用户名: 密码: 验证码:
酶预处理对马尾松TMP性能和磨浆能耗的影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TMP具有制浆得率高、制浆废水污染负荷低,长纤维组分含量较高,成纸松厚度大,不透明度高和光散射系数大等优点。但其缺点为磨浆能耗高,制浆成本大,磨浆前纤维软化不充分,纸浆纤维挺硬,表面细纤维化程度低,纤维间结合力差。而通过生物酶预处理,可以实现降低磨浆能耗,增加纤维细纤维化程度,改善纸浆质量,为扩大TMP的应用范围打下基础。
     本论文以马尾松为原料,研究了纤维素酶和木聚糖酶预处理对马尾松TMP性能和磨浆能耗的影响,对比分析了生物酶预处理在不同磨浆过程对马尾松TMP性能和纤维质量的影响,并对生物酶处理后纸浆湿部化学特性进行研究,通过酶处理前后纤维的零距抗张强度和内结合强度测定、纤维素结晶度测定、接触角测定、原子力显微镜和扫描电镜观察、红外光谱分析、热失重分析等手段来研究生物酶作用于马尾松TMP的机理。研究结果表明:
     纤维素酶预处理马尾松TMP的适宜条件为:酶用量75IU/g,温度50℃,pH5.5,时间150min。纤维素酶预处理后,纸张强度性能、松厚度和中长纤维得率都有所增加。但用量不宜超过75IU/g,否则会导致成纸的撕裂指数降低。
     纤维素酶预处理后,马尾松TMP磨浆能耗降低。磨浆能耗下降率随着纤维素酶用量及预处理时间的增加而增大。并用曲线拟合分析的方法建立了磨浆能耗与纤维素酶用量及预处理时间的回归方程。
     木聚糖酶预处理适宜条件为:酶用量90IU/g,pH5.0,预处理时间150min,预处理温度50℃。木聚糖酶预处理后,纸张强度性能、松厚度和中长纤维得率都随着酶用量的增加而增加。但用量不宜超过90IU/g,否则将引起撕裂指数的下降。
     木聚糖酶预处理后,马尾松TMP磨浆能耗降低。磨浆能耗下降率随着木聚糖酶用量及预处理时间的增加而增大。并用曲线拟合分析的方法建立磨浆能耗与木聚糖酶用量及预处理时间的回归方程。
     纤维素酶和木聚糖酶预处理均可降低马尾松TMP纤维束含量,且木聚糖酶对降低纸浆中纤维束含量的效果更好。木聚糖酶用量120IU/g时,酶预处理在一段磨浆前纸浆中纤维束含量较之空白样降低了1.76%;酶预处理在一段磨浆与二段磨浆之间,纸浆纤维束含量较之空白样降低2.39%。
     筛分结果显示,100目筛网所截留的纤维总得率都随着纤维素酶和木聚糖酶用量的增加而增加。通过200目的细小纤维量明显降低。采用一段磨浆前酶预处理的制浆工艺,50目筛网截留长纤维及200目筛网截留短小纤维含量明显较高,而100目筛网截留中间长度纤维及通过200目筛网的细小纤维含量含量较低。采用一段磨与二段磨之间进行酶预处理时中间长度组分及短小长度纤维较多。
     纤维质量分析结果显示,采用一段磨浆前酶预处理的制浆工艺能获得较长的纤维平均长度。适度的纤维素酶预处理能够增加纤维长度,减少细小纤维含量,卷曲及扭结指数增加。纤维素酶酶用量为75IU/g时重均纤维长度增加了0.22mm,细小纤维含量减少了1.01%。二段磨浆前预处理,在纤维素酶用量为50IU/g时,纤维数均长度、重均及双重均长度三者都较高,此时纤维受破坏程度较小。预处理木聚糖酶用量控制非常关键,酶用量过高对纤维长度破坏严重。
     一段磨浆前预处理适宜酶用量高于二段磨浆前预处理,酶预处理在一段磨浆前,适宜纤维素酶用量为75IU/g,适宜木聚糖酶用量为90IU/g;二段磨浆前预处理,适宜纤维素酶用量为50IU/g,适宜木聚糖酶用量为60IU/g
     纤维素酶和木聚糖酶预处理后进行磨浆,纸浆游离度略有上升,白水阳离子需求量明显下降,且随纤维素酶用量增加,白水阳离子需求量降低更加显著,纸浆Zeta电位随着酶用量的增加有所降低。
     木聚糖酶预处理后纸浆的零距抗张强度增幅较大。木聚糖酶用量60IU/g时零距抗张强度为51.8N/cm,较之未处理的纸浆增加了15.0N/cm;纤维素酶用量75IU/g时零距抗张强度为45.1N/cm,较之未处理的纸浆增加了8.3N/cm。纤维素酶用量75IU/g时,内结合强度为0.031N/cm,较之未处理的纸浆增加了0.016N/cm。木聚糖酶用量90IU/g时,内结合强度为0.028N/cm,较之未处理的纸浆增加了0.012N/cm。
     通过X衍射分析和热重分析可知,纤维素酶预处理使得马尾松TMP纤维素的结晶度降低,说明纤维素的结晶区受到了明显的降解。木聚糖酶预处理使得马尾松TMP纤维素的结晶度增加,木聚糖酶预处理和纤维素酶预处理可提高纤维的热稳定性。
     纤维素酶预处理后纤维表面接触角减小,纤维润湿性能改善。在0.2s时,50IU/g的纤维素酶预处理后纤维表面接触角为33o,未经酶预处理纤维表面接触角为42o,降低了9o。木聚糖酶用量为30IU/g和60IU/g时的接触角比未经酶处理的接触角大,当酶用量为90IU/g时,纤维润湿性能改善,在0.2s时,接触角为38o,较之未经酶预处理纤维表面接触角降低了4o。
     扫描电镜观察显示:纤维素酶预处理后,纤维压溃及纵向撕裂现象明显,内部细纤维化增大,产生丝状细小纤维,同时也有较少的纤维碎片。木聚糖酶预处理后,纤维表面有明显的碎片状剥裂,呈现为纤维表面有较多的碎片状纤维,纤维细胞壁局部变薄。
     原子力显微镜观察显示,纤维素酶预处理后TMP纤维表面粗糙度下降,木聚糖酶预处理后纤维表面粗糙度增大。
Thermo-mechanical pulp (TMP) of Masson Pine is a kind of high yieldpulping that comes with the comprehensive utilization of wood. TMP has lots ofbenefits, such as simple process, low pollution, good bulkiness, fine printability,higher opaqueness and light-scattering coefficient and so on. However, thedisadvantages of TMP including higher refining energy and pulping cost, lowerdegree of external fibrillation and fiber bonding strength, and the fiber is stiffbecause of the insufficiency soften action. It can increase the degree offibrillation and improve the quality of TMP using enzymes to pretreat the rawmaterials before refining, and also can reduce the energy consumption.
