聚丙烯取向结晶行为及其微孔膜制备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全同聚丙烯(iPP)是典型的具有多晶型的半结晶型聚合物之一,由于材料的化学特性和加工工艺的不同,等位聚丙烯主要有单斜的晶型,三斜的晶型和正交的γ-晶型三种结晶形态,其中和β晶型较为常见。在通常的加工情况下-聚丙烯热性能最稳定所以最容易得到,亚稳态的β晶型聚丙烯与晶型聚丙烯相比,具有很多优良的性能,比如较低的结晶密度,熔融温度和熔融热焓,另外它的抗冲击性能和韧性得到大大的改善。然而只有利用一些特殊的方法才能得到,如温度梯度法、剪切熔体法或者特殊成核剂法等,针对聚丙烯β晶结晶机理的研究很少。近年来,β-iPP的形变研究得到广泛研究,主要是因为不同相变间密度的差异在拉伸过程中使得低密度向高密度转变,发生β晶型向晶型转变形成微孔,从而可以用来制备气体交换膜、过滤膜或锂电池隔膜等。
     我们利用高聚物熔体结晶过程中存在过冷态的性质,将纤维引入到过冷态的聚丙烯熔体中,制备了均质和异质纤维复合体系,从而用纤维诱导得到了取向的β-iPP结晶。通过对比均质纤维和异质纤维诱导的聚丙烯β晶体的再次熔融重结晶行为发现聚丙烯基体在均质和异质纤维/基体复合体系中的结晶机理不同,熔体中分子链取向是聚丙烯β结晶的前提。从而在理论上更全面的认识了聚丙烯β晶型的形成机理。
     通过研究聚丙烯β晶结晶机理及聚丙烯纤维/基体复合体系β结晶对各种条件的依赖性,确立了聚丙烯薄片的最佳制备条件,从而为高质量的β聚丙烯薄片的制备建立了新方法。对获得的高质量聚丙烯薄片进行了拉伸成孔实验,研究结果表明,由于所制薄片中的β聚丙烯晶体高度取向,晶区与非晶区的不均一应变行为增强了其成孔性和成孔均匀性。通过微孔的数量、尺寸、分布等对拉伸温度、速率、倍速、纵横向拉伸比等诸多拉伸参数依赖性研究,确定了最佳拉伸工艺条件,从而制备了具有较高孔隙率、均匀孔径分布的聚丙烯微孔膜。微孔膜的平均孔径为50-100nm,孔隙率为40~50%,与美国Celgard的聚乙烯微孔薄膜结构类似(孔隙率为40~45%)。跟踪研究聚丙烯微孔膜的力学性能。结果表明,通过控制聚丙烯纤维的熔融程度,可实现纤维的表面熔融诱导聚丙烯结晶,由此产生聚丙烯晶体单向拉伸产生微孔,而未熔融的聚丙烯纤维中心部分不形成微孔,此部分聚丙烯纤维对微孔聚丙烯膜起到了增强的作用,使其抗张强度大大增加。
     将微孔膜作为锂电池隔膜进行电池装机实验测试电性能,测试结果表明,电池的离子导电率、电化学稳定窗口、电池容量和循环性能等各项性能均满足要求,且优于美国Celgard公司的聚乙烯隔膜,明显优于国产PP隔膜。
     由于纤维的部分熔融诱导β聚丙烯结晶,未完全熔融的聚丙烯纤维仍有一定的强度可以对聚丙烯基体起到增强作用。所以我们进一步对比研究聚丙烯纤维和尼龙纤维增强聚丙烯复合体系的机械性能,并从纤维和聚丙烯复合体系的界面方面讨论了影响其性能的因素。结果表明聚丙烯纤维和尼龙纤维的加入都能大大提高复合体系的拉伸强度和拉伸弹性模量。但是由于纤维引入温度对复合体系界面结晶的影响,同质纤维复合体体系的韧性对样品制备温度有很大依赖性,随温度的升高而增大,且远远大于异质纤维复合体系。
     同时我们还对成核剂诱导的β-iPP的熔融重结晶行为作了初步的对比研究。研究发现,β-iPP熔融重结晶行为受热历史影响较大,熔融过程中记忆效应使样品在退火过程中自成核结晶,使结晶显影般瞬间完成,熔融温度继续升高使熔体完全处于无序状态,β成核剂才会起作用从而诱导β-iPP的形成。
Isotactic polypropylene (iPP) is one of the semicrystalline polymersexhibiting pronounced polymorphisms and morphologies depending onboth the chemical characters of the materials and their preparationconditions. At least three crystalline modifications, i.e., the monoclinic
     -form, the trigonal-form and the orthorhombic γ-form, have beenreported. It was well documented that the-iPP crystals arethermodynamically most stable and commercial grade iPP crystallizesfrom bulk most generally in its-form under traditional industryprocessing conditions. The metastable-iPP exhibits some excellentperformance characteristics such as low crystal density, meltingtemperature, fusion enthalpy, the remarkably improved elongation atbreak and impact strength, which make it useful for many industrialapplications. It can, however, only be obtained through some kinds ofspecial procedures, such as crystallization in thermal gradient,crystallization of the sheared or elongated melts, or crystallization at thepresence of nucleation agents. The formation mechanism of the-iPP crystals is, however, not clear.
     The deformation of-form polypropylene has been an interestingsubject of research because transformation from to or to smectic formwith unusual micropore formation can be obserIsotactic polypropylene(iPP) is one of the semicrystalline polymers exhibiting pronouncedpolymorphisms and morphologies depending on both the chemicalcharacters of the materials and their preparation conditions. At least threecrystalline modifications, i.e., the monoclinic-form, the trigonal-formand the orthorhombic γ-form, have been reported. It was welldocumented that the-iPP crystals are thermodynamically most stableand commercial grade iPP crystallizes from bulk most generally in its
     -form under traditional industry processing conditions. The metastable
     -iPP exhibits some excellent performance characteristics such as lowcrystal density, melting temperature, fusion enthalpy, the remarkablyimproved elongation at break and impact strength, which make it usefulfor many industrial applications. It can, however, only be obtainedthrough some kinds of special procedures, such as crystallization inthermal gradient, crystallization of the sheared or elongated melts, orcrystallization at the presence of nucleation agents. The formationmechanism of the-iPP crystals is, however, not clear. The deformationof-form polypropylene has been an interesting subject of researchved inthe process of deformation. So it can be used to prepare gas exchange membrane, filter membrane or seperator of lithium-ion batteries.
