纳米纤维素/聚乳酸复合材料及界面相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究将天然可再生的木质纳米纤维素作为增强相与绿色塑料聚乳酸进行复合,为了改善亲水性纳米纤维素和疏水性聚乳酸之间的弱的界面相容性,采用了添加增容剂、硅烷偶联剂改性纳米纤维素、矿化纳米纤维素以及偶联剂改性矿化纳米纤维素的方法;并且利用纳米纤维素的诱导性,通过仿生矿化的方法在纳米纤维素/聚乳酸多孔复合材料中生成了羟基磷灰石。研究了不同的方法对复合材料性能的影响,揭示了各种复合材料中的界面黏结机理。
     有机相中的纳米纤维素直径在20nm左右。和浆板相比,其结晶度提高,热稳定性下降;纳米纤维素与聚乳酸复合后,由于界面黏结较差,复合材料的抗张强度和断裂伸长率下降;纳米纤维素的存在提高了聚乳酸的亲水性、降解性和阻光性,降低了热稳定性;纤维素的羟基与聚乳酸的羰基存在氢键作用。
     聚乙二醇1000能够最大程度的降低聚乳酸的玻璃化转变温度,提高纳米纤维素/聚乙二醇/聚乳酸三元复合材料的机械性能,和聚乳酸相比,抗张强度和断裂伸长率最高提高了28.2%和25.0%;聚乙二醇分子量越小,复合材料降解速率越快;纳米纤维素的羟基,聚乙二醇的羟基和聚乳酸的羰基之间存在氢键作用。通过增加吸附层厚度和机械作用提高两相的界面黏结。
     烷基化纳米纤维素仍保持纳米纤维素的形貌;其热稳定性和结晶度有所下降;表面的羟基量明显减少;碳氧比从1.81降到了1.69;Si均匀的分布在纳米纤维素中;1.0v/v%偶联剂改性的纳米纤维素为1.Owt%时,与纯聚乳酸相比,断裂伸长率和抗张强度分别增长了42.3%和28.2%;与聚乳酸复合后,烷基化纳米纤维素在基体中分散均匀,能阻挡部分紫外光;纳米纤维素的烷基化程度和添加量均影响复合材料的热稳定性。
     为了赋予纳米纤维素更多的功能性,采用仿生矿化的方法在其表面合成了直径约为30nm纳米羟基磷灰石,仿生矿化后纤维素的碳氧比下降为1.54,钙磷比为1.70。纳米纤维素的羟基与羟基磷灰石中的钙离子和羟基之间存在配位作用和氢键作用:仿生矿化后纳米纤维素的热稳定性在380-600℃之间明显提高。
     矿化纳米纤维素烷基化后,碳氧比下降,Ca2p谱峰向高结合能方向移动;通过机械锁合和较强界面黏结作用,大大提高了聚乳酸的机械性能,和聚乳酸相比,抗张强度和断裂仲长率分别提高了51.3%和29.3%。和烷丛化纳米纤维素相比,矿化纳米纤维素烷基化后热稳定性提高,同样提高了聚乳酸的热稳定性;复合材料的透过率降低;聚乳酸基体中Ca、P和Si元素分布均匀;复合材料中存在强烈的氢键作用。
     采用相转化/粒子沥滤的方法制备出纳米纤维素/聚乳酸多孔复合材料,纳米纤维素能提高复合材料的机械性能、粗糙度、亲水性、对羟基磷灰石的诱导性。羟基磷灰石颗粒的尺寸大的为2μm,而小的尺寸为200nm;羟基磷灰石的Ca/P为1.42,Ca、P元素和C、O元素一样均匀分布;XRD、FTIR和质量增长率的测定进一步证明了聚乳酸基体中纳米纤维素表面的羟基能够促进羟基磷灰石的成核和长大。
Cellulose nanofibrils (CNF) was used as strengthening phase to improve the properties of poly(lactic acid)(PLA). In order to improve the interfacial compatibility between hydrophilic cellulose nanofibrils and hydrophobic PLA, compatibilizer, silane coupling agent (MEMO) modified cellulose nanofibrils (M-CNF), biomineralized cellulose nanofibrils (CNF/HA) and silane coupling agent modified CNF/HA (M-CNF/HA) were blended with PLA. CNF were blended with PLA to produce CNF/PLA composite foams. The CNF induced the formation of HA on the walls of its inner pores. The properties of different composites were studied and the mechanism of interfacial cohesion was revealed.
     Rod-like CNF with a diameter of20nm in width dispersed in organic phase. The crystallinity of CNF improved, but the thermal stability decreased. The mechanical properties of CNF/PLA composites decreased because of poor interfacial cohesion. The hydrophilicity, degradability and light-shielding property of CNF/PLA composites improved because of CNF. The thermal stability of CNF/PLA composites decreased. FTIR indicated that hydrogen bond existed between-OH of CNF and C=O of PLA.
     Polyethylene glycol (PEG)1000was the best compatibilizer and improved the mechanical properties of CNF/PLA composites because of the decrease of Tg. Compared with PLA, the tensile strength and elongation of CNF/PEG/PLA composites improved28.2%and25.0%, respectively. The lower molecular weight of PEG was added, the faster the CNF/PEG/PLA composites degraded. The stronger hydrogen bond formed among-OH of CNF,-OH of PEG and C=O of PLA. The interfacial cohesion was improved by increase the adsorption layer and mechanical action.
     M-CNF keeps their integrity and rod-like morphology. The thermal stability and crystallinity of M-CNF was decreased. There are less hydroxyl groups in M-CNF than in CNF. The carbon-oxygen ratio of CNF and M-CNF was1.81and1.69, respectively. Si dispersed evenly in CNF matrix. The highest tensile strength of composites was obtained for PLA with1.0v/v%MEMO and1.0wt%CNF, the tensile strength and elongation improved42.3%and28.2%comparing with PLA. M-CNF can block some of the light through. M-CNF can disperse evenly in PLA matrix. The thermal stability of M-CNF/PLA composites was affected by M-CNF and modification degree of CNF.