     In this paper, cellulase and acid xylanase were used to pretreat the TMP ofMasson Pine before refining. The effects of enzymes pretreatment on the TMPproperties and pulping energy consumption were studied. The change of pulpproperties and fiber characteristics during the refining in the TMP process wascontrastively analyzed. And the wet-end chemistry characteristics of enzymespretreated TMP were studied. Through the test and analysis of zero span tensilestrength, internal bond strength, cellulose crystallity, contact angle, AFM(atomicforce microscope), SEM(scanning electron microscope), infrared spectroscopyand TGA(thermal gravimetric analysis), the acting mechanism of cellulase andxylanase pretreatment on the TMP of Masson Pine was studied.
     The optimum applications of cellulase were: dosage75IU/g,temprature50℃, pH5.5, time150min. After the pretreatment of cellulase, the paperstrength, bulk and longer fiber yield increased. It is not suitable for the dosage ofcellulase exceed75IU/g,otherwise the tensile strength of paper would decreased.
     The pretreatment of cellulase on Masson Pine TMP decreased the refining energy. And the descent rate of refining energy increased with the increase ofcellulase dosage and pretreatment time. The quantities relationship betweencellulase dosage, pretreatment time and the refining energy were established byCurve fitting analysis and Logistic monadic regressive analysis.
     The optimum applications of xylanase were as follows: dosage90IU/g,temperature50℃, pH5.0, time150min. After the pretreatment of cellulase, thepaper strength, bulk and longer fiber yield increased. It is not suitable for thedosage of cellulase exceed90IU/g,otherwise the tensile strength of paper woulddecreased.
     The pretreatment of xylanase on Masson Pine TMP decreased the refiningenergy. And the descent rate of refining energy increased with the increase ofxylanase dosage and pretreatment time. The quantities relationship betweenxylanase dosage, pretreatment time and the refining energy were established byCurve fitting analysis and Logistic monadic regressive analysis.
     The shives of TMP decreased after the pretreatment of cellulase andxylanase. And xylanase had better effect on the decrease of shives. When thedosage of xylanase was120IU/g,the shives decreased1.76%when pretreatbefore the first refining, and2.39%when pretreat before the second refining.
     The screening results showed that the total yield of R100increased with theincrease of cellulase and xylanase dosage. And the fine fiber of P200decreasedobviously. Pulping process of enzyme pretreatment before first refining, fiberquantity of R50and R200were significantly higher, while R100and P200werelower. Pulping process of enzyme pretreatment before second refining, thequantity of middle and shorter length components were higher.
     The fiber quality analysis showed that the fiber was longer when pretreatedbefore first refining. Modest cellulase pretreatment could increase the fiberlength, decrease fines and increase curl and kink index. Cellulase pretreatmentbefore first refining, the length weighted length of fiber increased0.22mm, thedosage of xylanase was very key for the fiber length.
     The optimum dosage of enzyme was higher when pretreatment before thefirst refining. Enzyme pretreatment before the first refining, the optimumdosages were: cellulase75IU/g, xylanase90IU/g; pretreatment before the secondrefining, the optimum dosages were: cellulase50IU/g, xylanase60IU/g.
