两性乙烯基类聚合物/无机纳米复合鞣剂的制备及其改性皮胶原纤维的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬鞣法是目前制革工业中最成熟的鞣革方法之一,传统铬鞣法可赋予皮革良好的性能,但由于铬鞣剂的吸收率不高,造成了大量的资源浪费与环境污染,制约了皮革行业的可持续发展。本研究将纳米技术引入传统制革鞣制用化学品的开发中,制备了系列两性乙烯基类聚合物/无机纳米复合鞣剂,通过对皮胶原进行改性,提高了其对铬鞣剂的吸收,减少铬鞣产生的污染,提高了胶原的耐湿热稳定性,同时可赋予皮革优异的性能,增加了革制品的附加值。
     本研究首先以二烯丙基二甲基氯化铵为阳离子单体,通过单因素试验法分别优化了两性乙烯基类聚合物聚二烯丙基二甲基氯化铵-丙烯酸(PDMDAAC-AA)和聚二烯丙基二甲基氯化铵-丙烯酸-丙烯酰胺-丙烯酸羟乙酯(PDMDAAC-AA-AM-HEA)的制备工艺。采用透射电子显微镜(TEM)研究了PDMDAAC-AA和PDMDAAC-AA-HEA-AM在不同pH条件下的形貌。结果表明,两性乙烯基类聚合物对pH具有一定的响应作用,随着pH增加,两性乙烯基类聚合物形貌存在球形、棒状及长针叶状的变化。以鞣制结果作为考察指标,采用均匀试验法研究了不同种类的无机纳米材料(蒙脱土、纳米ZnO、纳米Al_2O_3和纳米TiO_2崔波)对纳米复合鞣剂应用性能的影响,最终选择将纳米ZnO和蒙脱土引入两性乙烯基类聚合物中,制备纳米复合鞣剂。
     分别采用共混法、原位聚合法和原位溶胶-凝胶法,制备了两性乙烯基类聚合物/ZnO纳米复合鞣剂PDMDAAC-AA-HEA-AM/ZnO(PDM/ZnO)。通过傅立叶红外光谱(FT-IR)、X-射线衍射(XRD)等手段对复合鞣剂的结构进行了表征;并将制备的纳米复合鞣剂配合少量铬粉应用于皮革鞣制工序中考察其应用性能。结果表明:单纯聚合物鞣制后革样收缩温度为88.2℃,增厚率为50.4%。采用共混法制备的纳米复合鞣剂鞣制后革样收缩温度为88.9℃,革样增厚率为53.0%,对纳米复合材料应用性能提高不大;采用原位聚合法制备的纳米复合鞣剂配合3%铬粉鞣后革样收缩温度为92.9℃,增厚率高达174.47%,鞣制后废液中三氧化二铬含量为14mg/L;采用原位溶胶-凝胶法制备的纳米复合鞣剂配合3%铬粉鞣后革样收缩温度为94.5℃,增厚率为63.7%,鞣制后废液中三氧化二铬含量为21mg/L,革样物理机械性能与常规铬鞣后革样相当。提出了PDM/ZnO与胶原作用的机理模型,采用PDM/ZnO对胶原纤维进行预改性,引入了-OH、-COOH等功能基团;纳米ZnO沉积在胶原纤维上。当加入铬鞣剂后,铬鞣剂与胶原及复合材料中的羧基进行多点交联,提高了胶原纤维的分散程度并增加了胶原的稳定性。与常规铬鞣相比,用PDM/ZnO配合铬粉鞣制后革样具有良好的抗紫外老化性及抗菌性。
     采用原位溶胶-凝胶聚合法制备了具有增深效应的两性乙烯基类聚合物/ZnO纳米复合鞣剂(PDMDAAC-MAA-AA-HEA/ZnO),并将其应用于制革复鞣工序。考察了功能单体丙烯酰胺(AM)、丙烯酸乙酯(EA)、丙烯酸丁酯(BA)、丙烯酸羟乙酯(HEA)、甲基丙烯酸十二酯(LA)和甲基丙烯酸十四酯(TA)对复鞣应用效果的影响。结果表明:酰胺基团的引入对坯革性能的影响不大,且随着单体中酯链长度的增加,复鞣后坯革的增厚率提高;当体系中引入质量分数为5%的丙烯酸羟乙酯(HEA)时,复鞣后坯革的应用效果最好,坯革增厚率达到22.22%,机械强度略有提高,并且具有一定的助染固色效果, K/S值提高了50.8%。采用FT-IR和XRD对PDMDAAC-MAA-AA-HEA/ZnO结构进行了表征,结果表明:成功制备了乙烯基类聚合物/纳米ZnO复合材料。与PDMDAAC-MAA-AA-HEA复鞣后革样相比,两性乙烯基类聚合物/ZnO纳米复合鞣剂具有较好的抗紫外性能;能够使纤维均匀分散,皮革柔软丰满;与未加复鞣剂的空白试样比较,坯革的断裂伸长率提高了20.4%,抗张强度相当,撕裂强度增加了21.1%,同时显著提高了染色效果,K/S值提高了98.3%,具有良好的增深固色作用。
     通过原位聚合法制备了两性乙烯基类聚合物/蒙脱土纳米复合少铬鞣助剂(PCM),考察了引发剂用量及蒙脱土用量对其应用性能的影响。结果表明:当引发剂用量为6%、蒙脱土用量为5%时,PCM综合性能最优。采用凝胶渗透色谱(GPC)对PCM分子量进行表征,结果表明PCM分子量在3000左右。采用TEM对PCM结构进行表征,结果表明,蒙脱土均匀地分散在聚合物基体中,且同时存在插层及剥离结构。将PCM与少量铬粉配合应用于酸皮鞣制及软化皮的无盐免浸酸鞣制工艺,分别对羊皮、牛皮和牛皮二层绒面革进行鞣制。结果表明,与传统铬鞣法采用7%鞣制后革样相比,采用5%少铬鞣助剂配合3%铬粉对酸皮进行鞣制鞣制,鞣后革样收缩温度超过100℃,与常规铬鞣相当;对软化皮进行无盐免浸酸鞣制,鞣后革样收缩温度约为95℃,较常规铬鞣略有降低,但达到行业标准。革样物理机械性能测试结果表明:少铬鞣工艺不降低成革的物理机械性能。对鞣制后革样进行扫描电镜(SEM)分析,结果表明,采用少铬鞣工艺鞣制后胶原纤维较传统铬鞣革胶原纤维分散成度增加,成革更加丰满。PCM不仅可以大幅度降低鞣制工序废水三氧化二铬含量,而且可以降低鞣制后回水、中和、染色加脂等工序废液中三氧化二铬含量。