     In order to give CNF more functionality, spherical Nano-hydroxyapatite (HA) particles of approximately30nm were synthesized on the surface of CNF after biomimetic mineralization. The carbon-oxygen ratio of CNF/HA composite was1.54; the calcium-phosphorus ratio of the composite was1.70. It is suggested that there are coordination and hydrogen bonding between CNF and HA. The thermal stability of CNF/HA composites was improved significantly in the temperature of380-600℃
     Coupling reaction occurred between CNF/HA and MEMO. And the peak of Ca2p shifted to higher binding energy. Through mechanical lock and interface adhesive, the tensile strength and elongation improved51.3%and29.3%comparing with PLA. The thermal stability of M-CNF/HA improved comparing with M-CNF. Also, the thermal stability of PLA can be improved by M-CNF/HA. M-CNF/HA and MEMO can block some of the light through. Ca, P, and Si dispersed evenly in PLA matrix. Hydrogen bond existed between-OH of M-CNF/HA and C=O of PLA.
     The Loeb and Sorirajan phase inversion/particle leaching method was used to prepare CNF/PLA composite foams. CNF in PLA can improve the mechanical properties, the surface roughness, and hydrophilicity. CNF also can induce the formation of HA, which have diameters ranging from200nm to2μm and a Ca/P ration of1.42. The spatial distribution of calcium and phosphorus elements was uniform. XRD, FTIR and mass increase analysis showed that the-OH of CNF can induce the formation and growth of HA.
引文
1. 范子千,袁晔,沈青,等.纳米纤维素研究及应用进展Ⅱ[J].高分子通报,2010,25(3):40-60.
    2. 古菊,熊强,贾德民,等.羟基不饱和脂肪酸改性纳米碳酸钙对聚丙烯微观形态和流变性能的影响[J].高分子学报,2008,50(4):325-331.
    3. 胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008,150-156.
    4. 黄赛棠.电子能谱仪[M].北京:中国科学院干部进修学院出版社.1984,103.
    5. 李晓梅,周威,王丹,等.增塑剂对聚乳酸性能影响的研究[J].现代塑料加工应用,2008,20(2):41-44.
    6. 李孝红,袁明龙,熊成东,等.聚乳酸及其共聚物的合成和在生物医学上的应用[J].高分子学报,1999,41(3):24-32.
    7. 林剑,赵广杰,孟令萱,等.利用X射线衍射技术与红外光谱分析真菌侵蚀的木材[J].光谱学与光谱分析,2010,30(6):1674-1677.
    8. 刘君良,李坚,刘一星.PF预聚物处理固定木材压缩变形的机理[J].东北林业大学学报,2000,28(4):16-20.
    9. 刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M].北京:科学出版社.1988,46.
    10.卢永泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989,143-152.
    11.梅燕,闫建平,聂祚仁.焙烧条件对Ce离子价态影响的XPS研究[J].光谱学与光谱分析,2010,30(1):270-273.
    12.潘慧铭,黄素娟.表面、界面的作用与粘结机理(一)[J].粘结,2003,24(3):40-45.
    13.潘慧铭,黄素娟.表面、界面的作用与粘结机理(二)[J].粘结,2003,24(3):41-46.
    14.潘慧铭,黄素娟.表面、界面的作用与粘结机理(三)[J].粘结,2003,24(4):37-42.
    15.潘雨辰,何良菊,李培杰.镁/羟基磷灰石作为股骨人工骨支架的可行性研究[J].中国科技论文在线.2011,6(6):414-418.
    16.曲萍,曹羽,李帅,等.可生物降解聚乳酸/纳米纤维素复合材料性能研究[C].2009,282-287.
    17.曲萍,张力平,段久芳,等.微纳纤维素/聚乳酸复合材料的研究[J].林产化学与工业,2009,29(S1):179-182.
    18.曲萍,周益同,张小丽,等.纳米纤维素/聚乳酸复合材料的性能研究[J].现代化工,2011,31(1),221-224.
    19.曲萍,高源,白露,等.聚乙二醇增容纳米纤维素/聚乳酸共混体系的研究[J].功能材料,2011,42(S1):69-72.
    20.史雅娟,吕永龙.农业废弃物的资源化利用[J].环境科学进展,1999,7(6):32-37.
    21.唐焕威,张力平,李帅,等.聚醚砜/微纳纤维素复合膜材料的光谱表征与性能研究[J].北谱学与光谱分析,2010,30(3):630-634.
    22.王江,左奕,杨维虎,等.纳米羟基磷灰石丝素蛋白仿生矿化料的制备研究[J].无机材料学报,2009,24(2),264-268.
    23.杨斌.绿色塑料聚乳酸[M].北京:化学工业出版社,2007,45-46.
    24.杨万泰.聚合物材料表征与测试[M].北京:中国轻工业出版社,2008,13-15.
    25.叶代勇,黄洪,傅和青,等.纤维素化学研究进展[J].化工报,2006,57(8):1782-179I.
    26.余冰,周红丽.细菌纤维素研究进展[J].生物技术通报,2007,23(2):87-90.
    27.张加忠,陈建刃,冯新星,等.聚乳酸改性丝素膜的性能研究[J].功能材料,2007,38(12):2048-2051.
    28.张敏,王晓霞,刘保健,等.生物可降解脂肪聚酯在陕西土壤中的降解行为[J].高分子材料科学与工程,2008,24(1):91-97.
    29.张志强,张保柱,李军平,等.有机-无机纳米杂化材料P(MMA-BMA)-TiO2的制备和测试与与表征[J].山西大学学报(自然科学版),2006,29(3):291-293.
    30. Abdelmouleh M, Boufi S, Belgacem M N, et al. Modification of cellulosic fibers with functionalised silanes:development of surface properties [J]. International journal of adhesion and adhesives,2004,24(1):43-54.