     Refining proceeded after cellulase or xylanase pretreatment, the freeness ofmasson pine TMP increased slightly, cationic demand decreased obviously, andthe Zeta potential decreased.
     Zero span tensile strength had a higher growing rate after pretreated byxylanase. When the dosage of xylanase was60IU/g, zero span tensile strengthwas51.8N/cm, increased by15.0N/cm than the untreated pulp. When thedosage of cellulase was75IU/g, zero span tensile strength was45.1N/cm,increased by8.3N/cm, and the internal bond strength was0.031N/cm, increasedby0.016N/cm than the untreated pulp. When the dosage of xylanase was90IU/g, the internal bond strength was0.028N/cm, increased by0.012N/cm thanthe untreated pulp.
     The XRD and TGA analysis showed that the crystallinity of Masson PineTMP cellulose decreased after cellulase pretreatment, while increased afterxylanase pretreatment. And the pretreatment of xylanase and cellulase improvedthe thermo stability of Masson TMP fiber.
     The contact angle of the paper surface decreased after cellulase pretreatment,demonstrated that the wettability of fiber improved. When the dosage ofcellulase was50IU/g, at the time of0.2s, contact angle was33o, decreased by9o.When the dosage of xylanase was90IU/g, the wettability of fiber improved, andat the time of0.2s, contact angle was38o, decreased by4o.
     SEM showed that after cellulase pretreatment, fiber crushing collapse andlongitudinal rip obviously, internal fine fibrosis increased, produced filamentousfines and fragments of fiber. While after xylanase pretreatment, fragmentsbreakaway obviously, assumed that fragments fiber adhere to fiber surface, partof the cell wall thinking.
     AFM showed that after cellulase pretreatment, the surface roughness ofTMP fiber decreased, while after xylanase pretreatment, the surface roughness ofTMP fiber increased
引文
[1]顾民达.加快林纸结合步伐实现造纸工业现代化[J].中华纸业,2001,22(12):45-50.
    [2]罗松山.中国推进林浆纸一体化政策透视[J].中国林业产业,2008,(8):46-48.
    [3]詹怀宇,刘秋娟,陈嘉川等.制浆原理与工程[M].北京:中国轻工业出版社,2008:377-379.
    [4]姚光裕.世界木材制浆技术新进展.世界林业研究,1994,(2):53-58.
    [5] Malinen R.21Centenary pulping technology[J]. Paper Technology,1992(l):9-12.
    [6] Greta F.21Centenary pulp and pulping industry[J]. Paper Technology,1992(3):10-15.
    [7] D. B. Mutton, G. Tomb1er, PE.Gardner. The sulphonated chemimechanical pulpingprocess[J]. PPC,1982,83(6):120-128.
    [8] J. Janson, B. Mannstrom. Principles of chemical pretreatment in the manufacture ofCMP and CTMP from hardwood[J]. PPC,1981,82(4):51-63.
    [9]刘新春.磺化化学机械浆生产实践.中华纸业,1998(3):49-50.
    [10]王进喜,陈佳川,杨桂花. APMP制浆的研究与应用现状[J].西南造纸,2004,33(3):26-28.
    [11]黄光春,牛梅红,张运展.浅谈APMP制浆技术[J].黑龙江造纸,2002,30(1):17-20.
    [12]唐艳军. APMP的研究及应用现状[J].中国造纸,2004,23(2):50-54.
    [13]刘光良.杨木制高得率浆的技术及经济问题[J].纸和造纸,1997,16(6):4-7.
    [14]王永强.阔叶木APMP制浆生产实践[J].中国造纸,2002,21(1):27-30.
    [15]张学谦.碱性过氧化氢机械(APMP)简介[J].纸和造纸,1991,10(1):38-39.
    [16]李进轩.碱性过氧化氢机械浆(APMP)[J].四川造纸,1997,26(2):89-120.
    [17]王玉才,付蕾,吴齐.齐纸APMP生产线简介.黑龙江造纸,199927(3):27-30.
    [18]湖南省岳阳纸业集团有限公司.国内首条75吨/日意大利杨APMP制浆生产线.中华纸业,2001,22(12):74-75.
    [19]徐载哲,郝国荣,王秋艳.落叶松APMP生产试验.中国造纸,2002,21(4):77-78.
    [20] Bustamante R, Rams J, Sabharwal H. Biomechanical pulping of bagasse with the whiterot fungus[J]. Tappi,1999,82(6):123-128.
    [21] Johnsrud S C, Fernadez N, Lopez P. Properties of fungal pretreated high yield bagassepulps[J]. Nordic Pulp and Paper Res J,1987,75:47-52.
    [22] Kilpinwn O. Quality and shipping requirements for purehase nonwood raw fibers[C].Proc, Tappi Pulping Conf., Tappi Press, Atlanta, USA,1991:78-83.
    [23]余惠生,付时雨,秦文娟.生物技术在制浆造纸工业应用及其最新进展[J].广东造纸,1999,18(5):30-35.
    [24]曲音波.制浆造纸生物技术研究进展[J].技术通报,1998(6):14-1.