     通过SEM和XRD分析了PCM对胶原结构的影响,结果表明:与常规铬鞣革比较,PCM配合少量铬粉鞣制后革样粒面更加清晰、完整,可保持毛孔形状,并且可使胶原纤维交织程度、无序度增加,纤维更加分散,但没有破坏胶原蛋白三股螺旋结构。采用元素分析(EDS)研究了铬鞣剂在皮革内的分布,结果表明:采用PCM配合少量铬粉鞣制后革样中的铬鞣剂分布更加均匀。通过胶原蛋白酶降解曲线研究了胶原的降解性,结果表明:采用PCM配合少量铬粉鞣制后革样的降解速率及最终降解量均高于传统铬鞣革。提出了PCM配合铬鞣剂与胶原纤维作用的机理模型图。首先,利用PCM对胶原纤维进行改性,引入大量羧基,蒙脱土以片层的形式分散在胶原纤维间及原胶原上,提高了胶原纤维的耐湿热稳定性。然后加入铬鞣剂,铬离子与胶原及PCM中的羧基进行配位,进而沉积在胶原分子间,而尺寸更小的铬离子则沉积在原纤维上。蒙脱土的存在也可以大量吸附铬离子,这样在胶原纤维内部形成了大量的分子内和分子间的网状交联,显著提高了铬鞣剂的吸收和利用率,即使加入少量铬粉也可达到常规铬鞣效果。
     本研究为纳米复合鞣剂的合成及应用提供了理论参考。对充分利用资源、减少皮革鞣制工序中重金属铬的污染及提高皮革产品质量具有关键性的作用。
Chrome tanning is one of the most mature methods of the leather industry,which brings good performance to resultant leather. However, the low absorptionrate of chrome tanning agent leads to a large number of chromium-containingwaste discharge to soil, water and caused serious pollution. The aim of this studyis to invent green leather chemicals and reduce the pollution of traditionaltanning industry by nano-technology. Amphoteric vinyl polymer/inorganicnanocomposite tanning agents were prepared to modify collagen in order toincrease the absorption of chrome tanning agent and reduce the pollution ofchrome tanning in leather industry, meanwhile, increase collagen stability andimpart excellent performance.
     In this study, diallyl dimethyl ammonium chloride was chosen as cationicmonomer, amphoteric vinyl polymer poly (diallyl dimethyl ammonium chloride-acrylic acid) and poly (diallyl dimethyl ammonium chloride-acrylic acid-acrylamide-hydroxyethyl acrylate) were prepared by single factor experiment.The morphology of PDMDAAC-AA and PDMDAAC-AA-HEA-AM underdifferent pH conditions was studied by transmission electron microscopy (TEM).The results showed that two kinds of amphoteric vinyl polymer were allpH-sensitive,with pH increases morphology of them was spherical, rod and longconifer-like. Different types of inorganic nano materials (montmorillonite, nanoZnO, nano Al_2O_3and nano TiO_2) were introduced to prepared amphotericvinyl-based nanocomposite tanning agent by uniform experiment. With tanningresults as indexes, the effects of types of inorganic nano-materials on applicationperformance were investigated. Finally, nano-ZnO and MMT were chosen toprepare nanocomposite tanning agent.
