受水下爆炸载荷作用的船体结构可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰船在遭受水下武器攻击时,在非接触爆炸情况下,船体结构会受到水下爆炸冲击波以及气泡脉动载荷的破坏作用,船体结构的水下抗爆研究一直受到各海军强国的重视。本文首先介绍了结构可靠性的基本原理,在验算点法的基础上提出了一种结构可靠度计算的响应面法,随后研究了水下爆炸产生的冲击波超压峰值,分析了气泡的脉动以及气泡脉动时与结构的相互作用。在给出的可靠性方法的基础上,分别对爆炸冲击波和气泡脉动压力作用下的船体板架结构的冲击可靠性进行分析,并对爆炸载荷作用下的船体总纵极限强度进行可靠性分析。
     为满足工程实际中存在的高精度可靠性计算方法的需求,提出了将结构功能函数在设计验算点处进行一元分解高阶近似,得到一种用于可靠度计算的响应面法。算例计算结果表明,本文方法与直接Monte Carlo模拟法得出的结果很接近;在计算次数相当的情况下,本文方法所得结果比FORM法具有更高的精确度,说明本方法相对于FORM法而言,能更精确的逼近结构功能函数,具有较高的计算效率,可用于可靠性计算精度要求较高的工程问题。
     介绍了水下非接触爆炸引起冲击波以及气泡脉动相关的基本理论。利用已有的能流密度公式,推导出非接触爆炸时水中冲击波压力峰值的表达式。船体舷侧防护结构主要由板架等组成,研究板架结构在爆炸载荷下的响应一直是舰船抗爆研究的重要内容。本文建立了水下爆炸冲击波的简化数学模型,考虑水与板架间的流固耦合作用,给出了作用于板架上的冲击波载荷公式。并从理论方面对板架结构在水下非接触爆炸冲击波载荷作用下的动态响应进行分析,导出了舰船舷侧板架加筋板格在水下非接触爆炸冲击波载荷作用下响应的解析表达式。利用功能函数随机过程的极小化,将功能函数变为与时间无关的随机变量,分析了舰船舷侧板架加筋板格结构在冲击载荷作用下的冲击可靠性。
     以势流理论为基础,建立了水下爆炸气泡脉动的模型,并考虑了各次脉动之间的能量损失,对水下爆炸气泡脉动流场进行了数值计算。计算结果与实验值对比分析可知,理论公式所计算的气泡脉动的周期、速度等值与实际情况吻合良好,气泡脉动压力与实验值误差稍大,但仍在工程允许范围内,表明了本文建立的气泡脉动模型的正确性。随后分析了水下存在固支矩形板架的影响时,气泡的脉动特性以及在脉动的同时对于矩形板架所作的相对运动,推导出了气泡运动规律方程,并对板架在水下爆炸气泡脉动压力作用下的动态响应情况进行研究,分析了其可靠性。
     对于总纵强度研究,以往工作很少涉及到爆炸等极端载荷状态下舰船的总纵强度可靠性分析。研究船体结构受水下爆炸冲击波作用造成局部损伤后的剩余强度,应用基于验算点的一元分解响应面法,对受损船体结构在水下爆炸气泡附加载荷、波浪载荷及静水载荷共同作用下的船体总纵极限强度可靠性进行了计算和分析。并对多工况不同爆距下的总纵强度可靠性进行了计算,得出了相应结论:
     与常规载荷状态下的计算结果比较可知,水下爆炸载荷是影响其舰船总纵极限强度可靠度的主要载荷。在考虑水下爆炸冲击波造成的船体局部破坏后的三种工况计算结果表明,受水下爆炸气泡附加载荷作用的船体结构可靠指标均比不考虑气泡载荷时要低,且差别明显,表明气泡附加载荷在舰船的极端载荷状态下的结构设计中不可或缺。在计算水下爆炸气泡附加载荷作用下的船体总纵强度可靠性时,不能忽略波浪载荷的影响,必须考虑气泡附加载荷和波浪载荷的共同作用。
At being attacked by the underwater weapons, in the non-contact explosion cases, the warships structure will be destructed by the explosion shock-wave as well as the bubble pulsating load. The research of hull structure's ant detonation in the non-contact explosion situation has been of great importance to the countries that have power for navy. This paper first introduce the basic theory of structure reliability, developing a single variable decomposition method based on the design point to compute structural reliability, followed by study the shock-wave produced by underwater explosion, the bubble pulsation theory as well as the interaction of bubble and structure when the bubble pulsation and then analyzing the reliability of the warships structures under explosive loads based on the developed structure reliability method, and analyzing the reliability of the hull ultimate longitudinal strength under explosive loads also.