    [25]张盆,胡惠仁,刘廷志.生物制浆的探讨[J].黑龙江造纸,2005,33(3):26-28.
    [26] A. SETHURAMAN, D.E.AKIN, K-EL ERIKSSON. Production of LigninolyticEnzymes and Synthetic Lignin Mineralization by the Bird’s Nest Fungus CyathusStercoreus[J]. Appl Microbial Biotechnol,1999(52):689-697.
    [27] MASOOD AKHTAR, G..M.SCOTT, R.E.SWANEY, et al. Biomechanical Pulping: AMill-scale Evaluation[J]. Resources, Conservation and Recycling,2000(28):241-252.
    [28] Jose Dorado, Frank W Claassen, Gilles Lenon, et al. Degradation and Detoxification ofSoftwood Extractives by Sapstain Fungi[J]. Bioresource Technology,2000(71):13-20.
    [29] T. K. HAKALA, P. MAIJALA, J. KONN, et al. Evaluation of Novel Wood-rottingPolypores and Corticioid Fungi for the Decay and Biopulping of Norway Spruce(Piceaabies) wood[J]. Enzyme and Microbial Technology,2004(34):255-263.
    [30]秦梦华,高培基.制浆造纸工业中的生物技术[J].中华纸业,1999,20(2):6-9.
    [31] Cisneros H. A., Williams G. J. Hatton J. V. Fiber Structure Characteristics of HardwoodRefiner Pulps[J]. Pulp Pap. Sci.,1995,21(5): J178-184.
    [32] Sundholm J. Can We Reduce Energy Consumption in Mechanical Pulping. EUCEPAInternational mechanical pulping conference[C]. Oslo, Proceedings, p.133(1993).
    [33] Karnis A. Mechanism of Fiber Development in Mechanical Pulping[C]. EUCEPAInternational mechanical pulping conference, Oslo, Proceedings, p.268(1993).
    [34] Pearson A.J. Towards a Unified Theory of Mechanical Pulping and Refining[C]. TAPPIInternational mechanical pulping conference. Washington, Proceedings, p.131-138(June13-17,1983).
    [35] Frazier W.C. Applying Hydrodynamic Bearing Theory to the Refiner Plate-Pulp FiberInteraction[C]. SPCI international mechanical pulping conference.Stockholm,Proceedings, p.55-60(May6-101985).
    [36] Atack D., Stationwala M.I., Karnis A. What Happens in Refining[J]. Pulp and PaperCanada,1984,85:119.
    [37]李元禄.高得率制浆的基础与应用[M].中国轻工业出版社.1991:165-167,240-242.
    [38] Petit-Conil M., Robert A., Mppierrard J. Fundamental Principles of mechanical pulpingfrom softwoods and hardwoods[J].Theoretical Aspects, Cellulose Chemistry andTachnology,1997(31),93-104.
    [39Law K. An autopsy of refiner mechanical pulp[C]. Pulp Pap Can,106, no.1:37-40(January2005).
    [40]邝仕均.2006年世界造纸工业概况[J].造纸信息,2007,11:25-28.
    [41] Law K.N. Rethinking chip refining[C].54th Appita Annual Conference:2000;101-106.
    [42] Law K.N.. The Nature of Thermomechanical Pulping[C].2nd ISTPPBFP, Nanjing,13-14Oct.2004.
    [43]林鹿,詹怀宇.纸浆漂白生物技术[M].北京:中国轻工业出版社,2002:152,166,174,205,339.
    [44]朱韵.生物技术在制浆造纸工业中的应用与研究进展[J].技术与市场,2009,16(3):59-60.
    [45]黄莉.生物酶技术在造纸工业中的应用前景广阔[J].福建轻纺,2005(6):6-8.
    [46]姚光裕.生物技术在制浆造纸工业中的应用[J].造纸信息,2001(4):17.
    [47]谢来苏.制浆造纸的生物技术(第一版)[M].化学工业出版社,2003:201-202.
    [48]袁平,余惠生,付时雨等.纤维素酶和半纤维素酶对纤维改性的研究进展[J].中国造纸,2001,20(5):53-57.
    [49] Eriksson T. K. Advance in biotechnology in Pulp and Paper manufacture: Overview ofthe1989International Conference, TAPPI Journal[J].1989,72(5):33-43.
    [50] Akhtar M, Attidaetal. Biomeehanieal Pulping of lobiolly Pine with selected white-rotfungi. Holzforschung[J].1993(47):36-40.
    [51] Sykes M. Bleaching and brightness stability of aspen biomechanical Pulps[J]. Tppi,1993,76(11):121-126.
    [52] Sabharwal H, Akbtaar M, blanehett R, Young R A. Biomechanical pulping of kene[J].Tppi,1994,77(12):105-112.
    [53] Sabharwal H, Akbtaar M, blanehett R, Young R A. Refiner mechanical andBiomechanical Pulping of junte[J]. Holiforsehung,1995,49(6):537-544.
    [54]张厚民.生物技术与制浆造纸工业[J].中国造纸,1994,3(4):51-56.
