、灌水器流道局部阻力特征、流道断面尺寸和结构对堵塞性能的影响以及灌水器微压特性等方面进行了系统深入的研究,同时提出了一种新型压力补偿式流道结构,研究成果将为具有自主知识产权新型灌水器的开发以及制造工艺的选择提供重要的理论和技术指导。
The irrigation quality and service life of micro-irrigation system have been directly affected by properties of Drip emitter products. The promotion and applications of micro-irrigation technology have been limited due to its clogging and high running costs. In order to develop a new emitter with independent intellectual property rights, one of the key issues is how to produce drip emitters' test sample by the method of rapid manufacturing. Under the support of some projects such as the State 863 Major Project of China, all the work in the paper had been finished. It includes to constructs rapid manufacturing sets of technology in the structure quickly stereotyped of the drip emitter and proposes a new pressure compensation channel structure with variable flow section. It also reveals the influence laws on local resistance characteristic of emitter labyrinth channel varying with channel structure, work pressure and water flow pattern. Moreover, the paper analyzes flow cross section of different size and flow channel structures how to impact the drip emitters' clog, and studies the flow pattern, uniformity of water and anti-clogging properties of drip emitter in the condition of low-pressure. The theoretical and technical foundation will be established for the development and property evaluation of new type emitter.
     In the aspect of drip emitter's rapid manufacturing:to construct sets of technology consisted of "integrated" and "split" rapid manufacturing methods, and small quantities rapid manufacturing methods, which can be used for different types of emitter products in fast stereotyping; to systematically analyze the variation lows on the accuracy of emitter structure stereotyping by samples'surface step effects and roughness.
     In the aspect of the emitter labyrinth channel's local resistance characteristics:to respectively design and rapid manufacture five products'flow channel structure (tooth channel, rectangular channel, diamond around channel, rectangular around channel and eddy channel) for 1 to 5 channel units; to implement the pressure-flow test under the 9 groups of work pressures; to analyze the impact law of channel structure, work pressure and water flow pattern to the local resistance characteristics. The results indicated that for flow channel with complex shapes should be considered as a whole to calculate the flow of local head loss, after comparing test calculations with the empirical value of the flow structures'local resistance coefficient.
     In the aspect of emitter structures'influence law on clogging property:to design and manufacture combination channel plates with six kinds of flow structure and 13 kinds of flow section size, and to implement water and strengthen clogging experiments from 16mH2O-2mH2O under the 8 groups of work pressures. The results showed that it can assure 6 kinds of flow channel not clogged when the depth cross-section size is 0.4mm. It will have a good anti-clogging performance when the flow ratio of channel width and depth is more than 2:1.
     In the aspect of hydraulic performances of drip emitters under low-pressure:to find that compensating function of compensated emitter in low-pressure is worse than that in normal pressure; some compensated emitters' water uniformity is also poor in low pressures, due to the presence with the critical value of starting water pressure, however, it will agree with that in normal pressure once the pressure exceeds the starting pressure; comparing with the uniformities in the low-pressure has no significant change can be found for those of non-compensating emitters, drip arrows and drip-tapes in the normal pressure. In strengthening clogging experiments, emitters'clogging ratio in low pressures raised greatly compared with the normal pressures. Plastro black emitters, Netafim gray emitters and DaYu triangular drip-tapes, have good anti-clogging property in the low-pressure conditions.
     In the aspect of new pressure compensated emitter's rapid manufacturing:to propose a new flow channel structure that can be directly realized the cross-flow section changes with work pressure in the flow channel, thereby achieves the pressure compensation function; to design four different kinds of elastic piece setting methods in the flow channel and rapidly fabricate the test samples of channel amplification model, all pressure - flow experiments have been carried out. The study found that the water flow is least when elastic pieces with the large length are distributed equidistant and interval. Moreover, it has good pressure compensation effect during 4mH2O to 12mH2O pressure range.
     In summary, the study concerns on the research of rapid stereotyping and rapid manufacturing of emitters' structure, local resistance characteristics of emitter labyrinth channel, influences on clogging properties that section size and structure of channels have. Low-pressure properties of emitters are also studied deeply. At the same time, a new pressure compensated flow channel structure is proposed. The research achievements will provide significant theoretical basis and technical guidance for the development and manufacturing process choice of new-type emitters with independent intellectual property rights.
引文
[1]Eckstein K, Fraser C, Botha A, Husselmann J. Evaluation of various irrigation systems for highest economical yield and optimum water use for bananas. First International Symposium on Banana in the Subtropics,1998,490:147-157.