    31. Abe Y, Kokubo T, Yamamuro T. Apatite coating on ceramics, metals and polymers utilizing a biological process [J]. Journal of materials science:materials in medicine,1990,1(4):233-238.
    32. Agarwal M, Koelling K W, Chalmers J J. Characterization of the degradation of polylacticacid polymer in a solid substrate environment [J]. Biotechnology progress,1998, 14(3):517-526.
    33. Akao M, Aoki H, Kata K. Mechanical properties of sintered hydroxyapatite for prosthetic applications [J]. Journal of materials science,1981,16(3):809-812.
    34. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials [J]. Materials science and engineering reports,2000,28(1-2):1-63.
    35. Alsewailem V D, Binkhder Y A. Preparation and characterization of polymer/date pits composites [J]. Journal of reinforced plastics and composites,2010,29(11):1743-1749.
    36. Araki J, Wada M, Kuga S. Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting[J]. Langmuir,2001, 17(1):21-27.
    37. Arib R M N, Sapuan S M, Hamdan M A M M. A literature review of pineapple fiber reinforced polymer composites [J]. Polymers and polymer composites,2004,12(4):341-348.
    38. Atsuhiro Iwatake, Masaya Nogi, Hiroyuki Yano. Cellulose nanofiber-reinforced polylacticacid[J]. Composites science and technology,2008,68(9):2012-2016.
    39. Ayako O, Masaki U, Cleo C, et al. Simple surface modification of poly (e-caprolactone) for apatite deposition from simulated body fluid [J]. Biomaterials,2005,26(15):2407-2413.
    40. Bandyopadhyay S, Chen R, Giannelis E P. Biodegradable organic-inorganic hybrids based on poly (L-lactic acid) [J]. Polymer materials science and engineer,1999,81:159-160.
    41. Barud H S, de Araujo Junior A M, Santos D B, et al. Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose [J]. Thermochimica acta,2008, 471(1-2):61-69.
    42. Barud H, Ribeiro C, Crespi M, et al. Thermal characterization of bacterial cellulose-phosphate composite membranes [J]. Journal of thermal analysis and calorimetry,2007, 87(3):815-818.
    43. Bastioli C. Global status of the production of biobased packaging materials [J]. Starch,2001, 53(8):351-355.
    44. Bax B, Mussig J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites [J]. Composites science and technology,2008,68(7-8):1601-1607.
    45. Berg J C. Semi-empirical strategies for predicting adhesion, In Surfaces, chemistry andapplications [M]. Elsevier, the Netherlands,2002.
    46. Bledzki A K, Aszkiewicz A. Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fiber-A comparative study to PP [J]. Composites science and technology, 2010,70(12):1687-1696.
    47. Bledzki A K, Jaszkiewicz A, Scherzer D. Mechanical properties of PLA composites with man-made cellulose and abaca fibers [J]. Composites part A:applied science and manufacturing,2009, 40(4):404-412.
    48. Bonini C, Heux L, Cavaille J Y. Rodlike cellulose whiskers coated with surfactant:A small-angle neutron scattering characterization [J]. Langmuir,2002,18(8),3311-3314.
    49. Bourbigot S, Bras M L, Dabrowski F, et al. PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations [J]. Fire materials,2000,24(4),201-208.
    50. Bouropoulos N, Stampolakis A, Mouzakis D E. Dynamic Mechanical Properties of Calcium Alginate-Hydroxyapatite Nanocomposite Hydrogels [J]. Science of advanced materials,2010, 2(2):239-242.
    51. Brahim S B, Cheikh R B. Influence of fiber orientation and volume fraction on the tensile properties of unidircetion alfa-polyester composite [J]. Composites science and technology,2007,67(1): 140-147.
    52. Brahmakumar M, Pavithran C, Pillai R M. Coconut fiber reinforced polyethylene composites: effect of natural waxy surface layer of the fiber on fiber/matrix interfacial bonding and strength of composites [J]. Composites science and technology,2005,65(3-4):563-569.
    53. Brizzolara D, Cantow H J, Diederichs K, et al. Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s [J]. Macromolecules,1996,29(1):191-197.
    54. Cecile Gousse, Henri Chanzy, Gerard Excoffier. Stablesuspensions of partially silylated cellulose whiskers dispersed in organicsolvents[J]. Polymer,2002,43(9):2645-2651.
    55. Chattopadhyay S K, Khandal R K, Uppaluri R, et al. Mechanical, thermal, and morphological properties of maleic anhydride-g-polypropylene compatibilized and chemically modified banana-fiber reinforced polypropylene composites [J]. Journal of applied polymer science,2010,117(3): 1731-1740.
    56. Chazeau L, Gauthier C, Vigier G. et al. Relashionships between microstructural aspects and mechanical properties of polymer-based nanocomposites [M]. American Scientific Publishers, Los Angles,2003.
    57. Chen G X, Kim H S, Park B H, et al. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(1-lactic acid) [J]. Journal of physical chemistry B,2005, 109(47):22237-22243.
    58. Chen Y, Mak A F T, Li J S, et al. Formation of apatite on poly(α-hydroxy acid) in an accelerated biomimetic process[J]. Journal of biomedical materials research part B applied biomaterials. 2005,73B(1):68-76.
    59. Cheng Q, Wang S, Rials T G. Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication [J]. Composites:Part A,2009,40(2):218-224.
    60. Chiang C H, Ishida H, Koenig J L. The structure of y-aminopropyltriethoxysilane on glass surfaces [J]. Journal of colloid and interface science,1980,74(2):396-404.
    61. Choi Y J, Ahn Y H, Kang M S, et al. Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane [J]. Journal of chemical technology and biotechnology, 2004,79(1):79-84.
    62. Chow W, Lok S. Thermal properties of poly (lactic acid)/organo-montmorillonite nanocomposites [J]. Journal of thermal analysis and calorimetry,2009,95(2):627-632.
    63. De Groot K. Hydroxyapatite Coating for Implants in Surgery [M]. Press in High Tech Ceramics Amsterdam:Kisevier,1991,381-386.