    [55] Hiroshi F, et al. Bio-lignification of secondary fiber by Phanerochaete chryosporiumimprovement of culture and treatment conditions[C].6thISWPC,1991:277-284.
    [56] Kosikova B. Electron microscopy of bagasse after degradations by S.Pulverulentum andstruetural characterization of its1ignin component[J]. Cellulose chemistry andTechnology,1987,21(7):87.
    [57] Scoott G M et al. New technology for papermaking: commercializing bio-pulping[J].Tappi,1998,81(11)220-225.
    [58] Ried I D, Bological. pulping in paper manufacture[J]. TIBTECH,1991,9:262-265.
    [59] Akhtar M Biomechanical pulping of aspen wood chips with three strains ofceriporiopsis subvermisproa[J]. Holzforschung,1994,48(3):199-204.
    [60]杜予民.棉杆非纤维组分嗜碱细菌生物降解及制浆研究[J].中国造纸,1998,17(5)46-49.
    [61]余惠生.稻草木素生物降解的研究[J].纤维素科学与技术,1993,(1):12-20.
    [62] Yu H S et al Bioloical degration and delignification of rice straw[J].Butterworth-heinemann, Stoneham,1992:27-46.
    [63] Oriaran T Ph et al. Kraft pulp and papermaking properties of phanerochaetechrysosporium degraded red oak[J]. Wood fiber sci,1991(23):316-327.
    [64] Oriaran T Ph et al. Kraft pulp and papermaking properties of phanerochaelechrysosporium degraded aspen[J]. Tappi1990(73):147-152.
    [65] Labosky J P et al Lignin biodegradation of nirtogen supplemented red oak wood chipswith two strais of phanerochaete chrysosporium[J]. Wood fiber sci.,1991(23):533-542.
    [66] Messner K et al Fungi pretreatment of wood chips for chemical pulping[C]. InBiotechnology in the pulp and paper industry proceedings of the5th internationalconference on Biotechnology in the pulp and paper industry, Tokyo1992:9-13.
    [67]林鹿.白腐菌协同碱性过氧化氢对杨木脱木素及其机理.中国造纸学报[J].1997,12(12):17-23.
    [68]丁风平.韧皮纤维生化法制浆用酶的研究[[J].中国造纸,1994,3(6):64-66.
    [69] Idarraga G, Ramos J, et al. Biomechanical pulping of agave sisalana[J]. Holzforschung,2001(55):42-46.
    [70] Bustamante R, et al. Biomechanical pulping of bagasse with the white rot fungusCeriporiopsis subvermipora[J]. Tappi1999,82(6):123-128.
    [71] Johnsrud S C et al. Properties of fungal pretreated high yield bagasse pulps. Nordic pulpand paper Res.[1].1987(75):47-52.
    [72]林鹿.杨木生物预处理碱性过氧化氢机械法制浆[J].中国造纸,1997,6(6):26-30.
    [73] Lin Lu et al. Biological chemimechanical pulping of aspen[J]. Guangzhou, china,Southchina university of technologypress,1998:424.
    [74] Shawn D. Mansfield Laccase impregnation during mechanical pulpprocessing-improved refining efficiency and sheetstrength[J]. Appita,2002,55,(I):49-53.
    [75] RichardP et al. Evaluating laccase-facilitated coupling of phenolic acids to high-yieldkraft pulps[J]. Enzyme and microbial technology,2002(30):855-861.
    [76]许士玉,杨开吉,于钢.生物漂白机理及其应用现状[J].黑龙江造纸,2007,35(2):27-29.
    [77]沈清江,秦梦华.生物技术在制浆造纸中的应用与研究进展[J].湖南造纸,2006(3):12-14.
    [78] HU Z C, Korus R A, Vrn Kataraum C R,et al. Deactiva-tion kinetics of lignin peroxidasefrom phanerochaete chrysosporium[J]. Enzyme Microb Technol,1993,15(7):567-574.
    [79]陈东辉.纤维素纤维织物的生物整理[J].纺织学报,1996,17(6):4-7.
    [80]吴显荣.纤维素酶分子生物学研究进展及趋向[J].生物工程进展,1994,14(4):25-27.
    [81] Enari, T., and Niku-Paavola, M. Enzymatic Hydrolysis of Cellulase: Is the CurrentTheory of the Mechanisms of Hydrolysis Valid?, CRC Crit[J]. Rev. Biotechnol.,1987,5(3),67-87.
    [82] Reese, E. T. Biotechnol[J]. Bioeng. Symp,1976(6):9-12.
    [83] Ward, M. Shoemaker, S. and Weiss, G., Trichoderma reesei Containing Deleted and/orEnriched Cellulase and Other Enzyme Genes and Cellulase Compositions DerivedTherefrom, WO1992,92/06209.
    [84] Wood, T.M. Fungal Cellulases, in "Biosynthesis and Biodegradation of Cellulose", C.H.Haigler, and P.J. Weimer, Eds., Marcel Dekker, NY,1991, pp.491-533.
    [85] Woodward, J. Synergism in Cellulase Systems[J]. Bioresource Technol,1991(36):67-75.