     In our reasearch group, by introducing fibers into supercooledmolten iPP matrices, homogeneous and heterogeneous matix-fibercomposites have been prepared, and the-iPP cylindritic crystals wasproduced. It can be seen that the different origins of the β-iPP cylindritesin those composites by comparing the melt recrystallization behaviors ofthe-iPP crystals. The oriented molecular chain in melt plays a veryimportant role in the subsequent-iPP crystallization.
     The best preparation condition of-iPP cylindritic crystals can beobtained depending on the formation mechanism and crystallizationcondition. Microporous membranes obtained from fibers induced-formpolypropylene films by stretching. The micropores are formedhomogeneously for the different strain of oriented-iPP crystalline andamorphous phases. The microporous membrane had pores around50-100nm, porosity of40~50%and the similar structure with the PEmicroporous of Celgard(USA). The formation of the β-iPP is related tothe melting, or at least partial melting of the iPP fibers.The machenicalproperties of microporous membrane can improved greatly for partialmelting of the iPP fibers.
     The porous membrane was used as Lithium-ion battery separators totest electric properties. It was observed that ionic conductivity,electrochemical stability window and charge-discharge cycle all meet the requirment of battery, and are better than domestic microporousmembrane.
     On the base of above experiments, we compared the mechanicalproperties of homogeneous iPP fiber–matrix composites andheterogeneous polyamide (PA)–iPP fiber–matrix composites. It wasfound that the mechanical properties of those composites such an thetensile modulus and tensile strength all increased significantly. Theelongation at break of iPP fibers/β-PP self-reinforced compositessignificantly increased with preparation temperature elevated which isdue to the surface crystallization contributes to the better interfaceadhesion and provides better bonding for iPP fibers/PP composites,while PA fibers/PP composites still exhibit a brittle fracture for the weakinterfacial adhesion between PA fibers and PP matrix.
     The preliminary study on melt recrystallization behaviors of the
     -iPP crystals induced by β-nucleating agent. A new type of
     -modification has been developed by self-seeding process.The growthprocess of these crystals is just like “photographic development process.”Crystalline phase transformation and the memory effect caused by localorder was observed during the melting and annealing process. A hightemperature is sufficient to destroy the local order and the β-nucleatingagent efficiently induces formation of β-form.
引文
[1] Sudhakara P, Devi A P K, Prasad C, VenkataReddy K O, Woo L D, Kim B S, Song JI.Thermal, Mechanical, and Morphological Properties of Maleated PolypropyleneCompatibilized Borassus Fruit Fiber/Polypropylene Composites [J]. J. Appl. Polym.Sci.2013,128:976-982
    [2] Kalyanasundaram S, DharMalingam S, Venkatesan S, Sexton A. Effect of ProcessParameters during Forming of Self Reinforced-PP Based Fiber Metal Laminate [J].Composite structures.2013,97:332-337
    [3] Rungsima C, Rattana T, Suchada U, Klanarong S. Pineapple Leaf Fiber ReinforcedThermoplastic Composites: Effects of Fiber Length and Fiber Content on TheirCharacteristics [J]. J. Appl. Polym. Sci.2011,119:1952–1960
    [4] Dvir H, Gottlieb M, Daren S. Thermal Polymerization of a Brominated Flame Retardantin a Glass-fiber-reinforced Polypropylene—quantitative Analysis [J]. J. Appl. Polym.Sci.2003,88:1506-1515
    [5] Tjong S C, Xu S A, Mai Y W. Process-structure-property Relationship in TernaryShort-glass-fiber/elastomer/polypropylene Composites [J]. J. Appl. Polym. Sci.2003,88:1384-1392
    [6] Huang H X. Self-reinforcement of Polypropylene by Flow-induced Crystallization DuringContinuous Extrusion[J]. J. Appl. Polym. Sci.,1998,67:2111-2118
    [7] Loos J, Schimanski T, Hofman J, Peijs T, Lemstra P J. Morphology Investigation ofPolypropylene Single-fibre Reinforced Polypropylene Model Composites [J]. Polymer.2001,42:3827-3834
    [8] Devaux E, CazéC. Composites of Ultra-High-Molecular-Weight Polyethylene Fibersin A Low-density Polyethylene Matrix:Ⅱ. Fiber/matrix adhesion [J]. Composites Sci.Technol.1999,59:879-882
    [9] Lacroix F V, Loos J, Schulte K. Morphological Investigations of Polyethylene FiberReinforced Polyethylene [J]. Polymer,1999,40:843-847
    [10] Huo H, Jiang S C, An L J. Influence of Shear on Crystallization Behavior of the βPhase in Isotactic Polypropylene with β-Nucleating Agent [J]. Macromolecules.2004,37:2478-2483
    [11]周建军,李林.锂离子电池隔膜的国产化现状与发展趋势[J].新材料业,2008,(4):33-36
    [12] Arora P, Zhang Z M. Battery Separators [J]. Chem. Rev.2004,104:4419-4462
    [13] Chu F, Kimura Y. Structure and Gas Permeability of Microporous Films Prepared byBiaxial Drawing of β–form Polypropylene [J]. Polymer.1996,37:573-579
    [14] Nishi Y. Lithium Ion Secondary Battery Technologies, Present and Future [J].Macromol. Symp.2000,156:187-194
    [15]杨晓西.锂离子电池及其材料的发展近况.华南理工大学学报[J].1999,25(5):52-58
    [16] Natta G, Corradini P. Conformation of Linear Chains and Their Mode of Packing in theCrystal State [J]. J. Polym. Sci.1959,39:29-46
    [17] Natta G, Corradini P, Ganis P. Prediction of the Conformation of the Chain in theCrystalline State of Tactic Polymers [J]. J. Polymer Sci.1962,58:1191-1199
    [18] Bruckner S, Meille SV, Petraccone V, Pirozzi B. Polymorphism in IsotacticPolypropylene[J]. Prog. Polym. Sci.1991,16:361-404
    [19] Turner-Jones A, Aizlewood J M, Beckett D R. Crystalline Forms of IsotacticPolypropylene [J]. Makromol. Chem. Phys.1964,75:134-158
    [20] Turner-Jones A, Cobbold A J. The β Crystalline Form of Isotactic Polypropylene [J]. J.Polym. Sci. Part B: Polym. Lett.1968,6:539-546
    [21] Morrow D R, Newman B A. Crystallization of Low-Molecular-Weight PolypropyleneFractions [J]. J. Appl. Phys.1968,39:4944-4950
    [22] Kardos J L, Christiansen A W, Baer E. Structure of Pressure-crystallized Polypropylene[J]. J. Polym. Sci. Part A-2: Polym. Phys.1966,4:777-788
    [23] Sauer J A, Pae K D. Structure and Thermal Behavior of Pressure-crystallizedPolypropylene [J]. J. Appl. Phys.1968,39:4950-4968
    [24] Addink E J, Beintema J. Polymorphism of Crystalline Polypropylene [J]. Polymer.1961,2:185-193
    [25] Wunderlich B. Macromolecular Physics, Vol.3. New York: Academic Press,1980.