     Amphoteric vinyl polymer/ZnO nanocomposite tanning agents (PDM/ZnO) were prepared by blending, in situ polymerization and in situ sol-gel method andcharacterized by Fourier transform infrared spectroscopy (FT-IR), X-raydiffraction (XRD) etc. Compared with amphoteric vinyl polymer tanned leather,nanocomposite prepared by blending method had little effect on shrinkingtemperature and thickness increment ratio of resultant leather was53.0%;shrinkage temperature of leather tanned nanocomposite prepared by in-situmethod with3%BCS was92.9℃, thickness increment ratio was as high as174.47%and chromium load in wastewater was14mg/L; shrinkage temperatureof leather tanned nanocomposite prepared by in-situ sol-gel method with3%BCS was94.5℃, thickness increment ratio was63.7%, chromium load inwastewater was21mg/L and physical and mechanical properties of resultantleather was almost the same as traditional chrome tanning process. Mechanisticschematic model of the PDM/ZnO and collagen was proposed.PDMDAAC-AA-AM-HEA/ZnO pre-modified collagen fiber and introducedmore functional group as-OH and-COOH, meanwhile nano ZnO was depositedon the collagen fibers. Then chrome tanning agent was added, multi-pointcrosslinking among collagen fibers and nano composite, increased the stabilityof the collagen. Compared with the traditional chrome tanned leather, dispersionof collagen fiber was obvious. Furthermore, the resultant leather had good UVresistance and anti-bacterial properties.
     Deepening dyeing amphoteric vinyl polymer/ZnO nano-composite tanningreagent (PDMDAAC-MAA-AA-HEA/ZnO) was prepared by in situ sol-gelmethod. The effect of functional monomer acrylamide (AM), ethyl acrylate(EA), butyl acrylate (BA), hydroxyethyl acrylate (HEA), methyl acrylate,dodecyl acrylate (LA) and tetradecyl methacrylate (TA) on retanning propertiesand hyperchromic effect was studied. The results showed that the introduction ofamide groups have little effect on the performance of the crust, and withincreasing of ester chain length thickness increment ratio of resultant leather wasincreased. When introducing of5%acrylate (HEA), thickness increment ratioreached22.22%, physical and mechanical properties increased s lightly and K/Svalue improved50.8%. PDMDAAC-MAA-AA-HEA/ZnO was characterized byFT-IR and the XRD and the results showed that vinyl polymer/ZnO compositematerial was prepared successfully. Compared with PDMDAAC-MAA-AA -HEA retanned leather amphoteric vinyl polymer/ZnO nano composite retanningagent gave good ultraviolet resistance property to resultant leather, enabled thefibers uniformly dispersed. In addition, elongation at break increased by20.4%,tear strength increased by21.1%, while the dyeing effect was significantlyimproved, the K/S value increased by98.3%.
     Amphoteric vinyl polymer/montmorillonite nano composite (PCM) hadbeen developed. The effects of the amount of initiator and the amount ofmontmorillonite on tanning properties were studied. The results indicated thatwhen the initiator dosage was6%and amount of montmorillonite was5%, PCMhad the best performance. Molecular weight and structure of PCM werecharacterized by GPC and TEM respectively. The results indicated that themolecular weight of PCM was about3000, montmorillonite was homogeneouslydispersed in the polymer matrix with both exfoliation and intercalation structures.The cleaner approach to chrome-less tanning of goatskin, cattle skin and hidesplit suede leather by both pickling and pickling-free processing has beendeveloped. The results showed that compared with traditional chrome tanningleather shrinkage temperature of leather was lower, but reached industrystandards, fullness of resultant leather was improved significantly and physicaland mechanical properties were not decreased. PCM might form morecomplexion with collagen fiber helix chain, leading to more structural distortionof collagen molecules. Beside the discharges of chrome tanning process, thewhole continuous wet processes after tanning were reduced.
     Morphological characteristics and structure of collagen fiber weredetermined by SEM and XRD. The result showed that leather tanned by PCMwith BCS had clearer grain, and could effectively maintain the shape of the pores.PCM might form more complexation with collagen fiber helix chain, leading tomore structural distortion of collagen molecules, however did not disruption ofits triple helical structure. Trypsin degradation curves determine the cleanerapproach might increase the degradation of leather. EDS liner scanning showsthe dispersion of chromium in leather cross section. The results revealed thatchromium in chrome tanned leather is higher on surface but lower inside leatherwhile for cleaner tanning process chromium distribution was more even in allparts of leather. Schematic of PCM and BCS in the collagen fibers was illustrated. Firstly, PCM reacted with collagen fibers, at the same time flake-likemontmorillonite deposited both in intra-triple and inter-triple helix. MeanwhilePCM introduced more carboxyl groups into microfibrils. Then Cr clustersdeposited among collagen fibrils, while smaller Cr complexes diffuse intomicrofibrils. A large number of carboxyl resulted in more intermolecular andintramolecular cross-linking. Therefore, the excellent properties of resultantleather can also be achieved, even with small amount of chromium powder.
     This study provides a theoretical reference for the synthesis and applicationof nano-composite tanning agent. It plays an important role in taking full uses ofresources, reducing the pollution of heavy metal chromium pollution andimproving the quality of leather products.
引文
[1]兰云军.用科学发展观指导我国皮革工业的持续健康发展[J].中国皮革,2006,35(1):11-13.
    [2]张淑华.当代皮革化学工作者的神圣职责及义务[J].精细化工,2008,25(2):105-108.
    [3] Sundar V., Raghava Rao J., Muralidharan C.. Cleaner chrome tanning-emerging options[J].Journal of cleaner production,2002,10(1):69-74.
    [4]兰云军,李临生,杨锦宗.丙烯酸树脂复鞣剂的性能及发展状况[J].中国皮革,1999,28(1):9-12.
    [5]苗青,金勇,张彪,等.水溶液pH值对丙烯酸树脂与非离子性双亲嵌段型聚氨酯相互作用的影响[J].中国皮革,2010,(19):27-29.