     In order to meet the demand for high accuracy reliability computational method in the actual project, a high accuracy reliability computational method is obtained by proposing higher order approximate through a single variable decomposition in the design point of the structure function. The results of examples calculations indicated that the results of the method developed in this paper and direct Monte Carlo simulation method are very close; the method developed in this paper has a higher precision compared to the FORM method in the situation of the approximately same number of computation times, explaining that the method developed in this paper relative to the FORM method can more precise approach the structure function with high efficiency, can be used to calculate the reliability of high precision engineering problems.
     The related elementary theory of shock-wave as well as the bubble pulsation caused by the underwater non-contact explosion is introduced. Expression of peak pressure of non-contact underwater explosion shock wave is derived using the energy density formula. The ships board protective structures are composed by the stiffened plates etc. The research of the response of stiffened plate structure under the explosion loads have been the important contents of the research of warships anti-detonation. This paper has established the simplification mathematical model of the underwater explosion shock wave. Considered the fluid-solid coupling between the water body and stiffened plates, the shock-wave load formula has been given. By the theoretical analysis of the dynamic response of the stiffened plate structure under the underwater non-contact explosion shock-wave load, the analytic expression of the dynamic response is obtained. Using the first time surmounting destruction model of the stochastic process level traversing theory, the dynamic reliability analysis of ships board stiffened plates under the explosion load is done.
     Taking the potential profile flow theory as the foundation, bubble pulsation model of underwater non-contact explosion has established, and the numerical simulation computation of underwater explosion bubble pulsating flow field had been carried on considered the energy loss between each pulsation. By the contrastive analysis of the computed result and the experimental data, we can see that the theoretical calculates for the calculation of the bubble pulsation's cycle and the bubble pulsation's speed are in good agreement with the actual situation, the error between the bubble pulsating pressure and the actual value is slightly big, but still in the project permission scope. The results had indicated that the model of bubble pulsation established in this paper is correct. From the view of conservation of momentum, the relative movement to the rectangular plate of the bubble at the same time of the pulsing has analyzed when existing clamped rectangular plate in water, deriving the law of relative movement equation, at the same time, the dynamic response of the stiffened plate structure under the underwater explosion bubble pulsating load is been researched, as well as its reliability.
     Regarding the overall longitudinal strength research, formerly literature did very little work on reliability analysis of ships overall longitudinal strength under extreme load status such as suffering explosion load. Considering the residual strength after partial injury of hull structure caused by the underwater explosion shock wave, applying the method developed in this paper, the reliability analysis of warships overall longitudinal strength under the underwater explosion bubble additional loads, the still water loads and wave loads has carried on. A variety of typical conditions according to different explosion distance is calculated, the corresponding conclusions were drawn:
     Compared with the normal loading states'computed results, we can see that the underwater explosion loads are the primary loads effected warships overall ultimate longitudinal strength reliability. The calculation results of three kinds working conditions considering the partial injury of hull structure caused by the underwater explosion shock wave show that, the reliable indicators of ship hull structures considering underwater explosion bubble additional loads are clear lower than the reliable indicators which not considering the bubble additional loads, indicating that the bubble additional loads must be in consideration for ship structural design in the extreme loading conditions. In the calculation of the reliability of overall ultimate longitudinal strength of warship subjected to the bubble additional loads, we must not ignore the impact of wave loads, considering the combined action of the bubble additional loads and the wave load.
引文
[1]何水清,王善.结构可靠性分析与设计.北京:国防工业出版社,1993.
    [2]赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社,1996.