    [26] Wunderlich B. Macromolecular Physics, Vol.2. New York: Academic Press,1976
    [27] Lovinger A J, Chua J O, Gryte C C. Study on the and β Forms of IsotacticPolypropylene by Crystallization in a Temperature Gradient [J]. J. Polym. Sci. Polym.Phys. Edn.1977,15:641-656
    [28] Garbarczyk J, Paukszta D. Influence of Additives on the Structure and Properties ofPolymers [J]. Colloid. Polym. Sci.,1985,263:985-990
    [29] Shi F Y, Zhang X D, Qiu Z X. Crystallization Kinetics of β-phase Poly(propylene)[J].Makromol. Chem.1992,193:583-591
    [30] Grubb D T, Odell J A, Keller A. Characterization of Superheatable Flow-induced PolymerCrystals by Optical Microscopy [J]. J. Mater. Sci.1975,10:1510-1518
    [31] Dragaun H, Hubeny H, Muschik H. Shear-induced-form Crystallization in IsotacticPolypropylene [J]. J. Polym. Sci. Polym. Phys. Ed.1977,15:1779-1789
    [32] Padden F J, Keith H D. Spherulitic Crystallization in Polypropylene [J]. J. Appl.Phys.1959,30:1479-1484
    [33] Lotz B, Kopp S, Dorset D. Sur une Structure Cristalline Originale de Polymères enConformation Hèlico dale31ou32. C. R [J]. Acad. Sci. Paris1994,319:187-192
    [34] Meille S V, Ferro D R, Brucker S, Lovinger A J, Padden F J. Structure of β-IsotacticPolypropylene: A Long-Standing Structural Puzzle [J]. Macromolecules1994,27:2615-2622
    [35] Dorset D L, McCourt M P, Kopp S, Schumacher M, Okihara T, Lotz B. IsotacticPolypropylene, β-Phase: A Study in Frustration [J]. Polymer1998,39:6331-6337
    [36] Lotz B. Molecular Aspects of Structure and Morphology of Isotactic Polypropylene [J]. J.Macromol. Sci. Part B: Phys.2002, B41:685-709
    [37] Bruckner S, Meille SV. Non-parallel Chains in Crystalline γ-isotactic Polypropylene [J].Nature1989,340:455-457
    [38] Wyckoff H W. X-ray and Related Studies of Quenched, Drawn, and AnnealedPolypropylene [J]. J. Polym. Sci.1962,62:83-114
    [39] Haudin J M. Optical studies of polymer morphology[J]. Elsevier Applied SciencePublishers Ltd., Optical Properties of Polymers,1986,167-264
    [40] Lotz B, Graff S, Wittmann J C. Crystal Morphology of the (triclinic) Phase of IsotacticPolypropylene and Its Relation to the Phase [J]. J. Polym. Sci., Part B: Polym. Phys.,1986,24:2017-2032
    [41] Nedkov E, Krestev V. Mixed Spherulites of Alpha and Gamma Phases inGamma-irradiated and Thermal-treated Isotactic Polypropylene [J]. Colloid Polym. Sci.1990,268:1028-1035
    [42] Keith H D, Padden F J, Walter N M, Wyckoff H W. Evidence for a Second Crystal Formof Polypropylene [J]. J. Appl. Phys.1959,30:1485-1488
    [43] Turner-Jones A. Crystallinity in Isotactic Polyolefins with Unbranched Side Chains [J].Makromol. Chem.Phys.1964,71:1-32
    [44] Norton D R, Keller A.. The Spherulitic and Lamellar Morphology of Melt-crystallizedIsotactic Polypropylene [J]. Polymer.1985,26:704-716
    [45] Varga, J. Supermolecular Structure of Isotactic Polypropylene. J. Mater. Sci.1992,27:2557-2579
    [46] Bassett D C, Olley R.H. On the Lamellar Mophology of Isotactic PolypropyleneSpherulites[J]. Polymer.1984,25:935-943
    [47] Binsbergen F L, Be Lange B G M. Morphology of Polypropylene Crystallized from theMelt [J]. Polymer.1968,9:23-40
    [48] Yamada K., Matsumoto S, Tagashira K, Hikosaka M. Isotacticity Dependence ofSpherulitic Morphology of Isotactic Polypropylene [J]. Polymer.1998,39:5327-5333
    [49] Lotz B, Wittmann J C. The Molecular Origin of Lamellar Branching in the (monoclinic)form of Isotactic Polypropylene [J]. J. Polym. Sci. PartB: Polym. Phys. Ed.,1986,24:1541-1558
    [50] Lotz B, Wittmann J C, Lovinger A J. Structure and Morphology of Poly(propylenes): AMolecular Analysis [J]. Polmer,1996,37:4979-4992
    [51] Padden F J Jr, Keith H D. Mechanism for Lamellar Branching in Isotactic Polypropylene[J]. J. Appl. Phys.1973,44:1217-1223
    [52] Cox W W, Duswalt A A. Morphological Transformations of Polypropylene Related to ItsMelting and Recrystallization Behavior [J]. Polym. Eng. Sci.1967,7:309-316
    [53] Alamo R G, Brown G M, Mandelkern L, Lehtinen A, Paukkeri R. A Morphological Studyof a Highly Structurally Regular Isotactic Poly(propylene) Fraction [J]. Polymer.1999,40:3933-3944
    [54] Samuels R J. Quantitative Structural Characterization of the Melting Behavior of IsotacticPolypropylene [J]. J. Polym. Sci. Polym. Phys. Ed..1975,13:1417-1446
    [55] Yan S K, Katzenberg F, Petermann J. Epitaxial and Graphoepitaxial Growth of IsotacticPolypropylene (iPP) from the Melt on Highly Oriented High Density Polyethylene(HDPE) Substrates [J]. J. Polym. Sci. PartB: Polym. Phys.1999,37:1893-1898
    [56] Zhou J J, Liu J G, Yan S K., Dong J Y, Li L, Chan C M, Schultz J M. Atomic ForceMicroscopy Study of the Lamellar Growth of Isotactic Polypropylene [J]. Polymer.2005,46:4077-4087
    [57] Awaya H. Morphology of Different Types of Isotactic Polypropylene SpherulitesCrystallized from Melt [J]. Polymer.1988,29:591-596
    [58] Janimak J J, Cheng S Z D. et al. Isotacticity Effect on Crystallization and Melting inPolypropylene Fractions. II. Linear Crystal Growth Rate and Morphology Study [J].Macromolecules.1991,24:2253-2260
    [59] Jenckel E, Teege E. Hinrichs W.Transcryatallization in Macromolecular Substances [J].Kolloid Zeitschrift.1952,129:19-24