    [6] Shoulders M. D., Raines R. T.. Collagen structure and stability[J]. Annual review ofbiochemistry,2009,78929.
    [7]马贺伟,石碧.木素磺酸钠对坚木栲胶的改性研究[J].皮革科学与工程,2006,16(1):10-12.
    [8]孙根行,蔡祥,俞从正,等. TiO2光催化降解橡杭栲胶的研究[J].皮革科学与工程,2006,6:18-21.
    [9]汪建根,杨宗邃,马建中,等.接枝改性橡椀栲胶的性能及其应用[J].中国皮革,2002,31(9):1-5.
    [10]石碧.植物鞣剂-金属盐结合鞣法[J].中国皮革,2007,36(7):1-4.
    [11] Ding K., Taylor M., Brown E.. Genipin-aluminum or-vegetable tannin combinations onhode powder[J]. The Journal of the American Leather Chemists Association,2007,102(5):164-170.
    [12]丁克毅,李杰.京尼平与栲胶和铝盐的结合鞣研究[J].中国皮革,2007,36(11):8-11.
    [13] Fathima N., Saravanabhavan S., Rao J. R., et al. An Eco-Benign Tanning System UsingAluminum, Tannic Acid, and Silica Combination[J]. Journal of the American LeatherChemists Association,2004,99(2):73-81.
    [14] Madhan B., Aravindhan R., Ranjithakumar N., et al. Combination tanning based on tara:An attempt to make chrome--free garment leathers[J]. The Journal of the AmericanLeather Chemists Association,2007,102(6):198-204.
    [15]石碧.植物鞣剂-醛类化合物结合鞣法(Ⅱ)植物鞣剂-噁唑烷结合鞣法[J].中国皮革,2006,21:1-2,4.
    [16]刘毅,程海明.植-合成鞣剂结合鞣山羊服装革工艺初探[J].皮革科学与工程,2007,17(1):54-60.
    [17] George B., Pizzi A., Simon C., et al.植物鞣剂/MUF树脂鞣制时皮革的耐光性及鞣剂的抗老化性[J].中国皮革,2007,15:64-67.
    [18]李运,马建中,高党鸽,等.新型醛鞣剂的制备及其应用[J].中国皮革,2008,9:43-46.
    [19]陈慧.制革中的基本有机鞣剂应用[J].西部皮革,2005,835-39.
    [20]苏秀霞,王学川.聚-甲基丙烯酸与铝配合物鞣剂的合成及应用的研究[J].中国皮革,2005,34(3):53-56.
    [21]王亚娟,陈慧,单志华.水杨酸-金属刚性模块的协同效应[J].皮革科学与工程,2007,17(2):15-17.
    [22]李闻欣,代庆节.柠檬酸-钛(Ⅳ)配合物鞣剂的合成[J].北京皮革,2009,1:84-88.
    [23]吕生华,刘岗,王飞.酶催化下苯酚与丙烯酰胺共聚合制备合成鞣剂的研究[J].中国皮革,2008,36(23):20-23.
    [24]李立新,黄瓒,潘汀,等.新型阻燃性氨基树脂鞣剂的合成[J].化学研究与应用,2004,16(2):290-291.
    [25] Sunda, V. J., Vedaraman N., Balakrishanan P., et al. Chamois leathers: An approach foraccelerated oxidation[J]. Journal of the Society of Leather Technologists and Chemists,2004,88(6):256-259.
    [26] Jing L., Qingyong S., Chao W.. A novel oxazolidine tanning agent and its use in vegetablecombination tanning[J]. Journal of the Society of Leather Technologists and Chemists,2011,95(4):165-170.
    [27] Madhan B., Aravindhan R., Siva M., et al. Interaction of aluminum and hydrolysabletannin polyphenols: An approach to understanging the mechanism of aluminum vegetablecombination tannage[J]. The Journal of the American Leather Chemists Association,2006,101(9):317-323.
    [28] Li Y., Shao S. X., Jiang L., et al. Rare Earth and Tetra Hydroxymethyl PhosphoniumSulfate Combination Tanning[J]. Advanced Materials Research,2012,479430-433.
    [29] Krishnamoorthy G., Sadulla S., Sehgal P., et al. Green chemistry approaches to leathertanning process for making chrome-free leather by unnatural amino acids[J]. Journal ofhazardous materials,2012.
    [30]李桂菊,何迎春.高效铬吸收助剂的研究[J].四川皮革,1999,21(003):23-25.
    [31] Gregori J., Marsal A., Manich,A., et al. Optimization of the chrome tanning process:influence of three types of commercially available masking agents[J]. Journal of theSociety of Leather Technologists and Chemists,1993,77(5):147-50.
    [32] Wang H., Zhou X. A new pretanning agent for high exhaustion chrome tannage[J].Journal of the Society of Leather Technologists and Chemists,2005,89(3):117-120.
    [33]强西怀,周富春.乙醛酸助铬鞣应用工艺的研究[J].中国皮革,2002,31(7):26-30.
    [34]范浩军,范朝云.新型醛酸鞣剂的研制[J].中国皮革,1998,27(2):11-13.
    [35]张丽平,强西怀.多元醛酸助铬鞣工艺研究[J].中国皮革,2006,35(21):5-9.