    64. De Souza I J, Bouchard J, Met hot M, et al. Carbohydrates in oxygen delignification. Part 1: Changes in cellulose crystallinity [J]. Journal of pulp and paper science.2002,28(5):167-170.
    65. Dekesel C, Lefe'vre C, Nagy J B, et al. Blends of polycaprolactone with polyvinylalcohol:A DSC, optical microscopy and solid state NMR study [J]. Polymer,1999,40(8):1969-1978.
    66. Dorozhkin S V, Dorozhkina E I, Epple M. A model system to provide a good in vitro simulation of biological mineralization [J]. Crystal growth and design,2004,4(2):389-395.
    67. Dorris G M, Gray D G. The surface analysis of paper and wood fibers by Esca-electron spectroscopy for chemical analysis-Ⅰ. Applications to cellulose and lignin [J]. Cellulose Chemistry and Technology,1978,12:9-23.
    68. Dorris G M, Gray D G. The surface analysis of paper and wood fibers by ESCA. Ⅱ. Surface composition of mechanical pulps [J]. Cellulose Chemistry and Technology,1978,12(6):721-734.
    69. Dri F, Zavattieri P D, Martini A, et al. Multiscale modeling of the hierarchical structure of cellulose nanocrystals [C].2011 TAPPI International Conference on Nanotechnology for Renewable Materials. Sheraton Crystal City, Washington D.C. Purdue University, US Forest Service-Forest Products Laboratory (FPL).
    70. Dri F, Zavattieri P D, Martini A, et al. Multiscale modeling of the hierarchical structure of cellulose nanocrystals [C].2011 TAPPI International Conference on Nanotechnology for Renewable Materials. Washington, D. C.2011:1-5.
    71. Drumright R E, Gruber P R, Henton D E. Polylactic acid technology [J]. Advanced materials, 2000,12(23):1841-1846.
    72. Ducheyne P, Radin S. Calcium phosphate ceramic coatings on porous titanium:effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution [J]. Biomaterials,1990,11(4):244-254.
    73. Dufresne A, Kellerhals M B, Witholt B. Transcrystallization in mcl-PHAs/cellulose whiskers composites [J]. Macromolecules,1999,32(22):7396-7401.
    74. Eichhom S J, Baillie C A, Zafeiropoulos N, et al. Current international research into cellulosic fibers and composites [J]. Journal of Materials Science,2001,36(9):2107-2131.
    75. Enomoto K, Ajioka M, Amaguchi A Y. Polyhydroxucarboxylic acid and preparation process thereof [P]. NO.5310865,1994.
    76. Franceschi E, Cascone I, Nole D. Thermal, XRD and spectrophotometric study on artificially degraded woods [J]. Journal of Thermal analysis and calorimetry,2008,91(1):119-123.
    77. Franco P J H, Gonzalez A V. A study of the mechanical properties of short natural-fiber reinforced composites [J]. Composites Part B:Engineering.2005,36(8):597-608.
    78. Gabriel A S. Introduction to nanotechnology and its applications to medicine [J]. Surgical neurology,2004,61(3):216-220.
    79. Garlotta D. A literature review of poly (Lactic Acid) [J]. Journal of polymers and the environment,2001,9(2):63-84.
    80. Gousse C, Chanzy H, Excoffier G, et al. Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents [J]. Polymer,2002,43(9):2645-2651.
    81. Granja P L, Ribeiro C C, De Jeso B, et al. Mineralization of regenerated cellulose hydrogels [J]. Journal of Materials Science:Materials in Medicine,2001,12(9),785-791.
    82. Gruber P, Hall E, Olstad J K, et al. Continuous process for manufacture of lactide polymers with controlled optical purity [P]. NO.5142023,1992.
    83. Grunert M, Winter WT. Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals [J]. Journal of polymers and the environment,2002,10(1-2):27-30.
    84. Gumuskaya E, Usta M, Kirct H. The effects of various pulping conditions on crystalline structure of cellulose in cotton linters [J]. Polymer degration and stability,2003,81(3):559-564.
    85. Hakkarainen M, Karlsson S. Weight losses and molecular weight change correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo and copolymers of PEA [J]. Polymer degradation stability,1996,52(3):283-291.
    86. Han J S, Rowell J S. Chemical composition of fibers, in paper and composites f rom agro-based resources [M]. London:CRC Press,1996:83-134.
    87. Hapuarachchi T D, Ren G, Fan M, et al. Fire retardancy of naturl fiber reinforced sheet moulding compound [J]. Applied composite materials,2007,14(4):251-264.
    88. Heimke G. Advanced ceramics for biomedical applications [J]. Angewandte chemie,1989, 101(1):111-116.
    89. Hench L L, Polak J M. Third-generation biomedical materials [J]. Science,2002,295(5557): 1014-1017.
    90.Hench L L. Bioceramics:From concept to clinic [J]. Journal of the American ceramic society, 1991,74(7):1487-1510.
    91. Hildebrand J, Scott R L. Regular solutions [M]. Englewood Cliffs, N J:Prentice-Hall Inc.; 1962.
    92. Hildebrand J, Scott R L. Solubility of nonelectrolytes[J]. Annual review of physical chemistry,1950,1:75-92.
    93. Holbery J, Houston D. Natural-fiber reinforced polymer composites in automotive application[J]. Journal of the minerals, metals and materials Society,2006,58(11):80-86.
    94. Hon D N S. Cellulose and its derivatives:Structures, reactions, and medical uses. In: Polysaccharides in Medicinal Applications, New York. USA 1996.87.
    95. Hong L, Wang Y L, Jia S R, et al. Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route[J]. Materials Letters,2006,60(13-14):1710-1713.
    96. Hosaka N, Naqata T. Evaluation of a new dense-porous hydroxylapatite endosteal dental implant [J]. Journal of oral and maxillofacial surgery,1987,45(7):583-593.