    [60] Kantz M R, Cornelliussen R D.Thermoplastic Fiber Reinforced PolypropyleneComposites Having a Transcrystalline Morphology [J]. J. Polym.Sci. Polym. Lett. Ed.1973,11:279-284
    [61] Saujanya C, Radhakrishnan S. Structure Development and Properties of PET Fiber FilledPP Composites [J]. Polymer.2001,42:4537-4548
    [62] He T, Porter R S. Melt Transcrystallization Of Polyethylene On High ModulusPolyethylene Fibers [J]. J. Appl. Polym. Sci.1988,35:1945-1953
    [63] Thomason J L, Van Rooyen A A. Transcrystallized Interphase in ThermoplasticComposites, PartⅠInfluence of Fiber Type and Crystallization Temperature [J]. J. Mater.Sci.1992,27:889-896
    [64] Folkes M J, Hardwick S T. Direct Study of the Structure and Properties of TranscrystallineLayers [J]. J. Mater. Sci. Lett.1987,6:656-658
    [65] Campbell D, Qayyum M M. Melt Crystallization of Polypropylene: Effect of Contact withFiber Substrates [J]. J. Polym. Sci.: Polym. Phys. Ed.1980,18:83-93
    [66] Huson M G, McGill W J. The Effect of Transcrystallinity on the Behavior of Fibers inPolymer Matrices [J]. J. Polym. Sci.: Polym. Phys. Ed.1985,23:121-128
    [67] Avella M, Dellavolpe G, Martuscelli E, et al. Transcrystallinity Phenomena inFiber-reinforced Polypropylene.2. Morphology, Thermal and Mechanical-propertiesRelationships [J]. Polym. Eng. Sci.,1992,32:383-391
    [68] Avella M, Dellavolpe G, Martuscelli E, et al. Transcrystallinity Phenomena in aPolypropylene Kevlar Fiber System.1. Influence of Crystallization Conditions [J]. Polym.Eng. Sci.,1992,32:376-382
    [69] Chen E J H, Hsiao B S. In: Ishida H. The Effects of Transcrystalline Interphase inAdvanced Polymer Composites [J]. Polym. Eng. Sci.1992,32:280-286
    [70] Beck-Candanedo S, Roman M, Gray D G. Effect of Reaction Conditions on the Propertiesand Behavior of Wood Cellulose Nanocrystal Suspensions [J]. Biomacromolecules.2005,6:1048–1054
    [71] Thompson J L, Van Rooyen A A. Transcrystallized Interphase in ThermoplasticComposites,Part Ⅰ Influence of Fiber Type and Crystallization Temperature [J]. J. Mater.Sci.1992,27:889-896
    [72] Thompson J L, Van Rooyen A A. Transcrystallized Interphase in ThermoplasticComposites, Part Ⅱ Influence of Interfacial Stress, Cooling Rate, Fiber Properties andPolymer Molecular Weight [J]. J. Mater. Sci.1992,27:897-907
    [73] Haas T W, Maxwell B. Effects of Shear Stress on the Transcrystallization of LinearPolyethylene and Polybutene-1[J]. Polym. Eng. Sci.1969,9:225-241
    [74] Ishida H, Bussi P. Surface-Induced Crystallization in Ultrahigh-Modulus PolyethyleneFiber Reinforced Polyethylene Composites [J]. Macromolecules.1991,24,3569-3577
    [75] Wang C, Hwang L M. Transcrystallization of PTFE Fiber/PP Composites ⅠCrystallization Kinetics and Morphology [J]. J. Polym. Sci. Part B: Polym. Phys.1996,34:47-56
    [76] Wang C, Hwang L M. Transcrystallization of PTFE Fiber/PP Composites. Ⅱ. Effect ofTranscrystallinity on the Interfacial Strength [J]. J. Polym. Sci. Part B: Polym. Phys.1996,34:1435-1442
    [77] Wang C, Hwang L M. Transcrystallization of PTFE Fiber/PP Composites. Ⅲ. Effect ofFiber Pulling on the Crystallization Kinetics [J]. J. Polym. Sci. part B: Polym. Phys.1998,36,1361-1370
    [78] Wang C, liu C-R. Transcrystallization of Polypropylene Composites: Nucleating Abilityof Fibers [J]. Polymer.1999,40:289-298
    [79] Incardona S, Migliaresi C, Wagner H D, Gilbert A H, Marom G. The Mechanical Role ofthe Fiber Matrix Transcrystalline Interphase in Carbon-Fiber Reinforced J-PolymerMicrocomposites [J]. Compos. Sci. Technol.,1993,47:43-50
    [80] Peron B, Lowe A, Baillie C. The Effect of Transcrystallinity on the InterfacialCharacteristics of Polypropylene/Alumina Single Fiber Composites [J]. Composites PartA-Appl. S.1996,27:839-845
    [81] Chen E J H, Hsiao B S. The Effect of Transcrystalline Interphase in Advanced PolymerComposites [J]. Polym. Eng. Sci.1992,32:280-286
    [82Clark Jr R L, Kander R G, Sauer B B. Nylon66/Poly(Vinyl Pyrrolidone) ReinforcedComposites:1. Interphase Microstructure and Evaluation of Fiber-Matrix Adhesion [J].Compos. Part A-Appl. S.1999,30:27-36
    [83] HeppenstallButler M, Bannister D J, Young R J. A Study of TranscrystallinePolypropylene/Single-Aramid-Fiber Pull-out Behaviour Using Raman Spectroscopy [J].Compos. Part A.1996,27:833-838
    [84] Peterlin A. Molecular Model of Drawing Polyethylene and Polypropylene [J].J. Mater.Sci.1971,6:490-508
    [85] Keller A.. In: Cifferi, A.; Ward, I.M. eds. Ultra-High Modulus Polymers[M]. AppliedScience Publishers. London: Elsevier,1977
    [86] Devaux E, Chabert B. Nature and Origin of the Transcrystalline Interphase ofPolypropylene/Glass Fibre Composites after a Shear Stress [J]. Polym. Commun.1991,32:464-468
    [87] Binsbergen F J. Orientation-Induced Nucleation In Polymer Crystallization [J]. Nature.1966,211:516-517
    [88] Varga J, Karger-Kocsis J. Direct Evidence of Row-nucleated Cylindritic Crystallization inGlass Fiber-reinforced Polypropylene [J]. Composites Polymer. Bull.1993,30:105-110
    [89] Varga J. Supermolecular Structure of Isotactic Polypropylene [J]. J. Mater. Sci.1992,27:2557-2579
    [90] Varga J. Shape of Spherulitic Boundaries [J]. Angew. Macromol. Chem.1983,112,161-172.