    [86] Woodward, J. Lima, M. and Lee, N.E. The Role of Cellulase Concentration inDetermining the Degree of Synergism in the Hydrolysis of Microcrystalline Cellulose,Biochem. J.1988,255:895-899.
    [87]谢占玲,吴润.纤维素酶的研究进展[J].草业科学2004,21(4):72-76.
    [88]农向,伍红,秦天莺.纤维素酶的研究进展[J].西南民族大学学报,2005(5):29-33.
    [89]高培基,曲音波,汪天虹.微生物降解纤维素机制的分子生物学研究进展[J].纤维素科学与技术,1995,3(2):1-19.
    [90] Wood T M. Mccrae S I. Sinergism between enzymes involvement in the solubilizationof native cellulose[J]. Adv. Chem. Ser.1979(8):181-209.
    [91] Befghem L E R. Petersson L G. Axio-fredrikwwon U B.The mechanism of enzymecellulose degradation, purification and some properties of two different1,4-β-D-glucanglucanohydrolase from Trichoderma reesei[J]. Eur J Biochem,1976,61(2):621-630.
    [92] Wood T M. Propertities and mode of action of cellulases. In: wilke C R (Ed),Biotechnology and bioengineering symposium[C]. No.5. cellulose as a chemical andenergy resource conference proceedings. Berkeley CA, U.S.A.. Jun.25-27,1974,ILLUS, John Wiley And Sons:New York. N. Y. U.S.A.. London,1975(VI-361):111-137.
    [93] Akiba S,Yamamoto K,Kumagai H. Effects of size of carbohydrate chain on Aspergillusniger endo-beta-l,4-glucanase. Biosci Biotechnol Biochem.,1995,(59): proteasedigestion of1048-1051.
    [94] Reese E T.Enzymatic hydrolysis of the walls of yeasts cells and germinated fungalspores[J].Biochimica et BiophysicaActa(BBA),1977,499(1):10-23.
    [95] Wood T M.Breakdown of crystalline cellulose by synergistic action between cellulasecomponents from clostridium thermocellum and trichoderma koningii[J]. FEMSMicrobiology Letters,1988,50(2/3):247-252.
    [96] Thonart P, Paquot M, Mottet A.Hydrolysis of paper pulps: influence of mechanicaltreatments[J].Holzfors-chung,1979,33(6):197-202.
    [97] Kanda T, Michihiko O, Nobu A, et a1.Hexokinase of angiostrongylus cantonensis:presence of a glucokinase[J]. Biochemistry and Molecular Biology,1979,63(3):335-340.
    [98]周文龙.酶在纺织中的应用[M1.北京:中国纺织工业出版社,2002.
    [99] Sianott M L.The cellobiohydrolases of Trichodermareesei: a review of indirect anddirect evidence that theirfunction is not just gly-cosidic bond hydrolysis[J].BiochemicalSociety Transaction,1998,26:160-164.
    [100]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展[J].自然科学进展,2003,13(1):2l-29.
    [101]方靖,高培基.纤维二糖脱氧氢酶在纤维素降解中的作用研究[J].微生物学通报,2000,26(1):15-19.
    [102]王琳,刘国生,王林嵩.DNS法测定纤维素酶活力最适条件研究[J].河南师范大学学报,1998,26(3):66-69.
    [103]周建,罗学刚,苏林.纤维素酶法水解的研究现状及展望[J].化工科技,2006,14(2):51-56.
    [104] Jones CS, Kosman DJ. Purification, properties, kinetics, and mechanism ofBeta-N-acetylglucosamidase from Asppergillus niger[J]. J Biol. Chem.,1980,(255):1186-1189.
    [105] Adikane HV, Patil MB. Isolation and properties of beta-glucosidase from Aspergillusniger[J]. Indian J Biochem Biophys.,1985(22):97-101.
    [106]崔福绵,那安,马建华.不同真菌纤维素酶一些生物化学性质的比较[J].真菌学报,1984,3(1):59-64.
    [107] Chunzhi Zhang, Dai Li, Hongshan Yu,et al.Purification and characterization ofpiceid-b-D-glucosidase from As-pergillus oryzae[J].Process Biochemistry.2006,(7):83-88.
    [108] Crispen Mawadza, Rajni Hatti Kual,Remigiv Zvamya, et a1.Purificaation andcharacterization of cellulases produced by two Bacilus strains[J]. Journal ofBiotechnology,2000,83(3): l77-187.
    [109]赵玉蓉,金宏,陈清华.金属离子对纤维素酶及木聚糖酶活性影响的研究[J].饲料博览,2005,(1):1-3.
    [110]徐伟民,王丽,王律峰.镧、钕柠檬酸配合物对纤维素酶活性的影响及机制的探讨[J].中国稀土学报,2006,6(3):1-5.
    [111]刘瑞田,曲音波.木聚糖酶分子的结构区域[J].生物工程进展,1998,18(6):26.
    [112] Zimmerman W.. Bacterial degradation of hemicellulose[J]. Metal Ions Bio Sys.,1992,28:357.