    [36]李国英,罗怡.高吸收铬鞣机理及其工艺技术(Ⅲ): LL-I醛酸助鞣剂的特性及应用[J].中国皮革,2000,29(023):23-26.
    [37]张荣莉,杨建洲.噁唑烷鞣剂的研究进展[J].皮革化工,2002,19(4):7-9.
    [38]王鸿儒,杨宗邃. N (-β-羟乙基)恶唑烷与胶原中一些活性基的作用[J].中国皮革,1997,26(2):10-12.
    [39]王鸿儒,章川波,自正祥.噁唑烷酸鞣剂的合成与应用[J].中国皮革,2008,31(19):10-12.
    [40] Sundarapandiyan S., Brutto P. E., Siddhartha G., et al. Enhancement of chromium uptakein tanning using oxazolidine[J]. Journal of hazardous materials,2011,190(1):802-809.
    [41]栾世方,范浩军,孙兵.铬鞣助剂OXD-Ⅰ的应用工艺优化及高吸收铬鞣机理研究[J].中国皮革,2006,35(7):29-33.
    [42]段镇基.助鞣剂的研究与应用[J].皮革科学与工程,1992,2(004):7-19.
    [43]金勇,董阳,魏德卿.丙烯酸-丁烯醛共聚物与皮胶原相互作用的研究[J].中国皮革,2007,36(5):26-29.
    [44]栾世方,石碧,范浩军,等.大分子铬鞣助剂的多官能团对铬吸收及成革性能的影响[J].中国皮革,2003,32(21):24-28.
    [45]栾世方,范浩军,石碧,等.大分子铬鞣助剂ECPA的高吸收铬鞣机理研究[J].皮革科学与工程,2006,15(5):19-23.
    [46]王新刚,王鸿儒.丙烯酸铬吸收助剂的合成研究[J].中国皮革,2004,33(19):49-52.
    [47] Kanagaraj J., Gupta S., Baskar G., et al. High exhaust chrome tanning using novelcopolymer for eco-friendly leather processing[J]. The Journal of the American LeatherChemists Association,2008,103(1):36-43.
    [48]张彪,金勇,马春彦,等.聚丙烯酸-g-非离子性聚氨酯在铬鞣中的应用[J].中国皮革,2011,40(15):1-6.
    [49]靳丽强,刘宗林,李彦春,等.阳离子丙烯酸树脂助鞣剂的合成及应用[J].中国皮革,2003,32(15):17-20.
    [50]陈华林,刘白玲,罗荣.超支化聚合物皮革复鞣剂的合成及应用[J].中国皮革,2007,36(15):13-16.
    [51]王学川,强涛涛,任龙芳,等.超支化聚合物铬鞣助剂的合成及应用[J].中国皮革,2006,35(5):43-44.
    [52]强西怀,刘安军,管建军,等.端羟基超支化聚合物助鞣剂的合成及应用[J].精细化工,2008,25(9):900-903.
    [53]吕生华,马建中.改性淀粉鞣剂的制备及应用[J].皮革科学与工程,2000,10(3):6-11.
    [54] Kanagaraj J., Sadulla S., Prasada Rao B. High exhaust tanning systems using a novelcross-linking agent (CA)[J]. Journal of the Society of Leather Technologists and Chemists,2006,90(3):127-130.
    [55] Kanagaraj J., Sadulla S., Jawahar M., et al. Interaction of aldehyde developed from aminoacids of tannery waste in a lower-chrome tannage: An eco-friendly approach[J]. Journalof the Society of Leather Technologists and Chemists,2005,89(1):18-27.
    [56]王鸿儒,吴显记.用铬革屑制备助鞣剂的研究[J].皮革化工,2001,18(5):16-19.
    [57] Marosfoi B., Garas S., Bodzay B., et al. Flame retardancy study on magnesium hydroxideassociated with clays of different morphology in polypropylene matrix[J]. Polymers forAdvanced Technologies,2008,19(6):693-700.
    [58] Giannelis E. P.. Polymer layered silicate nanocomposites[J]. Advanced materials,1996,8(1):29-35.
    [59] Lakshminarayana Y., Jaisankar S., Ramalingam S., et al. A novel water dispersablebentonite: Acrylic graft copolymer as filler cum retanning agent[J]. The Journal of theAmerican Leather Chemists Association,2002,97(1):14-22.
    [60] Lakshminarayana Y., S. N. Jaisankar, Saravanan P.. Studies on Casein-Acrylic GraftCopolymers as Glaze Finish for Leathers[C]. In Proceedings Ⅷth Asian InternationalConference on Leather Science&Technology,2010,89:12-14,.
    [61] Bao Y., Ma J. Z., Wang Y. L.. Preparation of acrylic resin/montmorillonite nanocompositefor leather tanning agent[J]. The Journal of the American Leather Chemists Association,2009,104(10):352-358.
    [62]鄂涛,马建中,鲍艳.蒙脱土负载引发剂法制备PMAA/MMT纳米复合材料[J].功能材料,2008,39(7):1219-1222.
    [63] Dangge G., Jianzhong M., Bin L., et al. Study on PDM-AM-GL/MMT nanocompositesand their application[J]. Materials and Manufacturing Processes,2009,24(12):1306-1311.