    [91] Fujiyama M. Structures and Properties of Injection Moldings of β-CrystalNucleator-Added Polypropylenes.1.Effect of β-Nucleator Content [J]. Int. Polym.Proc.1995,10:172-178
    [92] Fujiyama M. Structures and Properties of Injection Moldings of β-CrystalNucleator-Added Polypropylenes.2.Effect of MFI of Based Resins [J]. Int. Polym.Proc.1995,10:251-254
    [93] Fujiyama M. Structures and Properties of Injection Moldings of β-CrystalNucleator-Added Polypropylenes3.Comparison of Nucleating Effect Betweenγ-Quinacridone and Quinacridonequinone [J]. Int. Polym. Proc.1996,11:271-274
    [94] Varga J. Melting Memory Effect of the β–modification of Polypropylene [J]. J. Therm.Anal.1986,31:165-172
    [95] Varga J. β-Modification of Polypropylene and Its Two-Component Systems [J]. J. Therm.Anal.1989,35:1891-1912
    [96] Jacoby P, Bersted B H, Kissel W J, Smith C E. Studies of β-Crystalline Form of IsotacticPolypropylene [J]. J. Polym. Sci.1986, B24:461-491
    [97] Shi G, Chu F, Zhou G, Han Z. Plastic Deformation and Solid-Phase Transformation inβ-Phase Polypropylene [J]. Makromol Chem.1989,190:907-913
    [98] Shi G, Zhang X, Zheng J, Zhou G. Microporous Film, Made from Beta-Crystalline PhasePolypropylene [J]. Int. Polym. Proc.1995,10:330-333
    [99] Varga J, Schulek-Tóth F. Filled Compounds of the β-modification of Polypropylene [J].Angew. Makromol. Chem.1991,188:11-25
    [100] Karger-Kocsis J. How Does Phase Transformation Toughening Work in SemicrystallinePolymers [J]. Polym. Eng. Sci.1996,36:203-210
    [101] Varga J. β-Modification of Isotactic Polypropylene: Preparation, Structure, Processing,Properties, and Application[J]. Macromol.Sci. Part B: Phys.2002,41:1121-1171.
    [102] Varga J, Schulek-Tóth F, Ille A. Effect of Fusion Condition of β-Polypropylene on NewCrystallization [J]. Colloid Polym. Sci.1991,269:655-664
    [103] Olley R. H, Hodge A M, Bassett D C. Permanganic Etchant for Polyolefins [J]. J. Polym.Sci. Polym. Phys.1977,17:627-643
    [104] Olley R H. Selective Etching of Polymeric Materials [J]. Sci. Progr. Oxford.1986,70:17-43
    [105] Varga J, Ehrenstein G W. High-Temperature Hedritic Crystallization of theβ-Modification Isotactic Polypropylene [J]. Colloid. Polym. Sci.1997,275:511-519
    [106] Reneker D H, Geil P H. Morphology of Polymer Single Crystals [J]. J. Apl. Phys.1960,31:1916-1925
    [107] Varga J, Karger-Kocsis J. Rules of Supermolecular Structure Formation in ShearedIsotactic Polypropylene Melts [J]. J. Polym. Sci. Part B: Polym. Phys.1996,34:657-670
    [108] Varga J, Ehrenstein G W. Formation of β-Modification in Its Late Stage of Crystallization[J]. Polymer.1996,37:5959-5963
    [109] Leugering H J, Kirsch G. Beeinflussung Der Kristallstruktur Von IsotaktischenPolypropylen Durch Kristallisation Aus Orientierten Schmelze [J]. Angew. Makromol.Chem.1973,33:17-23
    [110] Varga J, Karger-Kocsis J. Interfacial Morphologies in Carbon Fibre-ReinforcedPolypropylene Composites [J]. Polymer.1995,36:4877-4881
    [111] Devaux E, Gerard J F, Chabert P. Two-Dimensional Simulation of Crystalline GrowthFronts in a Polypropylene/Glass-Fibre Composite Depending on Processing Conditions[J]. Compos. Sci. Technol.1993,48:199-203
    [112] Vancso G J, Liu G, Karger-Kocsis J, Varga J. AFM Imaging of Interfacial, Morphologiesin Carbon-Fibre Reinforced Isotactic Polypropylene [J]. Colloid Polym. Sci.1997,275:181-186
    [113] Varga J. Characteristics of Cylindritic Crystallization of Polypropylene [J]. Angew.Makromol. Chem.1983,112:191-203
    [114] Varga J, Karger-Kocsis J.The Occurence of Transcrystallization or Row-NucleatedCylindritic Crystallization as a Result of Shearing in a Glass-Fiber-ReinforcedPolypropylene [J]. Compos. Sci. Technol.1993,48:191-198
    [115] Varga J, Karger-Kocsis J. The Difference between Transcrystallization and Shear-InducedCylindritic Crystallization in Fibre-Reinforced Polypropylene Composites [J]. J. Mater.Sci. Lett.1994,13:1069-1071
    [116] Filho D S, Oliveira C M F. Crystalline Modifications of Linear TransquinacridonePigments [J]. J. Mater. Sci.1992,27:5101-5107
    [117] Varga J, Schulek-T th F, Mudra, I. Blends of the β-Modification of Polypropylene [J].Makromol. Chem. Macromol. Symp.1994,78:229-241
    [118] Varga J, Mudra I, Ehrenstein G W. Highly Active Thermally Stable β-Nucleating Agentfor Isotactic Polypropylene [J]. J. Appl. Polym. Sci.1999,74:2357-2368
    [119] Varga J, T th F. Annealing of the β-Modification of Polypropylene [J]. Makromol. Chem.Macromol. Symp.1986,5:213-223
    [120] Varga J, Garz G, Ille A. Kristallisation, Umkristallisation Und Schmelzen Derβ-Modifikation Des Polypropylenes [J]. Angew. Makromol. Chem.1986,142:171-181
    [121] Varga J, Garzo G. Isothermal Crystallization of the β-Modification of Polypropylene.ActaChim. Hung.1991,128:303-307