    97. Hubbe M A, Rojas O J, Lucia L A, et al. Cellulosic nanocomposites-A review [J]. Bioresources,2008,3(3):929.
    98. Hutchens Stacy A, Benson Roberto S, Evans Barbara R, et al. A resorbable calcium-deficient hydroxyapatite hydrogel composite for osseous regeneration [J]. Cellulose,2009,16(5):887-898.
    99. Hutchens S A, Benson R S, Evans B R, et al. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel [J]. Biomaterials,2006,27(26),4661-4670.
    100. Jacoba M, Thomasa S, Varugheseb K T. Mechanical properties of sisal/oil palm hybrid fiber reinforced natural composites [J]. Composites science and technology,2004,64(7-8):955-965.
    101. Jarcho M, Bolen C H, Thomas M B, et al. Hydroxylapatite synthesis and characterization in dense polycrystalline form [J]. Journal of materials science,1976, 11(1):2027-2035.
    102. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics [J]. Clinical orthopaedics and related research,1981,157:259-278.
    103. Jiang L, Chen F, Qian J, et al. Reinforcing and toughening effects of bamboo pulp fiber on Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) fiber composites [J]. Industrial Engineering Chemistry Research,2010,49(2):572-577.
    104. Jr V B, Ramires E C, Razera I A T, et al. Biobased composites from tannin-phenolic polymers reinforced with coir fibers [J]. Industrial crops and products,2010,32(3):305-312.
    105.Jun A, Masahisa W, Shigenori K. Steric Stabilization of a Cellulose Microcrystal Suspension by Polyethylene glycol) Grafting [J]. Langmuir,2001,17 (1):21-27.
    106. Kamel S. Nanotechnology and its applications in lignocellulosic composites, a mini review [J]. eXPRESS polymer letters,2007,1(9):546-575.
    107. Kato K, Aoki H, Tabata, Ogiso M. Biocomptibility of apatite ceramics in mandibles [J]. Artificial cells, blood substitutes and biotechnology.1979,7(2):291-297.
    108. Kim H W, Lee H H, Knowles J C. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration [J]. Journal of biomedical materials reaserch Part A.2006,79A(3):643-649.
    109. Krenchel H. Fibre reinforcement [M].Akademisk Forlag, Copenhagen,1964.
    110. Krishnaprasad R, Veena N R, Maria H J, et al. Mechanical and thermal properties of bamboo microfibril reinforced polyhydroxybutyrate biocomposiites [J]. Journal of polymer and the environment, 2009, 17(2): 109-114.
    111. Lalla J K, Chugh N N. Effects of morphology, conformation and configuration on the IR and Raman spectra of variouspoly (lactic acid) [J]. Indian drugs. 1990, 27(10):516-522.
    112. Leclair A, Favis B D, The role of interfacial contact in immiscible binary polymer blends and its influence on mechanical properties [J]. Polymer, 1996, 37(21):4723-4728.
    113. Lee S H, Kim S H, Han Y K, etal. Synthesis and degradation of end-group-functionalized polylactide [J]. Journal of polymer science, Part A: Polymer chemistry, 2001, 39(7):973-985.
    114. Lee S H, Wang S Q, Teramoto Y. Isothermal crystallization behavior of hybrid biocomposite consisting of regenerated cellulose fiber, clay, and poly(lactid acid) [J]. Journal of applied polymer science, 2008, 108(2):870-875.
    115. Lee S Y, Mohan D J, Kang I A, et al. Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading [J]. Fibers and polymers, 2009, 10(1): 77-82.
    116. Li X H, Yuan M L, Xiong C D, etal. Advance of preparation and application of poly lactide and its copolymers [J]. Polymer bulletin, 1999, (3):24-32.
    117. Li X, Feng Q L. Porous poly-L-lactic acid scaffold reinforced by chitin [J]. Polymer bull, 2005, 54(1-2): 47-55.
    1 18. Li Y, Mai Y W, Ye L. Sisal fiber and its composites: a review of recent development [J]. Composites science and technology, 2000, 60(11): 2037-2056.
    119. Lin N, Chen G J, Huang J, et al. Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly (lactic acid): A case of cellulose whisker-graft-polycaprolactone [J]. Journal of applied polymer science, 2009, 113(5):3417-3425.
    120. Liou S C, Chen S Y, Lee H Y, et al. Structural characterization of nano-sized calcium deficient apatite powders [J]. Biomaterials, 2004, 25(2): 189-196.
    l21.Lisman S, Antonio N N, Hiroyuki Y. The effect of crystallization of PLA on the thermal and mechanical properties of micro fibrillated cellulose reinforced PLA composites[J]. Composites science and technology, 2009, 69(7-8): 1187-1192.
    122. Liu C F, Xu F, Sun J X, et al. BairdPhysicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne) [J]. Carbohydrate research, 2006, 341(16): 2677-2687.
    123. Liu Y L. Chang Y H, Liang M. Poly (2, 6-dimethy-l,4-phenylene oxide) (PPO) multi-bonded carbon nanotube (CNT): Preparation and formation of PPO/CNT nanocomposites[J]. Polymer, 2008, 49(25):5405-5409.
    124. Ljungberg N, Bonini C, Bortolussi F, et al. New nanocomposites materials reinforced with cellulose whiskers in atactic polypropylene:Effect of surface and dispersion characteristics [J]. Biomacromolecules.2005,6(5):2732-2739.
    125. Ljungberg N, Cavaille J Y, Heux L. Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers [J]. Polymer,2006,47(18):6285-6292.
    126. Lu J, Askeland P, Drzal L T. Surface modification of microfibrillated cellulose for epoxy composite applications [J]. Polymer,2008,49 (5):1285-1296.
    127. Ma P X, Zhang R Y, Xiao G Z, et al. Engineering new bone tissue in vitro on highly porous poly(a-hydroxyl acids))/hydroxypatite composites scaffolds [J]. Journal of biomedical materials research,2001,54(2):284-293.