    [2]Sermet O, Mehmet E.C, Derya O, Sevgi C. Different irrigation methods and water stress effects on potato yield and yield components. Agricultural water management,2005,73(1):73-86.
    [3]Gilaad Y., Krystal L. Zanker K. Hydraulic and mechanical properties of drippers. Proceedings of the 2nd International Drip Irrigation Congress. San Diego, California, USA,1974:311-316.
    [4]翟国亮,冯俊杰.复合流道薄壁滴灌带的特性分析.节水灌溉,2004,(6):18-20.
    [5]刘洁,魏青松,芦刚等:滴灌带生产线技术的发展概况.节水灌溉,2009,(7):40-43.
    [6]詹姆斯·塞得雷克·罗伯特.滴灌带.中国专利,CN 86103543A,1987-12-02.
    [7]Buluschek,Bruno. Method for manufacturing drip irrigation tubes. United States Patent,5744779,1998-04-28.
    [8]http://www.netafim.com/products
    [9]http://www.plastro.com
    [10]http://www.naandan.com
    [11]http://www.t-tape.com
    [12]http://www.toromicroirrigation.com
    [13]Hanson B.R., Schwankl L.J., Schulbach K.F. et al. A comparison of furrow, surface drip, and subsurface drip irrigation on lettuce yield and applied water. Agricultural water management,1997,33(2-3):139-157.
    [14]薛亮.中国节水农业理论与实践.北京:中国农业出版社,2002.
    [15]http://www.metzerplas.com
    [16]http://www.rainbird.com
    [17]许平.我国微灌技术和设备现状及市场前景分析.节水灌溉,2002,(1):33-36.
    [18]李光永,龚时宏,史湘昆等.我国微灌发展现状、问题剖析与建议.第八届全国微 灌大会,甘肃酒泉,2009.
    [19]魏青松.自抗堵滴灌灌水器设计及快速开发成套技术研究.博士学位论文.武汉:华中科技大学,2006.
    [20]王建东.滴头水力性能与抗堵塞性能试验研究.硕士学位论文.北京:中国农业大学,2004年.
    [21]魏青松,史玉升,鲁俊等.滴灌灌水器低成本快速开发理论与方法研究.农业工程学报,2005,21(2):17-21.
    [22]史玉升,魏青松,鲁俊等.农业节水产品(灌水器)低成本快速开发方法研究.节水灌溉,2004,(5):31-32.
    [23]赵德菱,方部玲,高崇义.DL型螺纹式滴头的研制.节水灌溉,1998,(5):26-28.
    [24]魏正英,唐一平,赵万华等.节水滴管模具快速制造方法研究.中国机械工程,2002,13(17):1449-1452.
    [25]Wei Zhengying, Wang Xinkun, Tang Yiping, et al. Rapid finalization for drip irrigation emitters based on rapid prototyping&manufacturing. Transactions of the CSAE,2002,18 (5):102-105.
    [26]Wei Zhengying, Tang Yiping, Lu Bingheng. A rapid manufacturing method for water-saving emitters for crop irrigation based on rapid prototyping and manufacturing. Advanced Manufacturing Technology,2003,21:644-648.
    [27]Zhengying Wei, Yiping Tang, Wanhua Zhao, et al. Rapid development technique for drip irrigation emitters. Rapid Prototyping Journal,2003,9 (2):104-110.
    [28]魏正英,赵万华,杨斌等.内镶柱式压力补偿滴头的快速定型.快速响应制造.西安:西安交通大学出版社,2003:161-167.
    [29]王瑞环,赵万华,杨来侠等.基于快速成形技术滴头的结构试验研究.西安交通大学学报,2003,37(5):542-545.
    [30]Zhengying Wei, Yiping Tang, Wanhua Zhao, et al. Rapid structural design of drip irrigation emitters based on RP technology. Rapid Prototyping Journal,2007,13 (5):268-275.
    [31]魏正英,唐一平,程应社等.一体式压力补偿灌水器快速设计新方法.中国机械 工程,2008,19(12):1387-1392,1405.
    [32]Carol Anderson. Rapid prototyping and manufacturing in the USA. Rapid prototyping Journal,1997,3(3):120-121.
    [33]莫健华,史玉升,叶春生等.快速成形及快速制模.北京:电子工业出版社,2006.
    [34]Byun, H.S., Lee, K.H. A decision support system for the selection of a rapid prototyping process using the modified TOPSIS method. International Journal of Advanced Manufacturing Technology,2005,26(11-12):1338-1347.
    [35]Paul F. Jacobs:Stereolithography and other RP&M Technologies, American Society of Mechanical Engineers (ASME) Press,1996, New York.