    [122] Varga J, Garz G. The Properties of Polymer Blends of β-Modification of Polypropyleneand an Elastomer [J]. Angew. Makromol. Chem.1990,180:15-33
    [123] Stocker W, Schumacher M, Graff S, Thierry A, Wittmann J C, Lotz B. EpitaxialCrystallization and AFM Investigation of a Frustrated Polymer Structure: IsotacticPolypropylene, β Phase [J]. Macromolecules.1998,31:807-814
    [124] Varga J, Fujiwara Y, Ille A. β-bifurcation of Growth during Spherulitic Crystallizationof Polypropylene [J]. Period Polytech. Chem. Eng.1990,34:255-271
    [125] Clegg D W, Collyer A A. Mechanical Properties of Reinfored Thermoplastics[J]. Elsevier,London,1986
    [126] Billon N, Magnet C, Haudin J M, Lefebvre D.Transcrystallinity Effects in ThinPolymer-Films-Experimental and Theoretical Approach[J]. Colloid. Polym. Sci.1994,272:633-654
    [127] Li H H, Liu J C, Wang D J, Yan S K. A Comparison Study on the Homogeneity andHeterogeneity Fiber Induced Crystallization of Isotactic Polypropylene[J]. Colloid. Polym.Sci.2003,281:973–979
    [128] Sun X L, Li H H, Wang J J, Yan S K. Shear-Induced Interfacial Structure of IsotacticPolypropylene (iPP) in iPP/Fiber Composites[J]. Macromolecules.2006,39:8720-8726
    [129] Li H H, Zhang X Q, Duan Y X, Wang D J, Li L, Yan S K. Influence of CrystallizationTemperature on the Morphologies of Isotactic Polypropylene Single-polymerComposite[J]. Polymer.2004,45:8059–8065
    [130] Sun X L, Li H H, Zhang X, Wang J J, Wang D J, Yan S K. Effect of Fiber MolecularWeight on the Interfacial Morphology of iPP Fiber/Matrix Single Polymer Composites[J].Macromolecules.2006,39:1087-1092
    [131] Li H, Zhang X, Kuang X, Wang J, Wang D, Li L, Yan S. A Scanning ElectronMicroscopy Study on the Morphologies of Isotactic Polypropylene Induced by Its OwnFibers[J]. Macromolecules.2004,37:2847-2853
    [132] Li H H, Jiang S D, Wang J J, Wang D J, Yan S K.Optical Microscopic Study on theMorphologies of Isotactic Polypropylene Induced by Its Homogeneity Fibers[J].Macromolecules.2003,36:2802-2807
    [133] Sun X L, Li H H, Lieberwirth I, Yan S K. and β Interfacial Structures of the iPP/PETMatrix/Fiber Systems[J]. Macromolecules.2007,40:8244-8249
    [134] Li H H, Sun X L, Wang J J, Yan S K, Schultz J M. On the Development of SpecialPositive Isotactic Polypropylene Spherulites [J]. J. Polym. Sci. PartB: Polym. Phys.2006,44:1114-1121
    [135] Li H H, Sun X L, Yan S K, Schultz J M. Initial Stage of iPP β to Growth TransitionInduced by Stepwise Crystallization [J]. Macromolecules.2008,41:5062-5064
    [136]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社2008.362
    [137]郭炳焜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2005.417
    [138]Wakihara M. Recent Developments in Lithium Ion Batteries [J]. Mater. Sci. Eng. R-Rep.2001,33:109-134
    [139]Brandt K. Historical Development of Secondary Lithium Batteries [J]. Solid. State.Lonics.1994,69:173-183
    [140] Daniel C. Materials and Processing for Lithium-ion Batteries [J]. JOM.2008,60:43-48
    [141] Venugopal G, Moore J, Howard J, Pendalwar S. Characterization of MicroporousSeparators for Lithium-ion Batteries[J]. J. Power. Sources.1999,77:34-41
    [142]李铁军.锂离子电池用聚丙烯微孔薄膜[J].中国塑料.2004,18(5):1-5
    [143] Weight M J. Recent Advances in Polyethylene Separator Technology [J]. J. Power Source.1991,34:257-268
    [144] Abraham K M. Directions in Secondary Lithium Battery Research and Development [J].Electrochim. Acta.1993,38:1233-1248
    [145]Melnikov S M, Sergeyev V G, Yoshikawa K. Discrete Coil-globule Transition of LargeDNA Induced by Ationic Surfactant [J]. J. Am. Chem. Soc.1995,117:2401-2408
    [146]Kuribayashi I. Characterization of Composite Ellulosic Separators for RechargeableLithium-ion Batteries[J]. J. Power. Sources.1996,63:87-91
    [147]Bierenbaum H S, Isaacson R B, Druin M L, Plovan, S G. Microporous Polymetic Films[J]. Ind. Eng. Chem. Prod. Res. Dev.1974,13:2-9
    [148] Sadeghi F, Ajji A, Carreau P J. Analysis of Microporous Membranes Obtained fromPolypropylene Films by Stretching [J]. J. Membr. Sci.2007,292:62-71
    [149] Lloyd D R, Kim S S, Kinzer K E. Microporous Membrane Formation viaThermally-induced Phase Separation. II. Liquid—liquid Phase Separation [J]. J. Membr.Sci.1991,64:1-11
    [150] Kim S S, Lloyd D R. Microporous Membrane Formation via Thermally-induced PhaseSeparation Ⅲ Effect of Hermodynamic Interactions on the Structure of IsotacticPolypropylene Membranes [J]. J. Membr. Sci.1991,64:13-29
    [151]胡继文,许凯,沈家瑞.锂离子电池隔膜的研究与开发[J].高分子材料科学与工程.2003,19(1):215-219
    [152]胡继文,岑美柱,孙有德.应用化学[J].1997,14(4):83-84
    [153]Schell W J. Commercial Applications for Gas Permeation Membrane Systems [J].1985,22:217-224
    [154] Tabatabaei S H, Carreau P J, Ajji A. Microporous Membranes Obtained from PP/HDPEMultilayer Films by Stretching [J]. J. Membr. Sci.2009,345:148-159