    128. Ma X F, Yu J G, Wang N. Compatibility characterization of poly (lactic acid)/poly(propylene carbonate) blends [J]. Journal of polymer science Part B Polymer physics,2006,44(1):94-101.
    129. Maiti P, Yamada K, Okamoto M, et al. New polylactide/layered silicate nanocomposites: preparation, Characterization and properties [J]. Macromolecules,2002,14(11):4654-4661.
    130. Malin B, Karim M, Lars A. Berglund. Molecular modeling of interfaces between cellulose crystals and surrounding molecules:Effects of caprolactone surface grafting [J]. European polymer journal,2008,44 (11):3662-3669.
    131.Marchessault R H, Morehead F F, Koch M J. Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape [J]. Journal of colloid science,1961, 16(4):327-344.
    132. Mark J E. Polymer Data Handbook [M].New York:Oxford University Press,1999.
    133.Marras S I, Kladi K P, Tsivintzelis I, et al. Biodegradable polymer nanocomposites:the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure [J]. Acta Biomaterialia,2008,4(3):756-765.
    134. Martens W, Forst R L. An infrared spectroscopic study of the basic copper phosphate minerals:Cornetite, libethenite and pseudomalachite [J]. American mineralogist,2003,88(1):37-46.
    135.Martucci J, Vazquez A, Ruseckaite R. Nanocomposites based on gelatin and montmorillonite [J]. Journal of thermal analysis and calorimetry,2007,89(1):117-122.
    136.Megiato J D, Ramires C, Frollini E. Phenolic matrices and sisal fibers modified with hydroxyl terminated polybutadiene rubber:Impact strenght, water absorption, and morphological aspects of thermosets and composites [J]. Industrial crops and products,2010,31(1):178-184.
    137.Miyata T, Masuko T. Crystallization behaviour of poly (1-lactide) [J]. Polymer.1998, 39(22):5515-5521.
    138.Mohanty A K, Khan M A, Hinrichsen G. Influence of chemical surface modification on the properties of biodegradable jute fabrics-polyester amide composites[J]. Composites Part A:applied science and manufacturing,2000,31(2):143-150.
    139. Mohanty A K, Misra M, Drzal L T. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world [J]. Journal of polymer and the environment, 2002,10(1-2):19-26.
    140. Moon R J. Frihart C R, Wegner T H. Nanotechnology applications in the forest products industry [J]. Forest products journal,2006,56(5):4-10.
    141. Moon S, Jin F, Lee C J, et al. Novel carbon nanotube/poly(1-lactic acid) nanocoinposites; their modulus, thermal stability, and electrical conductivity[J]. Macromolecular symposia,2005, 224(1):287-296.
    142. Mukherjee T, Kao N. PLA based biopolymer reinforced with natural fiber:a review [J]. Journal of polymers and the environment,2011,19(3):714-725.
    143.Nair K G, Dufresne A, Gandini A, et al. Crab shell chitin whiskers reinforced natural rubber nanocomposites. Effect of chemical modification of chitin whiskers [J]. Biomacromolecules,2003, 4(6):1835-1842.
    144. Newman R H. Estimation of the lateral dimensions of cellulose crystallites using 13C-NMR signal strength [J]. Solid state nuclear magnetic resonance,1999,15(1):21-29.
    145. Nijenhuis A J, Gripma D W, Pennings A J. Lewis acid catalyzed polymerization of L-lactide. Kineties and mechanism of the bulk polymerization [J]. Macromolecules,1992,25(24):6419-6424.
    146. Nishino T, Hirao K, Kotera M, et al. Kenaf reinforced biodegradable composite [J]. Composites science and technology,2003,63(9):1281-1286.
    147.Nogi M, lwamoto S, Nakagaito A N, et al. Optically transparent nanofiber paper [J]. Advanced materials,2009,21 (16):1595-1598.
    148. Ogata N, Jimenez G, Kawai H, et al. Structure and thermal/mechanical properties of poly (1-lactide)-clay blend [J]. Journal of polymer science Part B:polymer physics,1997,35(2),389-396.
    149.Oyane A, Uchida M, Choong C. et al. Simple surface modification of poly (ε-caprolactone) for apatite deposition from simulated body fluid [J]. Biomateials,2005,26(15):2407-2413.
    150. Park C H, Kang Y K, Im S S. Biodegradability of cellulose fabries [J]. Journal of applied polymer science,2004.94 (I):248-253.
    151. Park J W, Lee D J, Yoo B S. Melt theology of poly (1 actic acid):Consequences of blending chain architectures[J]. Korea polymer journal.1999,7(2),93-101.
    152. Paul M A, Alexandre M, Degee P, et al. Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization [J]. Macromlecular rapid communications,2003,24(9):561-566.
    153. Peng S W, Wang X Y, Dong L S. Special interaction between poly (propylene carbonate) and corn starch [J]. Polymer composites,2005,26(1):37-41.
    154. Pervaiz M, Sain M M. Carbon storage potential in natural fiber composites [J]. Resources, conservation and recycling,2003,39(4):325-340.
    155. Pervaiz M, Sain M M. Sgeet-molded polyolefin natural fiber composites for automotive applications. Macromolecular materials and engineering,2003,288(7):553-557.
    156. Petersen K, Nielsen P, Olsen M. Physical and mechanical properties of biobased materials starch, polylactate and polyhydroxybutyrate [J]. Starch,2001,53(8):356-361.
    157. Petersson L, Kvien I, Oksman K. Structure and thermal properties of poly(lactic acid)/ cellulose whiskers nanocomposite materials [J]. Composites science and technology,2007,67:2535-2544.
    158.Qu P, Gao Y, Zhou Y T, et al. Influence of molecular weight of peg on biodegradation and morphology properties of cellulose nanofibrils poly(lactic acid) [J]. IEEE,2011,978-1-4244-5089-3/11.
    159.Qu P, Bai H L, Wang X, et al. Mineralization of poly (L-lactic acid)-based foams induced by cellulose nanofibrils [J]. Journal of materials science, DOI:10.1007/s 10853-012-6864-6.