    [64]潘卉,王晓冬,王新收,等. RNS-A与MAMBA纳米复合物鞣剂的制备[J].皮革科学与工程,2010,1:37-40.
    [65]齐梅,潘卉,张治军. PMB/DNS-3A纳米复合物鞣剂的制备及应用研究[J].中国皮革,2008,36(21):24-26.
    [66]范浩军,何强,彭必雨,等.纳米SiO2鞣革方法和鞣性的研究[J].中国皮革,2005,33(21):37-38.
    [67]芦燕,范浩军,李辉,等.纳米SiO2鞣革方法及工艺平衡研究(Ⅰ)[J].中国皮革,2008,(1):35-37.
    [68]龙忠珍,曾成华,廖学品,等.改性纳米二氧化钛及其用于蓝湿皮复鞣的研究[J].皮革科学与工程,2009,18(6):18-22.
    [69]周南,陈武勇,赵长青,等.胶原基纳米氧化锌复合材料的制备[J].皮革科学与工程,2008,8(1):25-28.
    [70] Nawaz H., Solangi B., Zehra B., et al. Preparation of Nano Zinc Oxide and itsApplication in Leather as a Retanning and Antibacterial Agent[J]. Canadian Journal onScientific and Industrial Research,2011,2(4):164-170.
    [71] Gaidau C., Giurginca M., Dragomir T., et al. Study of collagen and leatherfunctionalization by using metallic nanoparticles[J]. Journal of optoelectronics andadavnced materials,2010,12(10):2158-2164.
    [72] Sangeetha S., Ramamoorthy U., Sreeram K. J., et al. Enhancing collagen stability throughnanostructures containing chromium (III) oxide[J]. Colloids and Surfaces B:Biointerfaces,2012.
    [73] Diaconu G., Micu s i k M., Bonnefond A., et al. Macroinitiator and macromonomermodified montmorillonite for the synthesis of acrylic/MMT nanocomposite latexes[J].Macromolecules,2009,42(9):3316-3325.
    [74] Zhao Y., Xue Z., Wang X., et al. Adsorption of congo red onto lignocellulose/montmorillonite nanocomposite[J]. Journal of Wuhan University of Technology-Materials Science Edition,2012,27(5):931-938.
    [75] Butler G. B., Angelo R. J.. Preparation and Polymerization of Unsaturated QuaternaryAmmonium Compounds. VIII. A Proposed Alternating Intramolecular-IntermolecularChain Propagation1[J]. Journal of the American Chemical Society,1957,79(12):3128-3131.
    [76] Simpson W., Holt T., Zetie R. The structure of branched polymers of diallyl phthalate[J].Journal of Polymer Science,2003,10(5):489-498.
    [77] Li Y., Gao D. G., Ma J. Z., et al. Synthesis of Vinyl Polymer/ZnO Nano Composite andits Application in Leather Tanning Agent[C]. Materials Science Forum,2011:103-107.
    [78]高党鸽,马建中,高丹丹,等.二烯丙基二甲基氯化铵共聚物/纳米SiO2复合鞣剂的研究[J].皮革科学与工程,2010,3012.
    [79]高党鸽,马建中,吕斌,等.聚二烯丙基二甲基氯化铵-丙烯酰胺改性蒙脱土的研究[J].功能材料,2010,1.
    [80] Gao D.G., Ma J.Z., Guo H.Q. Synthesis of pH-responsive hydrophobically-modifiedhydrogels of poly (methacrylic acid-co-diallylammonium salt) in aqueous solution[J].New Journal of Chemistry,2010,34(9):2034-2039.
    [81]高党鸽,马建中,吕斌.聚二烯丙基二甲基季铵盐/丙烯酰胺的制备及其在皮革中的应用[J].日用化学工业,2007,37(6):351-355.
    [82]武成利,李寒旭,董众兵.丙烯酸-丙烯酸甲酯无规共聚物的聚合及表征[J].胶体与聚合物,2005,4:21-22,25.
    [83]苏真伟,殷国富.人工智能在皮革手感测定中的应用[J].中国皮革,1997,26(3):3-5.
    [84]周智敏. AM-DMC的共聚及其竟聚率的测定[J].荆州师范学院学报,2003,26(2):84-86.
    [85] Ma J., Yang Z., Lu S., et al. The correlation between the comonomer ratios of vinylpolymer tannages and their application properties[J]. Journal of the Society of LeatherTechnologists and Chemists,2002,86(2):47-54.
    [86] MA J., Lu H.. Elasticity studies on leather retanned with various types of acrylicpolymers[J]. The Journal of the American Leather Chemists Association,2008,103(11):363-369.
    [87]林润雄,石大川.丙烯酸(r1)-丙烯酸钠(r2)共聚竞聚率的研究[J].化工科技,2000,8(3):6-10.
    [88]路华,马建中,朱华.几种弹性革用丙烯酸类聚合物鞣剂的研究[J].皮革与化工,2008,25(2):6-10.
    [89] Higgs P. G., Joanny J. F.. Theory of polyampholyte solutions[J]. The Journal of chemicalphysics,1991,941543.
    [90] Kleinen J., Richtering W. Defined Complexes of Negatively Charged Multisensitive Poly(N-isopropylacrylamide-co-methacrylic acid) Microgels and Poly (dially dimethylammonium chloride)[J]. Macromolecules,2008,41(5):1785-1790.