    [155] Tabatabaei S H, Carreau P J, Ajji A. Microporous Membranes Obtained fromPolypropylene Blend Films by Stretching [J]. J. Membr. Sci.2008,325:772-782
    [156] Liu M X, Guo B C, Du M L, Chen F, Jia D M. Halloysite Nanotubes as a Novelβ–nucleating Agent for Isotactic Polypropylene[J]. Polymer.2009,50:3022-3030
    [157]Woo L S, Won C S, Mu J S, et al. Electrochemical Properties and Cycle Performance ofElectrospun Poly(Vinylidane Fluoride)-based Fibrous Membance Electrolytes for Li-ionPolymer battery[J]. J. Power Sources.2006;1630:41-46
    [158] Kim J J, Jang T S, Kwon Y D, Kim U Y, Kim S S. Structural Study of MicroporousPolypropylene Hollow Fiber Membranes Made by the Melt-spinning and Cold-stretchingMethod [J]. J. Membr. Sci.1994,93:209-215
    [159]骆峰,张军,王晓琳,等.热诱导相分离法制备高分子微孔膜的原理与进展.南京化工大学学报[J].2001,23(4):91-96
    [160] Ihm D W, Noh J G, Kim J Y. Effect of Polymer Blending and Drawing Conditions onProperties of Polyethylene Separator Prepared for Li-ion Secondary Battery [J]. J. PowerSources.2002,109:388-393
    [161] Kim S S, Lim G B A, Alwattari A A,Wang Y F, Lloyd D R. Microporous MembraneFormation via Thermally-induced Phase Separation. V. Effect of Diluent Mobility andCrystallization on the Structure of Isotactic Polypropylene Membranes [J]. J. Membr. Sci.1991,64:41-53
    [162] Meille S V, Bruckner S, Porzio W. γ-Isotactic polypropylene. A Structure with NonparallelChain Axes [J]. Macromolecules.1990,23:4114-4121
    [163] Torre J, Cortazar M, Gomez M A, Marco C, Ellis G, Rickel C, et al. Nature of theCrystalline Interphase in Sheared IPP/Vectra Fiber Model Composites by MicrofocusX-ray Diffraction and IR Microspectroscopy using Synchrotron Radiation [J].Macromolecules.2006,39:5564–5568
    [164] Eder G, Janeschitz-Kriegl H, Liedauer S. Crystallization Processes in Quiescent andMoving Polymer Melts under Heat Transfer Conditions [J]. Prog. Polym. Sci.1990,15:629-714
    [165] Janeschitz-Kriegl H. Fundamentals of Texturing: Crystallization by Heat Transfer andFlow.[J]. Makromol. Symp.1994,83:207–229
    [166] Varga J. β-Modification of Isotactic Polypropylene: Preparation, Structure, Processing,Properties, and Application[J]. Macromol.Sci. Part B: Phys.2002,41:1121-1171.
    [167]徐懋,胡世如,关家玉,孙宪明,吴薇,祝巍,张贤,马子棉,韩起,刘尚琪.高透过性聚丙烯微孔膜及其制法[P].中国专利,1062357A.1992-07-01
    [168] Vachon C, Labreche C, Vallee A. et a1. Microphase Separation and ConductivityBehavior of Poly(propylene oxide)-lithium Salt Leetrolytes[J]. Macromoleeules.1995,28:5585-5594
    [169]赵悠曼,潘春跃,张曦,高安安,高金环.电化学阻抗谱法测定固态聚合物电解质的本体电阻[J].化学研究.2009,20(1):49-52
    [170] Munichandraiah N, Scanlon L G, Marsh R A. Influence of Zeolite on Electrochemical andPhysico-chemical Properties of Polyethylene Oxide Solid Electrolyte [J]. J. Appl.Electrochem.1995,25:857-863
    [171] Watanabe M, Sanui K, Ogata N. Ionic Conductivity and Mobility of Poly (propyleneoxide) net-works Dissolving Alkali Metal Thiocyanates[J]. Polym. J.1985,17:549-555
    [172]郑洪河.锂离子电池电解质[M].北京:北京工业出版社,2007,12
    [173] Chang B Y, Park S M. Electrochemical Impedance Spectroscopy [J]. Annu. Rev. Anal.Chem.2010,3:207-229
    [174] Armand M B, Chabagno J M, Duclot M. In: Vashista P, Mundy J M, Shenoy G K. Eds.Fast Ion Transport in Solids [M]. Elsevier, New York,1979,131-136
    [175] Capuano F, Croce F, Scrosati B. Composite Polymer Electrolytes [J]. J. Electrochem. Soc.1991,138:1918-1922
    [176] Xie H, Tang Z Y, Li Z Y, He Y B, Liu Y, Wang H. PVDF-HFP Composite PolymerElectrolyte with Excellent Electrochemical Properties for Li-ion Batteries [J]. J. Solid.State. Electrochem.2008,12:1497-1502
    [177] Cui Z Y, Du C H, Xu Y Y, Ji G L, Zhu B K. PreParation of Porous PVDF Membrane viaThermally Indueed Phase Separation using Sulfolane [J]. J. Appl. Polym. Sci.2008,108:272-280
    [178] Cui Z Y, Xu Y Y, Zhu L P. Preparation of PVDF/MMA Blend Microporous Membranesfor Lithiumion Batteries via Thermally Indueed Phase Separation Proeess [J]. Mater. Lett.2008,62:3809-38ll
    [179] He Y B, Tang Z Y, Song Q S, Xie H, Xu Q, Liu Y G, Ling G W. The Thermal Stabilityof Fully Charged, Discharged LiCoO2Cathode and Graphite Anode in Nitrogen and AirAtmospheres [J]. Thermochim. Acta,2008,480:15-21
    [180] Folkes M J, Hardwick S T. The Mechanical Properties Of Glass/PolypropyleneMultiplayer Laminates [J]. J. Mater. Sci.1990,25:2598.-2606
    [181] Wang C, Liu, C R. Transcrystallization of Polypropylene on Carbon Fibres [J]. Polymer.1999,38:4715-4718
    [182] Clegg D W, Collyer A. Mechanical Properties of Reinforced Thermoplastics[J]. ElsevierApplied Science Publishers Ltd, Crown House, Linton Rd, Barking, Essex IG118JU,UK,1986.326,1986
    [183] Wu Ch M, Chen M, Karger-Kocsis J. Transcrystallization in Syndiotactic PolypropyleneInduced by High-modulus Carbon Fibers [J]. Polym. Bull.1998,41:239-245