    [3]吴世伟.结构可靠度分析.北京:人民交通出版社,1988.
    [4]Hasofer A M, Lind N C. An exact invariant second-moment code format. Journal of Enginnering Mechanics.1974,100(1):111-121P
    [5]Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Computers and Structures.1978,9:489-494P
    [6]赵国藩,王恒栋.广义随机空间内的结构可靠度实用分析方法.土木工程学报,1996,29(4):47-51页
    [7]徐军,刘东升,郑颖人.用改进的JC方法分析三维Hoek-Brown准则的可靠度.岩土力学.2000,20(1):44-52页
    [8]周道成,段忠东,欧进萍.具有隐式功能函数的结构可靠指标计算的改进矩法.东南大学学报.2005,35(1):139-143页
    [9]Armen D K, Taleen D. Multiple design points in first and second-order reliability. Structural Safety.1998, (20):37-49P
    [10]李国强,李继华.二阶矩矩阵法—关于相关随机向量的结构可靠度计算.重庆建筑工程学院学报.1987(1):56-67页
    [11]赵维涛,安伟光,严心池.二阶二次可靠指标,哈尔滨工程大学学报.2004,25(2):240-242页
    [12]李云贵,赵国藩.结构可靠性的四阶矩分析方法.大连理工大学学报,1992,32(4):455-459页
    [13]Wong F S. Slope reliability and response surface method. Journal of the Geotechnical Engineering Division, ASCE1985,111(1):32-53P
    [14]Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems. Structural Safety.1990,7(1):57-66P
    [15]Kim S, Na S. Response surface method using vector projected sampling points. Structural Safety.1997,19(1):3-19P
    [16]桂劲松,康海贵.结构可靠度分析的全局响应面法研究.建筑结构学报.2004,25(4):100-105页
    [17]张哲,李生勇,等.结构可靠度分析中的改进响应面法及其应用.工程力学.2007,24(8):111-115页
    [18]张哲,李生勇,等.一种改进的结构可靠度分析中响应面法.大连理工大学学报.2007,47(1):57-60页
    [19]Sayan G, Manohar C S. An Improved Response Surface Method for the Determination of Failure Probability and Importance Measure. Structural Safety.2004,26:123-139P
    [20]Irfan K, Chris A M. A Response Surface Method on Weighted Regression for Structural Reliability Analysis. Probabilistic Engineering Mechanics. 2005,20:11-17P
    [21]谭晓慧,王建国,刘新荣.改进的响应面法及其在可靠度分析中的应用.岩石力学与工程学报.2005,24(A02):5874-5879P
    [22]程进.基于响应面法的几何非线性结构概率响应分析田.同济大学学报.2006,34(9):1147-1151P
    [23]Kahn H. Application of Monte Carlo. AECU-3259.1954
    [24]Ditlevsen O. Direction simulation in Gaussian processes. DCAMM report No.359, Technical University of Denmark,1987
    [25]Bjerager P. Probability integration by direction simulation. Journal of Enginnering Mechanics.1988,114(8):1285-1302P
    [26]Ziha K. Descriptive sampling in structural safety. Structural Safety.1995, 17(1):33-41P
    [27]刘长虹,陈虬,吕震宙,等.用于结构可靠性分析中的系统描述性抽样 法.计算力学学报.2000,17(2):214-217页
    [28]吕震宙,岳珠峰.结构可靠性计算中的描述性抽样法.力学与实践.1998,20(5):513-520页
    [29]程耿东,蔡文学.结构可靠度计算的近似重要性抽样方法及其应用.工程力学.1997,14(2):1-7页
    [30]Cole R H. Underwater Explosions. New Jersey:LISA, Princeton University Press.1948.
    [31]Cole.水下爆炸.罗耀杰,韩润泽,官信译.北京:国防工业出版社.1960.