    [36]Howell T A,Hiller E A. Trickle Irrigation Design. Transactions of the ASAE,1974,17:902-908.
    [37]Karmeli D. Classification and flow regime analysis of drippers. Journal of Agricultural Engineering Research,1977,22:165-173.
    [38]Keller J., Bliesner R.D. Sprinkler and trickle irrigation. New York:Van Nostrand Reinhole,1990.
    [39]郭维东,裴国霞,韩会玲等.水力学北京:中国水利电力出版社,2005.
    [40]高永强.光固化快速成形工艺及设备关键技术研究.博士学位论文.武汉:华中科技大学,2006.
    [41]Khatri K.C., Wu I.P., Gitlin H.M., et al. Hydraulics of microtube emitters. Journal of Irrigation and Drainge-ASCE,1979,105(2),163-173.
    [42]Ozekici B,Ronald S. Analysis of pressure losses in tortuous-path emitters. America Society of Agriculture Engineering,Albuquerque, New Mexico, USA. 1991:112-115.
    [43]Luis Juana, Leonor Rodn'guez-Sinobas, and Alberto Losada, M.ASCE. Determining Minor Head Losses in Drip Irrigation Laterals Ⅰ: Methodology. Journal of Irrigation and Drainage Engineering, 2002,128(6):376-384.
    [44]Giuseppe Provenzano and Domenico Pumo. Experimental Analysis of Local Pressure Losses for Microirrigation Laterals. Journal of Irrigation and Drainage Engineering,2004,130(4):318-324.
    [45]Watters G.Z., Keller J. Trickle irrigation tubing hydraulics. ASAE Paper No. 78-2015,1978.
    [46]Juana L., Rodriguez-Sinobas L., Losada A. Determining minor head losses in drip irrigation laterals. I:Methodology. Journal of Irrigation and Drainage Engineering, 2002,128(6):376-384.
    [47]Juana L., Rodriguez-Sinobas L., Losada A. Determining minor head losses in drip irrigation laterals. II:Experimental study and validation. Journal of Irrigation and Drainage Engineering-ASCE,2002,128(6):385-396.
    [48]Provenzano G., Pumo D. Experimental analysis of local pressure losses for microirrigation laterals. Journal of Irrigation and Drainage Engineering-ASCE, 2004,130(4):318-324.
    [49]Provenzano G., Pumo D., Dio P.D. Simplified procedure to evaluate head losses in drip irrigation laterals. Journal of Irrigation and Drainage Engineering-ASCE,2005, 131(6):525-532.
    [50]VALIANTZAS J D. Modified Hazen-Williams and Darcy-Weisbach equations for friction and local head losses along irrigation laterals. Journal of Irrigation and Drainage Engineering,2005,131(4):342-350.
    [51]赵宝峰,金英子,卢玉邦等.对突然扩大局部水头损失的初探.东北农业大学学报,1997,28(2):175-178.
    [52]林大钧,展益彬,郭慧.管道相交处几何形状与局部阻力系数关系的研究.武汉大学学报(工学版),2006,39(4):134-136.
    [53]贺益英,赵懿珺,孙淑卿等.弯管局部阻力系数的试验研究.水利学报,2003,(11):54-58.
    [54]万五一,胡云进,李玉柱.局部水头损失对流体瞬变的影响及其数值模拟.浙江大学学报(工学版),2007,41(7):1148-1153.
    [55]Vermeiren I., Jobling G.A. Localized irrigation-Design, installation, operation, and evaluation. Irrigation and Drainage Paper. Rome, Italy:Food and Agriculture Organization of the United Nations,1980.
    [56]Ferziger, J.H., Peric, M. Computational methods for fluid dynamics. New York: Springer,1996.
    [57]John D.A. Computational fluid dynamics:The basics with application. New York: McGraw-Hill Inc.,1995.
    [58]傅琳,董文楚,郑耀泉等.微灌工程技术指南.水利电力出版社,1987.
    [59]脱云飞,杨路华,郭涛,张丽娟.圆锥形喷嘴水头损失的计算公式与试验研究.节水灌溉,2005,(4):14-15,18.
    [60]Antonina C., Baldassare scicolone. Water quality and distribution uniformity in drip/trickle irrigation system. J. agric. Engng Res.1998, (70):355-265.
    [61]翟国亮,吕谋超,王晖等.微灌系统的堵塞及防治措施.农业工程学报,1999,15(1):144-147.
    [62]Nakayama F.S., Bucks D.A. Water quality in drip/trickle irrigation:a review. Irrigation Science,1991,12(4):187-192.