    [113]方洛云,邹晓庭,许梓荣.木聚糖酶基因的分子生物学与基因工程[J].中国饲料,2002(7):11.
    [114] Biely P., Mackenzie C. R., Puls J., et al. Cooperativity of esterases and xylanases in theenzymatic degradation of acetyl xylan[J]. Bietechnology,1986,4:731.
    [115]张红莲,姚斌,范云六.木聚糖酶的分子生物学及其应用[J].生物技术通报,2002(3):23.
    [116]胡沂淮,邵蔚蓝.木聚糖酶[J].生命的化学,2002,22(3):281.
    [117] Royer J. C., Nakas J. P.. Xylanase by trichoderma longibrachiatum[J]. Enzyme Microb.Technol.,1989,11:405.
    [118] Ogasawara I. K., Sugimoto H., Ishikawa T. T.. Purification and properties of acid stablexylanases from Aspergillus kawachii[J]. Biosei Biotech Biochem.,1992,56:1338.
    [119]Wong K. Y., Tan L. L., Saddler J. N.. Multiplicity of β-1,4-xylanases in microorganisms:functionsand applications[J]. Microbiol. Rev.,1988,52:305.
    [120] Christalkopoulos P., Nerinckx W., Kekos D., et al. Purification and characterization oftwo low molecular mass alkaline xylanases from Fusarium oxysporum F3[J]. JBiotechnol,1996,51(2):181.
    [121] Dusterhoft E. M., Linsen V.A., Voragen A.G.J., et al.. Purification from HumicolaInsolens [J]. Enzyme Microb Technol,1997,20(6):437.
    [122] Garg A. P., Roberts J. C., McCarthy A. J.. Bleach boosting effects of cellulose-freexylanase of Streptomyces thermoviolaceus and its comparison with two commercialenzyme preparations on birchwood kraft pulp[J]. Enzyme Microbiol Technol,1998,22(7):594.
    [123] Breccia J. D., Sineriz F., Baigori M. D., et al. Purification and characterization ofathermostable xylanase from Bacillus amyloliquefaciens [J]. Enzyme Microb. Technol.,1998,22(1):42.
    [124] Gupta S., Bhushan B., Hoondal C. S.. Isolation, purification and characterization ofxylanase from Streptomycus sp.SG-13and its application in biobleaching of kraftpulp[J]. J Appl. Microbiol,2000,88:325.
    [125] Leduc D. C., Valade J. L.. The use of xylanases in kraft pulp bleaching: a review [J].Tappi Journal,1994,77:125.
    [126] M L T M Polizeli, A.C.S.R., R Monti, H F Terenzi, J A Jorge, D S Amorim. Xylanasesfrom fungi: properties and industrial applications[J]. Appl Microbiol Biotechnol,2005.67:577-591.
    [127]张宁宁.降解半纤维素嗜热菌的筛选及耐热木聚糖酶的性质[D].福建农林大学:福建农林大学,2010.8-14.
    [128] Kulkarni, N., Shendye, A., Rao, M., Molecular and biotechnological aspects ofxylanases[J]. FEMS Microbiology Reviews,1999.23(4):411-456.
    [129] Subramaniyan, S., Prema, P., Biotechnology of microbial xylanases: enzymology,molecular biology, and application[J]. Critical reviews in biotechnology,2002.22(1):33-64.
    [130] Li K, A.P., Collins R, Tolan J, Kim J S, Eriksson Karl-Erik L., Relationships betweenac-tivities of xylanases and xylan structures[J]. Enzyme Microb Technol.,2000.27:89-94.
    [131]Wong K K Y, T.L.U.L., Saddler J N., Multiplicity of β-1,4-xylanase in microorganisms,functions and applications[J]. Microbiol Rev,1988.52(3):305-317.
    [132]刘瑞田,曲音波.木聚糖酶生物学特性及其诱导产生的研究进展[J].工业微生物,1998(3):38.
    [133] Viikari L., Ranua M., Kantelinen A., et al. Bleaching with enzymes[C]. Proc3rdInt.Conf. on Biotechnology in the Pulp and Paper Industry. Stockholm,1983, Sweden,67.
    [134] Bajpai P., Bajpai P. K.. Biotechnology in the Pulp and Paper Industry-a Route toEnergy Conservation Pira Technology Series Pira International:1998.
    [135] Reeve D.W., Weishar K.M., Li L.. Process modifications to decrease orgnochlorineFormation during Chlorine Dioxide Delignification[J]. Journal of Pulp and PaperScience,1995,21(6): J197.
    [136] Suss H.U., Nimmerfroh N.F., Filho M.O.. TCF bleaching of eucalyptus kraft pulp: theselection of the sequence and the best conditions[J]. Journal of Pulp and Paper Science,1997,23(11): J517-J521.
    [137] Toshiya S.. New pulp biopulping system involving manganese peroxidase immobilizemin a silica support with controlled pore sizes[J]. Appl. Environ. Microbiol.,2001,67(5):2208.
    [138] Call H. P., Mucke I.. State of the art of enzyme bleaching and disclosure of breakthroughprocess[C]. Proceedings of International Non-chlorine Bleaching Conference. AmeliaIsland. Florida. USA.1994.