    [32]周睿,冯顺山,吴成.条形药包冲击波峰值超压工程计算模型.工程爆破.2001,7(4):19-23页
    [33]吴成,李京,冯顺山.一条形药包冲击波参数的简单计算模型探讨.矿冶.2002,11(1):8-11.页
    [34]周听清,奉孝中.水压爆破中群药包药量的计算.中国科学技术大学学报.2000,30(5):593-599页
    [35]张鹏翔,顾文彬,叶序双.浅层水中爆炸直达波压力峰值计算方法探讨.解放军理工大学学报(自然科学版).2002,3(1):57-59页
    [36]钱胜国.近自由水面水下爆炸时水中冲击波特性.爆炸与冲击.1983,4:148:153页
    [37]俞统昌,王晓峰,王建灵.炸药的水下爆炸冲击波性能.含能材料,2003,11(4):182-186页
    [38]孙娟,宁建国.三维爆炸与冲击问题的可视化研究.爆炸与冲击,2003,23(3):283-288页
    [39]李金河,赵继波,池家春.水中爆炸冲击波传播规律的试验研究.高能量密度物理.2007,3(1):25-28页
    [40]刘文华,罗松林,顾文彬等.单个球形炸药浅层水中爆炸冲击波特性的研究.工程爆破.1999,5(3):1-5页
    [41]高勇军,王伟策,陈小波等.浅层水中爆炸冲击波压力的测试与分析.爆 破.1999,16(1):9-13页,35页
    [42]苏华,陈网桦,吴涛等.炸药水下爆炸冲击波参数的修正.火炸药学报.2004,27(3):46-48页,52页
    [43]李焰,斐明敬,王占江等.微型炸药球水中爆炸冲击波压力波形测试和研究.第三届全国爆炸力学试验技术学术会议论文集.361-364页
    [44]池家春,马冰.TNT/RDX (40/60)炸药球水中爆炸波研究.高压物理学报.1999,13(3):199-204页
    [45]Gaspin J B. Depth Scaling of Underwater Explosion Source Levels. AD-A020473.1975:349-361P
    [46]顾文彬,叶序双,刘文华.界面对浅层水中爆炸冲击波峰值压力影响的研究.解放军理工大学学报.2001,2(5):61-63页
    [47]顾文彬,叶序双,张朋祥.浅层水中爆炸水底影响的试验研究.解放军理工大学学报.2001,2(2):55-58页
    [48]高勇军,王伟策,陈小波.浅层水中爆炸冲击波压力的测试与分析.爆破.1999,16(1):9-13页
    [49]王中黔.水下爆破冲击波.水下爆破文集.北京:人民交通出版社.1980:568-582页
    [50]马乃耀.水下爆破——黄埔水下爆破经验介绍.北京:人民交通出版社.1977,66页
    [51]李加贵,边小华,张雷.爆炸冲击波传播的数值模拟与试验数据对比.山西建筑.2006,32(8):106-107页
    [52]顾文彬,阳天海,叶序双.单个炸药浅层水中沉底爆炸的数值模拟.解放军理工大学学报.2000,1(3):51-55页
    [53]余晓菲,刘土光,张涛.水下爆炸冲击波的载荷强度计算.舰船科学技术.2006,28(5):22-28页
    [54]Talyor G I. The presser and impulse of submarine explosion waves on plates. Ministry of Home Security Report, FC235.1941
    [55]Mindlin R D, Bleich H H. Response of an elastic cylindrical shell to a transverse step shock wave. Journal of Applied Mechanics.1953,20: 189-195P
    [56]Chertock G. Transient Flexural Vibrations of ship-like structures Exposed to Underwater Explosion. Journal of the Acoustical Society of America.1970, 48(1):170-180P
    [57]Geers T L. Residual potential and approximate methods for three dimensional fluid structure interaction problems. Journal of the Acoustical Society of America.1971,49:1505-1510P
    [58]Geers T L. Doubly asymptotic approximations for transient motion of submerged structures. Journal of the Acoustical Society of America.1978, 64:1139-1149P
    [59]Heaton K C. Effects of Non-Sphericity and Radiative Energy Loss on the Migration of the Gas Bubble from Underwater Explosion. AD-A166823. 1986:1145-1164P
    [60]Temkin S. Review of the Propagation of Pressure Pulse Produced by Small Underwater Explosive Charges. AD-A194642.1988:996-1010P
    [61]Vernon T A. Whipping response of ship hulls from underwater explosion bubble loadings. Defence Research Establishment Atlantic.1986:1-41P
    [62]Rayleigh J W. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Magazine.1917,34:94-98P
    [63]Plesset M S, Chapman R B. Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. Journal of Fluid Mechanics.1971, 47:283-290P