    [63]Bucks D.A.,Nakayama F.S.,Gillbert R.G.. Trickle irrigation water quality and preventive maintenance. Agricultural Water Management.1979,2(2):149-162.
    [64]Dehghanisanij H., Yamamoto T., Rasiah V., et al. Impact of biological clogging agents on filter and emitter discharge characteristics of microirrigation systems. Irrigation and Drainage,2004,53:363-373.
    [65]Adin A., Sacks M. Drip-clogging factors in wastewater irrigation. Journal of Irrigation and Drainage Division,ASCE,1991,117(6):813-826.
    [66]Taylor H. D., Bastos R.K.X., Pearson H.W., et al. Drip irrigation with waste stabilization pond, effluents:solving the problem of emitter fouling. Water science Technology.1995,31(12):417-424.
    [67]Hills D. J.,Tajrishy M. Treatment requirements of secondary effluent for microirrigation. In Proceedings of 5th International Microirtigation Congress. Orlando:Florida. ASAE Pub,1995.
    [68]Robert G. Evans. Microirrigation. Supervisory Agricultural Engineer, USDA-ARS-NPARL. Sidney,MT.59270. http://www.sidney.ars.usda.gov/Site Publisher_Site/pdfs/personnel/Microirrigation.pdf.
    [69]王瑞环,赵万华,杨来侠等.基于快速成形技术滴头的结构试验研究.西安交通大学学报,2003,37(5):542-545.
    [70]王建东,李光永,邱象玉等.流道结构形式对滴头水力性能影响的试验研究.农业工程学报,2005,21:100-103.
    [71]郑耀泉.微灌技术应用问题的若干建议.北京水利科技,1993,(4):23-26.
    [72]Wei Qingsong, Lu Gang, Liu Jie, et al. Evaluations of Emitter clogging by two-phase flow simulations and laboratorial experiments. Computers and Electronics in Agriculture,2008,63(2):294-303.
    [73]Wei Qingsong, Shi Yusheng, Lu Gang, et al. Rapid evaluations of anti-clogging performance of drip emitters by laboratorial short-cycle tests. Journal of Irrigation and drainage Engineering-ASCE,2008,134(3):298-304.
    [74]王尚锦,刘小民,席光等.迷宫式滴头内流动的有限元数值分析.农业机械学报,2000,31(4):43-46.
    [75]姚彬,刘志烽等.流道长度对内镶贴片式滴头性能参数影响的初步研究.节水灌溉,2003,(5):38-39.
    [76]仵峰,范永申,李金山.低压条件下灌水器水力性能试验研究.节水灌溉,2003,(1):14-16.
    [77]G.Y. Li, J.D. Wang, M. Alam, et al. Influence of geometrical parameters of labyrinth flow path of drip emitters on hydraulic and anti-clogging performance. American Society of Agricultural and Biological Engineers.2006,49(3):637-643.
    [78]穆乃君,张听,李光永等.内镶片式齿型迷宫滴头抗堵塞试验研究.农业工程学报,2007,23(8):34-39.
    [79]Yan D.Z., Yang P.L., Ren S.M., et al. Numerical study on flow property in dentate path of drip emitters. New Zealand Journal of Agricultural Research,2007,50(5), 705-712.
    [80]Zhang J., Zhao W.h., Wei Z.Y. Numerical and experimental study on hydraulic performance of emitters with arc labyrinth channels. Computers and electronics in agriculture,2007, (56):120-129.
    [81]陈雪.滴灌灌水器三角形迷宫流道结构抗堵塞性能试验研究.硕士学位论文. 西安杨凌:西北农林科技大学,2008年.
    [82]Yan D.Z., Bai Z.H., Mike R., et al. Biofilm structure and its influence on clogging in drip irrigation emitters distributing reclaimed wastewater. Journal of Environmental Sciences,2009, (21):834-841.
    [83]Camp C R-Subsurface drip irrigation:a review. Transaction of the ASAE,1998,41(5):1353-1367.
    [84]ISO/TC 23/SC 18/WG5 N4. Clogging test methods for emitters. Geneva, Switzerland:International Organization for Standardization,2003.
    [85]王文娥.迷宫滴头内部流动的动力学特性研究.博士学位论文.北京:中国农业大学,2007年.
    [86]芦刚.工作水压对滴灌灌水器水力性能影响规律的研究.博士学位论文.武汉:华中科技大学,2010年.
    [87]Pfahler, J.N., Harley, J., Bau, H. Liquid and gas transport in small channels. ASME DSC,1990,19:149-157.
    [88]Harley, J.C., Huang, Y.F., Bau, H. Gas flow in micro channels. J. Fluid Mech.,1995, 284:257-274.