    [91]冯剑,刘洪来,胡英.两性聚电解质溶液的分子热力学模型和分子动力学模拟[J].化学学报,2004,62(3):247-252.
    [92] Shibayama M., Tanaka T.. Volume phase transition and related phenomena of polymergels[J]. Responsive gels,1993,109:1-62.
    [93] Muthukumar M.. Dynamics of polyelectrolyte solutions[J]. The Journal of chemicalphysics,1997,107(7):2619.
    [94]鲍艳,马建中.丙烯酸树脂/蒙脱土纳米复合材料的制备与鞣制性能[J].高分子材料科学与工程,2010,26(3):112-115.
    [95]周南,陈武勇,赵长青,等.胶原基纳米氧化锌复合材料的制备[J].皮革科学与工程,2008,18(1):25-28.
    [96] Sawai J., Kojima H., Igarashi H., et al. Antibacterial characteristics of magnesium oxidepowder[J]. World Journal of Microbiology and Biotechnology,2000,16(2):187-194.
    [97]陈次平,任新民,陆道惠,等.氧化锌分散体光反应产生的自由基中间体[J].影像科学与光化学,1991,9(2):137-140.
    [98] Tang E., Cheng G., Ma X. Preparation of nano-ZnO/PMMA composite particles viagrafting of the copolymer onto the surface of zinc oxide nanoparticles[J]. PowderTechnology,2006,161(3):209-214.
    [99] Ma X.-Y., Zhang W.-D. Effects of flower-like ZnO nanowhiskers on the mechanical,thermal and antibacterial properties of waterborne polyurethane[J]. Polymer Degradationand Stability,2009,94(7):1103-1109.
    [100] Xia C., Advincula R. C.. Decreased aggregation phenomena in polyfluorenes byintroducing carbazole copolymer units[J]. Macromolecules,2001,34(17):5854-5859.
    [101]吴茂英.聚合物光老化,光稳定机理与光稳定剂(上)[J].高分子通报,2006,476-83.
    [102] Hartley G. H., Guillet J.. Photochemistry of ketone polymers. I. Studies of ethylene-carbon monoxide copolymers[J]. Macromolecules,1968,1(2):165-170.
    [103]张学茜,刘敏江,李国立.纳米氧化锌改性聚乙烯的研究[J].塑料,2004,33(1):9-15.
    [104]杨红英,潘宁,朱苏康.无机紫外线屏蔽剂的功能机理研究[J].东华大学学报(自然科学版),2003,29(6):8-14.
    [105] Shalumon K., Anulekha K., Nair S. V., et al. Sodium alginate/poly (vinyl alcohol)/nanoZnO composite nanofibers for antibacterial wound dressings[J]. International journal ofbiological macromolecules,2011,49(3):247-254.
    [106] Li S. C., Li Y. N. Mechanical and antibacterial properties of modified nano‐ZnO/high‐density polyethylene composite films with a low doped content of nano‐ZnO[J]. Journal of Applied Polymer Science,2010,116(5):2965-2969.
    [107]张彪,金勇,曹志峰.丙烯酸树脂复鞣剂的复鞣机理及改性研究进展[J].西部皮革,2010,(11):32-37.
    [108] Yang H., Ma J., Yang Z. Synthesis of modified poly (acrylic acid-acrylonitrile) retanningagent with Mannich reaction and its application[J]. Journal of the American LeatherChemists Association,2001,96(11):437-443.
    [109]靳丽强,于婧,张净. Poly (MAA-AN-DM)两性聚合物复鞣剂的制备及性能[J].精细化工,2008,25(4):380-383.
    [110] Liqiang J., Zonglin L., Qinghua X., et al. Synthesis and application of an amphotericacrylic polyelectrolyte as a retanning agent[J]. Journal of the Society of LeatherTechnologists and Chemists,2004,88(3):105-109.
    [111]党鸿辛,潘卉,张治军,等.新型两性聚合物复鞣剂ADV的合成研究[J].中国皮革,2004,33(7):1-4.
    [112]靳丽强,祝德义,任海霞,等.两性丙烯酸树脂复鞣剂的抗菌性研究[J].皮革化工,2003,20(5):15-17.
    [113]盛维琛.多官能度过氧引发剂热分解和相关聚合的机理和动力学研究.[D].浙江大学,2005.
    [114]于慧,高宝玉,邵秀梅,等.二甲基二烯丙基氯化铵聚合物的红外光谱研究[J].山东大学学报:理学版,2001,3:330-335.
    [115] Gonzalez-Moreno R., Cook P. L., Zegkinoglou I., et al. Attachment of ProtoporphyrinDyes to Nanostructured ZnO Surfaces: Characterization by Near Edge X-ray AbsorptionFine Structure Spectroscopy[J]. J. Phys. Chem. C,2011,115:18195-18201.
    [116] Tsukahara H.. The adsorption state of an acid merocyanine dye on zinc oxide[J]. NipponShashin Gakkai Kaishi,1967,30:215-21.
    [117] ZENGIN A. C. A., CRUDU M., MAIER S. S., et al. Eco-leather: Chromium-freeLeather Production Using Titanium, Oligomeric Melamine-Formaldehyde Resin, andResorcinol Tanning Agents and the Properties of the Resulting Leathers[J]. Ekoloji,2012,21(82):17-25.