    160. Qu P, Zhang X L, Zhou Y T, et al. Biomimetic synthesis of hydroxyapatite on cellulose nanofibrils and its application [J]. Science of advanced materials.2012,4(2):187-192.
    161. Qu P, Wang X, Zhang L P. Preparation and characterization of cellulose nanowhiskers in N, N-dimethylacetamide [J]. Advanced materials research.2012,528:35-38.
    162. Qu P, Zhou Y T, Zhang X L, et al Surface modification of cellulose nanofibrils for poly(lactic acid) composite application [J]. Journal of applied polymer science,2012,125(4):3084-3091.
    163. Qu P, Gao Y, Wu G F, et al. Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils [J]. Bioresources,2010,5(3):1811-1823.
    164. Qu P, Gao Y, Bai L, et al. Study on the degradation of cellulose nanowhiskers/poly(lactic acid) composites [J]. The 4th International Symposium on Emerging Technologies of Pulping and Papermaking,2010,73-76.
    165.Plackett D, Andersen T L, Pedersen W B, et al. Biodegradable composites based on L-polylactide and jute fibres [J]. Composites science and technology,2003,63(9):1287-1296.
    166.Posner A S. Crystal chemistry of bone mineral [J]. Physiological reviews.1969, 49(4):760-792.
    167.Radano C P, Baker G L, Smith M R, et al. Stereoselective polymerization of a racemic monomer with a racemic catalyst:direct preparation of the polylactic acid stereocomplex from racemic lactide [J]. Journal of American chemistry society,2000,122(7):1552-1553.
    168. Rao K M M, Prasad A V R, Babu M N V R, et al. Tensile properties of elephant grass fiber reinforced polyester composites [J]. Journal of materials science,2007,42(9):3266-3272.
    169. Ray S S, Bousmina M. Biodegradable polymers and their layered silicate nanocomposites:in greening the 21st century materials world [J]. Progress in materials science,2005,50(8):962-1079.
    170. Ray S S, Maiti P, Okamoto M. et al. New polylactide/layered silicate nanocomposites. I. Preparation, characterization, and properties [J]. Macromlecules,2002,35(8):3104-3110.
    171. Ray S S. Okamoto M. Polymer/layered silicate nanocomposites:a review from preparation to processing [J]. Progress in polymer science,2003,28 (11):1539-1641.
    172. Ray S S, Yamada K, Ogami A, et al. New polylactide/layered silicate nanocomposites: Nanoscale control over multiple properties [J]. Macromolecular rapid communications,2002,23(16): 943-947.
    173. Ray S S, Yamada K, Okamoto M, et al. new polylactide/layered silicate nanocomposites:3. High-performance biodegradable materials[J]. Chemistry of materials,2003,15(7):1456-1465.
    174. Ray S S, Yamada K, Okamoto M, et al. Polylactide-layered silicate nanocomposites:A novel biodegradable material [J]. Nano letter,2002,2(10):1093-1096.
    175. Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy [J]. Journal of materials science:materials in medicine,1997,8(1):1-4.
    176. Roman M, Winter W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose [J]. Biomacromolecules,2004,5(5):1671-1677.
    177. Salmi J, Nypelo T, Osterberg M, et al. Layer structures formed by silica nanoparticles and cellulose nanofibrils with cationic polyacrylamide (C-PAM) on cellulose surface and their influence on interactions [J]. Bioresources,2009,4(2):602-625.
    178.Sashina E, Janowska G, Vnuchkin A, et al. Compatibility of fibroin/chitosan and fibroin/cellulose blends studied by thermal analysis [J]. Journal of thermal analysis and calorimetry, 2007,89(3):887-891.
    179. Schmidt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites [J]. Current opinion in solid state and materials science,2002,6(3):205-212.
    180. Sharkh B F A,Hamid H. Degradation study of date palm fiber/polypropylene composites in natural and artificial weathering:mechanical and thermal analysis [J]. Polymer degradation and stability, 2004,85(3):967-973.
    181. Sheetal S J, Tejraj m A. Molecular modeling simulations and thermodynamic approaches to investigate compatibility/incompatibility of poly(L-lactide)and poly(vinyl alcohol)blends[J]. Polymer, 2006,47(23):8061-8071.
    182. Shen L, Worrell E, Patel M. Present and future development in plastics from biomass [J]. Biofuels, Bioproducts and Biorefining,2009,4(1):25-40.
    183. Shen Q, Chen Y, Wei H, et al. Suspension effect of poly (styrene-ran-methacrylic acid) latex particles on crystal growth of calcium carbonate [J]. Crystal growth and design,2005,5(4):1387-1391.
    184. Shi Shuaike, Chen Shiyan, Zhang Xiang, et al. Biomimetic mineralization synthesis of calcium-deficient carbonate-containing hydroxyapatite in a three-dimensional network of bacterial cellulose [J]. Journal of chemical technology & biotechnology,2009,84(2):285-290.
    185.Shibata M, Ozawa K,Teramoto N, et al. Biocomposites made from short abaca fiber and biodegradable polyesters[J]. Macromolecular Materials and Engineering,2003,288(1):35-43.
    186. Singh Y P, Singh R P. Compatibility studies on solutions of polymer blends by viscometric and ultrasonic technology [J]. European polymer journal,1983,19(6):535-541.
    187.Singha A S, Thakur V K. Study of mechanical properties of urea-formaldehyde thermosets reinforced by pine needle powder [J]. Bioresources,2009,4(1):292-308.
    188. Stiubianu G, Racles C, Cazacu M, et al. Silicone-modified cellulose. Crosslinking of cellulose acetate with poly[dimenthyl(methyl-H)siloxane] by Pt-catalyzed dehydrogenative coupling [J]. Journal of materials science,2010,45(15):4141-4150.
    189.Suarez J C M, Coutinho F M B, Sydenstricker T H. SEM Studies of tensile fracture surfaces of polypropylene-saw dust composites [J]. Polymer testing,2003,22 (7):819-824.