    [89]Kandilikar, S.G., Joshi, S., Tian, S. Effect of surface roughness on heat transfer and fluid flow character at low Reynolds numbers in small diameter tubes. Heat Transfer Engineering,2003,24(3):4-16.
    [90]Kang YH, Yuan BZ, Nishiyama S. Design of microirrigation laterals at minimum cost. Irrigation science,1999,18(3):125-133.
    [91]许平.我国微灌技术和设备现状及市场前景分析.节水灌溉,2002,(1):33-36.
    [92]牛文全,吴普特,范兴科.低压滴灌系统研究.节水灌溉,2005,(2):29-32.
    [93]牛文全.微压滴灌技术理论与系统研究.陕西:西北农林科技大学博士论文,2006
    [94]Gilead G. G. Gravity drip irrigation system. ASAE,1985,85(10):594-596.
    [95]李云开,杨培岭,任树梅,杨玲等.重力滴灌灌水器水力性能及其流道内流体流动机理.农业机械学报,2005,36(10):54-57.
    [96]Georgiev D. New low pressure system for pulse drip irrigation. International Water and Irrigation Review,1997,17(l):19.
    [97]Sijali, I.V.,2001. Drip irrigation:options for smallholder farmers in Eastern and Southern Africa. Technical Handbook No.24. Regional Land Management Unit, RELMA/Sida, Nairobi.
    [98]P.R.Bhatnagar,R.C.Srivastava. Gravity-fed drip irrigation system for hilly terraces of the northwest Himalayas. Irrigation Science,2003,21(4):151-157.
    [99]Jeskia Chigerwe,Norbert Manjengwa,Pieter van der Zaag,et al. Low head drip irrigation kits and treadle pumps for smallholder farmers in Zimbabwe:a technical evaluation based on laboratory tests. Physics and Chemistry of the Earth,2004,(29):1049-1059.
    [100]Lazarovitch N.,Shani U.,Thompson T.L.,et al. Soil hydraulic properties affecting discharge uniformity of gravity-fed subsurface drip irrigation systems. Journal of Irrigation and Drainage Engineering-ASCE,2006,132(6):531-536.
    [101]Duan X.J.,Lesikar B.J.,Kenimer A.L., et al. Performance of wastewater subsurface drip emitters at low and normal pressure. Water Environment Research,2008,80(2):142-148.
    [102]冯素珍,莫日根图.低水头滴灌系统的研究.内蒙古农业大学学报,1999,20(4):31-35.
    [103]王伟,李光永,段中琐.低水头滴灌系统研究.节水灌溉,2000,(3):36-39.
    [104]任树梅,杨培岭.重力滴灌条件下山区果园土壤水分动态与果树灌溉制度的初步研究.中国农村水利水电,2002,(1):20-22.
    [105]仵峰,范永申,李金山,李王成.低压条件下灌水器水力性能试验研究.节水灌溉,2003,(1):14-16.
    [106]范永申,仵峰,李金山,张天举.微压滴灌灌水器的研制.节水灌溉,2005,(4):34-35.
    [107]臧丽花,牛文全,吴普特.低压滴灌系统大流量压力调节器的研制.西北农林科技大学学报,2006,34(7):142-146.
    [108]杨国江.低压滴灌系统大田试验与研究.农田水利,2007,(6):43.
    [109]范兴科,吴普特,牛文全,张林等.低压滴灌条件下提高系统灌水均匀度的途径探 讨.灌溉排水学报,2008,27(1):18-20.
    [110]李光永.压力补偿灌水器的研究新进展与使用中应注意的几个问题.节水灌溉,2000,(3):19-21.
    [111]何静,李光永,刘志烽.典型压力补偿滴头结构分析.节水灌溉,2006,(5):29-31,34.
    [112]马福才,彭贵芳.补偿式滴头的研制.节水灌溉,1992,(1):16-19.
    [113]刘刚,薛群基,张永茂等.新型螺旋式抗堵滴头研制.节水灌溉,2002,(5):7-9.
    [114]魏正英,赵万华,杨斌等.内镶柱式压力补偿滴头的快速定型.快速响应制造,西安:西安交通大学出版社,2003:161-167.
    [115]姚彬,刘志烽,张建萍.内镶补偿贴片式滴头水力性能的初步研究.节水灌溉,2004,(4):21-22.
    [116]王栋.内镶扁平紊流压力补偿式滴头的研制.节水灌溉,2007,(1):36-37.
    [117]武永安.压力补偿滴头流场的数值模拟与补偿元件分析.硕士学位论文.北京:北京化工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700