    [139] Liu Y., Chen J. C., Zhan H. Y., et al. Xylanase DWX1bio-bleaching of NaOH-AQwheat straw pulp. Emerging Technologies of Pulping and Papermaking. South ChinaUniversity of Technology Press.2002, Guangzhou.546-549.
    [140]黄峰,陈嘉翔,高培基.桉木硫酸盐浆木聚糖酶漂白适性及纤维素酶对漂白浆质量的影响[J].中国造纸学报,1997(2):57-63.
    [141] Amann M., The lignozym process-coming closer to the mill[C]. Proceedings of9thinternational symposium on wood and pulping chemistry. Montreal. Canada.1997,F4-1-F4-5.
    [142] Roncero M. B., Torres A. L., Colom J. F., et al. TCF bleaching of wheat straw pulpusing ozone and xylanase[J]. Part A: paper quality assessment Bioresourse Technology,2003,87:305-314.
    [143]吴淑芳,尤纪雪,丁少军.木聚糖酶用于马尾松KP浆漂白的研究[J].西南造纸,1999,28(5):7-10.
    [144]李彩霞,韩善命,房桂干.麦草浆H2O2漂白效果的影响[J].林产化工通讯,2000(6):8-11.
    [145]冯文英,李振岩,常清容.木聚糖酶的制备及其在麦草浆漂白中的应用[J].中国造纸,2002,21(2):8-13.
    [146] Suurnakki A., Heijnesson A., Buchert J., et al. Location of Xylanase and MannanaseAction in Kraft Fibres[J]. Pulp Paper Sci.,1996,22(1):78-83.
    [147] Turner J. C.. Bleaching with enzymes instead of chlorine-mill trials[J]. Tappi Journal,1992,75(12):83.
    [148]邵震宇,谢益民.纤维素酶在制浆造纸工业中的应用[J].江苏造纸,2008(2):38-42.
    [149]涂启梁,付时雨,詹怀宇.纤维素酶和半纤维素酶在制浆造纸工业中的应用[J].实用技术,2006,35(3):27-29.
    [150] Sigoillota J C, Petit-ConilM, Herpoel I, et a.l Energy saving with fungal enzymatictreatmentof industrialpoplar alkaline peroxide pulps[J]. Enzyme and MicrobialTechnology,2001,29:160.
    [151] Pere J, Liukkonen S, Siika-AhoM, eta.l Use ofpurified enzymes in mechanicalpulping[C]. Proc. Tappi pulping conference,1996,2:693.
    [152] Lee YH, Fan LT. Kinetic studies of enzymatic hydrolysis of insolublecellulose.Biotech.Bioeng.1983,25(4):939-966.
    [153] Yamaguchi H, et al. Bonding among woody fibers by use of enzymatic phenoldehydrogenative polymerization mechanism of generation of bonding strength[J].Mokuzai Gakkaishi,1994,40:185-190.
    [154] SADDLER J N.Bioconversion of Forest and Agricultural Plant Residues[M]. UKWallingford: CAB,1993.
    [155] GOMES I, et al. Production of cellulase and xylanse by a wild strain of Trichodermavivride[J]. Appl Microb,1992,36:701.
    [156] LNDY L R, et al. Environmental potential of theTrichoderma reesei[J]. MIRCEN J,1986,(2):39.
    [157] Jiang Z Q, Li X T, Yang S Q,et al. Biobleach boosting effect of recombinant xylanaseBfrom the hyperthermophilic Thermotoga maritimaon wheat straw pulp. Appl MicrobiolBiotechnol,2006,70:6571.
    [158]王丹枫.纤维形态参数及测量[J].中国造纸,2001,20(1):36-39.
    [159] Gordon Rob rtson, James O lson, Philp A llen, et a.l Measurement of f iber length,Coarsenss, and shape with the f iber quality analyzer[J]. Tapp l Tournal,1999,82(10):93-98.
    [160]夏庆根,陈港,李元元.信息技术在现代造纸工业中的应用[J].造纸科学与技术,2002,21(2):41–44.
    [161]赖燕明,谢益民,伍红.纤维平均长度及其仪器法测定结果分析[J].造纸科学与技术,2003,22(3):35-37.
    [162]刘士亮,陈中豪.中、低浓打浆的使用效果及打浆机理的差异[J].中国造纸学报,2008,23:70-74.
    [163] Errc Cannell. Pulp Screening Advancements Reduce Shives. Boost Quality[J]. Pulp&Paper,1999(7):76.
    [164]郭勇为,张菊先.轻量印刷纸的生产技术及其适印性能[J].中华纸业,2004,25(2):31.
    [165]熊杰.刮刀涂布刮痕的产生及解决措施[J].造纸科学与技术,2004,23(6):80.
    [166] O Itus, EM ato J, Bauer S, et al. Enzymatic hydrolysis of waste paper[J]. CelluloseChem and Techonol.1987(21):663.
    [167]邬义明.植物纤维化学[M].北京:中国轻工业出版社,1991:67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700