    190. Summersclales J, Dissanayake N P J, Virk A, et al. A review of based fibers and their composites. Part 1 fibers as reinforcement [J]. Composites Part A:Applied science and manufacturing, 2010,41(10):1329-1335.
    191. Summersclales J, Dissanayake N P J, Virk A, et al. A review of based fibers and their composites. Part 2-composites [J]. Composites Part A:applied science and manufacturing,2010, 41(10):1336-1344.
    192. Sun Y, Lin L, Deng H B, et al. Structure of changes of bamboo cellulose in formic acid [J]. Bioresources,2008,3(2):297-315.
    193.Tarvainen M, Sutinen R, Peltomen S. Enhanced film forming properties for ethyl cellulose and starch acetate using n-alkenyl succinic anhydrides as novel plasticizers [J]. Pharmaceutical sciences, 2003,19(5):363-371.
    194.Tas A. Synthesis of biomimetic Ca-hydroxyapatite powders at 37 degrees C in synthetic body fluids [J]. Biomaterials,2000,21(14):1429-1438.
    195.Terech P, Chazeau L, Cavaille J Y. A small-angle scattering study of cellulose whiskers in aqueous. Suspensions [J]. Macromolecules,1999,32(6):1872-1875.
    196. Thomas S, Pothan L A, Cherian B M. Advances in natural fibre reinforced polymer composites: macro to nanoscales[J]. International journal of materials and product technology, 2009, 36(l-4):317-333.
    197. Tsuji H, Daimon H, Fujie K, A new strategy for recycling and preparation of poly(L-lactic acid): Hydrolysis in the melt [J]. Biomacromolecules, 2003, 4(3):835-840.
    198. Vallet-Regi M, Rodriguez-Lorenzo L M, Salinas A J. Synthesis and characterisation of calcium deficient apatite [J]. Solid State Ionics, 1997, 101-103, part 2. 1279-1285.
    199. Vert M, Schwarch G, Coudane J. Present and Future of PLA Polymers [J]. Journal of macromolecular science, 1995, Part A, 32(4):787-796.
    200. Vincent J F V. Structural biomaterials [M]. Macmillan Press Ltd, London, 1982.
    201.Vink E T H, Rabago K R, Glassner D A, et al. Application of life cycle assessment to natureworks polylactide(PLA) production [J]. Polymer degradation and stability, 2003, 80(3): 403-419.
    202. Virk A S, Hall W, Summerscales J. Failure strain as the key design criterion for fracture of natural fiber composites [J]. Composites science and technology, 2010, 70(6): 995-999.
    203. Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray photoelectron spectroscopy [M]. Minnesota: Perkin Elmer Corporation (Physical Electronics), 1979: 1.
    204. Wagner J R. A clinical and histological case study using resorbable hydroxyapatite for the repair of osseous defects prior to endosseous implant surgery [J]. Journal oral implantable, 1989, 15:186-192.
    205. Wan Y Z, Huang Y, Yuan C D, et al. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications[J]. Materials Science & Engineering C-Materials for Biological Applications, 2007, 27, 855.
    206. Wang X J, Li Y B, Wei J, et al. Development of biomimetic nano-hydroxyapatite/ poly(hexamethylene adipamide) composites.[J]. Biomaterials, 2002, 23 (24): 4787-4791.
    207. Wegner T H, Jones P E. Advancing cellulose-based nanotechnology [J]. Cellulose, 2006, 13(2): 115-118.
    208. Wegner T H, Winandy J E, Ritter M A. Nanotechnology opportunities in residential and non-residential construcxtion[C]. 2nd International Symposium on Nanotechnology in Construction, Bilbao, Spain, 2005.
    209. Wong S. Shanks R, Hodzic A. Properties of poly(3-hydroxybutyric acid) composites with flax fibers modified by plasticicier absorption[J]. Mncromolecular materials and engineering, 2002, 287(10): 647-655.
    210. Wu C S, Liao H T. A new biodegradable blends prepared from polylactide and hyaluronic acid [J]. Polymer,2005,46(23):10017-10026.
    211.Wu C S. Characterizing biodegradation of PLA and PLA-AA/starch films using a phosphate-solubilizing bacillus species [J]. Macromolecular bioscience,2008,8(6):560-567.
    212. Wu D F, Zhou C X, Xie F. Effect of flocculated structure on rheology of poly (butylenes terephthalate)/clay nanocomposites [J]. Journal of polymer science B:Polymer physics,2005, 42(19):2807-2818.
    213. Wunderlich B. Macromolecular Physics [M]. Academic Press, New York.1976,2,363.
    214. Yang S L, Wu Z H, Yang W, et al. Thermal and mechanical properties of chemical crosslinked polylactide (PLA) [J]. Polymer testing,2008,27(8):957-963.
    215. Yao S J. Sulfation kineties in the preparation of cellulose sulfate [J]. Chinese journal of chemical engineering,1999,7(1):47-55.
    216. Yuan H, Nishiyama Y, Wada M, et al. Surface acylation of cellulose whiskers by drying aqueous emulsion [J]. Biomacromolecules,2006,7(3):696-700.
    217. Zhang G B, Zhang J M, Zhou X S, et al. Miscibility and phase structure of binary blends of polylactide and poly (vinylpyrrolidone) [J]. Journal of applied polymer science,2003,88(4):973-979.
    218. Zhang R, Ma P X. Porous poly (L-lactic acid)/apatite composites created by biomimetic process [J]. Journal of biomedical materials research,1999,45(4):285-293.
    219.Zhang Z, Lee J H, Lee S H, et al. Morphology, thermal stability and rheology of poly (propylene carbonate)/organoclay nanocomposites with different pillaring agents [J].Polymer,2008, 49(12):2947-2956.
    220. Zhao H B, Kwak J H, Zhang Z C, et al. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis [J]. Carbohydrate Polymers,2007,68(2):235-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700