    [184] Billon N, Haudin J M. Influence of transcrystallinity on DSC Analysis of PolymersExperimental and Theoretical Aspects [J]. J. Them. Analysis.1994,42:679-696
    [185] Devaux E, CazéC. Composites Of UHMW Polyethylene Fibres In A LD PolyethyleneMatrix. I. Processing Conditions [J]. Compos. Sci. Tech.1999,59:459-466
    [186] Cai Y Q, Petermann J, Wittich H. Transcrystallization in Giber-reinforced IsotacticPolypropylene Composites in a Temperature Gradient [J]. J. Appl. Polym. Sci.1997,65:67-75
    [187] Smith P, Lemstra PJ. Ultra-high-strength Polyethylene Filaments by Solution Spinning/drawing [J]. J. Mater. Sci.1980,15:505-514
    [188] Teishev A, Incardona S, Migliaresi C, Marom G. Polyethylene Fibers-polyethylene MatrixComposites: Preparation and Physical Properties [J]. J. Appl. Polym. Sci.1993,50:503-512
    [189]官青,申开智.常压动态保压注塑自增强高密度聚乙烯的结构与性能[J].高等学校化学学报,1995,16:1129-1133
    [190]张弓,蒋龙,申开智,官青.低密度聚乙烯在振动填充过程的自增强[J].高分子学报,1998,5:591-594
    [191] Lotz B, Graff S, Straupe C, Wittmann J C. Single Crystals of Phase IsotacticPolypropylene: Combined Diffraction and Morphological Support for a Structure withnon-parallel Chains [J]. Polymer.1991,32:2902-2910
    [192] Maldas D, Kokta B V. Interfacial Adhesion of Lignocellulosic Materials in PolymerComposites: an Overview [J]. Compos. Interfaces.1993,1:87-108
    [193] Curtis P T, Bader M G, Bailey J E. The Stiffness and Strength of a PolyamideThermoplastic Reinforced with Glass and Carbon Fibers [J]. J. Mater. Sci.1978,13:377-390
    [194] Felix J M, Gatenholm P. The Nature of Adhesion in Composites of Modified CelluloseFibers and Polypropylene [J]. J. Appl. Polym. Sci.1991,42:609-620
    [195] Banks W, Sharples A, Thomson G. The Optical Melting Point in Polymers [J]. European.Polym. J.1966,2:309-312
    [196] Idrissi M O B, Chalbert B, Guiller J. Influence des Conditions de Fusion et deCristallisation sur la Morphologie Superstructurale du Polypropylène IsotactiqueCristalliséau Dessus de130°C [J]. Makromol. Chem.1986,187:2001-2100
    [197] Olley R H, Bassett D C. On the Development of Polypropylene Spherulites [J]. Polymer.1989,30:339-409
    [198] Fujiwara Y. Double-melting Behavior of the β-phase of Isotactic Polypropylene [J].Colloid. Polym. Sci.1975,253:273-282
    [199] Fujiwara Y. Estimation of σ on-and β-form Polypropylene [J]. Colloid Polym Sci.1987,265:1027-1028
    [200] Karger-Kocsis J. For What Kind of Polymer is the Toughness Assessment by the EssentialWork Concept Straightforward [J]. Polym. Bull.1996,37:119-126
    [201] Varga J. Filler Dispersion in Polypropylene/elastomer Blends [J]. J. Polym. Engng.1991,10:231-251
    [202] White R L. Requirements for Thermal Analysis by Vatiable Temperature DiffuseReflectance Infrared Spectroscopy [J]. Appl. Spectrosc.1992,46:1508-1513
    [203] White R L, Negelein D L. Studies of Polymer-substrate Interactions Using Variable-Temperature Diffuse Reflectance FTIR Spectroscopy [J]. Am. Lab.1998,30:33-35
    [204] Kissin Y V, Rishina L A. Regularity Bands in the IR Spectra of C3H6-C3D6Copolymers [J]. Eur. Polym. J.1976,12:757-759
    [205] Zhu X Y, Yan D Y, Yao H X, Zhu P F. In Situ FTIR Spectroscopic Study of theRegularity Bands and Partial-order Melts of Isotactic Poly(propylene)[J]. Macromol.Rapid. Commun.2000,21:354-357
    [206] Olley R, H, Bassett, D C. An Improved Permanganic Etchant for Polyolefines[J]. Polymer.1982,23:1707-1710
    [207] Lotz B. and β Phases of Isotactic Polypropylene: A Case of Growth Kinetics ‘PhaseReentrency’ in Polymer Crystallization [J]. Polymer.1998,39:4561–4567
    [208] Fillon B, Thierry A., Wittmann J C, Lotz B. Self-Nucleation and Recrystallization ofPolymers. Isotactic Polypropylene, β Phase: β-Conversion and β-Growth Transitions[J]. J. Polym. Sci. Polym. Phys. Ed.1993,31:1407-1424
    [209] Shi G Y, Zhang X D, Cao Y H, Hong J. Melting Behavior and Crystalline Order ofβ-crystalline Phase Poly (propylene)[J]. J. Makromol. Chem.1993,194:269-277
    [210] Zerbi G, Ciampelli F, Zamboni V.Classification of Crystallinity Bands in the InfraredSpectra of Polymers [J]. J. Polym. Sci.1963, C7:141-151
    [211] Kissin Y V, Tsvetkova V I, Chirkov N M. The Stereoregularity of Polypropylene from IR. and NMR Data [J]. Eur. Polym. J.1972,8:529-546
    [212] Miyamoto T, Inagaki H. Structural and Steric Isomerism of Polypropylenes [J]. J. Polym.Sci. Part A-2: Polym. Phys.1969,7:963-981
    [213] Hanna L A, Hendra P J, Maddams W, Willis H A, Zichy V, Cudby M E A. VibrationalSpectroscopic Study of Structural Changes in Isotactic Polypropylene Below the MeltingPoint [J]. Polymer.1988,29:1843-1847
    [214] Burfield DR, Loi PST. The Use of Infrared Spectroscopy for Determination ofPolypropylene Stereoregularity [J]. J. Appl. Polym. Sci.1988,36:279-293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700