    [118] QIANG T. T., WANG X. C., REN L. F., et al. Phosphonium-zirconium combinationtannage for goat garment leather[J]. Journal of the Society of Leather Technologists andChemists,2008,92(5):192-199.
    [119] Krishnamoorthy G., Sadulla S., Sehgal P., et al. Green chemistry approaches to leathertanning process for making chrome-free leather by unnatural amino acids[J]. Journal ofhazardous materials,2012,215-216(15):173-182.
    [120] Shao S., Shi K., Li Y., et al. Mechanism of chrome-free tanning withtetra-hydroxymethyl phosphonium chloride[J]. Chinese Journal of Chemical Engineering,2008,16(3):446-450.
    [121] Covington A. D. Tanning chemistry: The science of leather[M]. Royal Society ofChemistry,2009.
    [122]李伟东,许承晃.粘土-有机物夹层复合物的形成及应用[J].中国矿业,1994,3(5):80-83.
    [123]鲁德平,管蓉.纳米技术在高分子材料中的应用[J].现代塑料加工应用,2001,13(5):55-57.
    [124]王永在,唐立兵.聚合物-蒙脱石纳米复合材料的制备,结构与性能[J].材料导报,2003,17(09):107-109.
    [125]潘兆橹.结晶学及矿物学[M].地质出版社,1993.
    [126] Tahir S., Naseem R.. Removal of Cr (III) from tannery wastewater by adsorption ontobentonite clay[J]. Separation and purification technology,2007,53(3):312-321.
    [127] Dultz S., An J. H., Riebe B. Organic cation exchanged montmorillonite and vermiculiteas adsorbents for Cr (VI): Effect of layer charge on adsorption properties[J]. Applied ClayScience,2012,67–68:125–133.
    [128] D hn R., Scheidegger A. M., Manceau A., et al. The uptake on montmorillonite: Apowder and polarized extended X-ray absorption fine structure (EXAFS) study[J]. Journalof colloid and interface science,2002,249(1):8-21.
    [129] Addy M., Losey B., Mohsen, R., et al. Adsorption of heavy metal ions on mesoporoussilica-modified montmorillonite containing a grafted chelate ligand[J]. Applied ClayScience,2012,59115-120.
    [130] Arias F., Sen T. K.. Removal of zinc metal ion from its aqueous solution by kaolin claymineral: A kinetic and equilibrium study[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2009,348(1):100-108.
    [131] Karamanis D., Aslanoglou X., Assimakopoulos P., et al. An aluminum pillaredmontmorillonite with fast uptake of strontium and cesium from aqueous solutions[J].Clays and clay minerals,1997,45(5):709-717.
    [132] Sen Gupta S., Bhattacharyya K. G.. Immobilization of Pb (II), Cd (II) and Ni (II) ions onkaolinite and montmorillonite surfaces from aqueous medium[J]. Journal ofenvironmental management,2008,87(1):46-58.
    [133]陈云,于永鲜,张金利,等.铁氧化物改性黏土对Cr (Ⅵ)的吸附性能研究[J].2011,31(5):905-911.
    [134]孙胜龙,赵晓明.钠,铝改造型膨润土对溶液中Cr (Ⅵ)吸附及其机理研究[J].水处理技术,1999,25(6):344-349.
    [135] Gao D., Ma J., Lu H., et al. Synthesis of PVP/IO-MMT Nanocomposite using IndustrialOrganic Montmorillonite[J]. Journal of Composite Materials,2009,43(6):703.
    [136]马建中,鲍艳,王彦利. MAA-AL/MMT纳米复合材料的制备[J].功能材料,2008,39(3):511-514.
    [137]官同华,瞿雄伟,李秀错,等.乳液法聚甲基丙烯酸甲酯/蒙脱土纳米复合材料的合成与表征[J].中国塑料,2001,15(11):15-19.
    [138] Harlan J., Feairheller S.. Chemistry of the crosslinking of collagen during tanning[J].Protein Crosslinking: Biochemical and Molecular Aspects,1977,86425-440.
    [139] Loeven W.. The binding collagen-mucopolysaccharide in connective tissue[J]. CellsTissues Organs,2008,24(3-4):217-244.
    [140] Di Y., Heath R.. Collagen stabilization and modification using a polyepoxide, triglycidylisocyanurate[J]. Polymer Degradation and Stability,2009,94(10):1684-1692.
    [141] Wu B., Mu C., Zhang G., et al. Effects of Cr3+on the Structure of Collagen Fiber[J].Langmuir,2009,25(19):11905-11910.
    [142] Maxwell C. A., Smiechowski K., Zarlok, J., et al. X-ray studies of a collagen materialfor leather production treated with chromium salt[J]. The Journal of the American LeatherChemists Association,2006,101(1):9-17.
    [143] Orgel J. P., Wess T. J., Miller A.. The in situ conformation and axial location of theintermolecular cross-linked non-helical telopeptides of type I collagen[J]. Structure,2000,8(2):137-142.
    [144] Maxwell C. A., Wess T. J., Kennedy C. J. X-ray diffraction study into the effects ofliming on the structure of collagen[J]. Biomacromolecules,2006,7(8):2321-2326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700