    [64]Noltingk B E, Neppiras E A. Caviation produced by ultrasonics. Proceeding of Physics Society, London,1950,63(B):674-685P
    [65]Gilmore F R. The growth and collapse of a spherical bubble in a viscous compressible liquid. Hydro Lab Calif inst Technical Report.1952,26(4): 117-125P
    [66]Hickling R, Plesset M S. Collapse and rebound of a spherical bubble in water. Physics of Fluids.1964,7:7-14P
    [67]Geers H. An integrated wave-effects model for an underwater explosion bubble. Journal of the Acoustical Society of America.2002,111 (4): 1584-1601P
    [68]Helm J F H, Chambers E S, Lee E, et al. Detonation-Product Behavior at Large Expansion. The Underwater Detonation of Nitromethance. DE81030468.1980:366-378P
    [69]Chahine G L, Frederick G S, Lambrecht C J, et al. Spark Generated Bubbles as Laboratory-Scale Models of Underwater Explosions and Their Use for Validation of Simulation Tools. Proceedings 66th Shock and Vibrations, Symposium, Biloxi, MS.1995,2:265-276P
    [70]Boyce P, Debono S. Report of underwater explosion tests. Centre technique des systeme navals. France,2003
    [71]王建灵,赵东奎,郭炜.水下爆炸能量测试中炸药入水深度的确定.火炸药学报.2002,(2):30-31页
    [72]方正,李世海,乔继延.水中爆炸气泡脉动周期的试验研究.工程爆破.2001,7(2):29-33页
    [73]丁长兴,崔应娟.用最小二乘法求气泡能的固有常数.爆破器材:1994,23(3):1-6页
    [74]李国华,李玉节,张效慈,等.气泡运动与舰船设备冲击振动关系的试验验证.船舶力学.2005,9(1):98-105页
    [75]李国华,李玉节,张效慈,等.舰船设备冲击环境的能源研究.船舶力学.1998,2(1):37-54页
    [76]李玉节,潘建强,李国华,张效慈.水下爆炸气泡诱发舰船鞭状效应的 试验研究.船舶力学.2001,6(5):75-84页
    [77]Gibson D C, Blake. The growth and collapse of bubbles near deformable surfaces. Journal of Applied Sciences Research.1982,38:215-24P
    [78]Wang C, Khoo B C, Yeo K S. Elastic meshes technique for 3D BIM simulation with an application to underwater explosion bubble dynamics. Computers and Fluids.2003,32:1195-1212P
    [79]Rungsiyaphornrat S, Klaseboer E, Khoo B C, et al. The merging of two gaseous bubbles with an application to underwater explosions. Computers and Fluids.2003,32:1049-1074P
    [80]Khoo B C, Klaseboer E, Hung K C. A collapsing bubble-induced micro-pump using the jetting effect. Sensors and Actuators A.2005,118: 152-161P
    [81]Klaseboer E, Khoo B C. A Modified Rayleigh-Plesset Model for a Non-Spherically Symmetric Oscillating Bubble with Applications to Boundary Integral Methods. Engineering Analysis with Boundary Elements.2006, 30:59-71P
    [82]Klaseboer E, Turangan C, Wan F S, et al. Simulations of pressure pulse bubble interaction using boundary element method. Computer Methods Apply Mechanical Energing.2006,195:4287-4302P
    [83]Bui T T, Ong E T, Khoo B C, et al. A fast algorithm for modeling multiple bubbles dynamics. Journal of Computational Physics.2006,216:430-453P
    [84]Lew K S F, Klaseboer E, Khoo B C. A collapsing bubble-induced micro-pump:An experimental study. Sensors and Actuators A.2007,13: 161-172P
    [85]Zhang Y L, Yeo K S, Khoo B C, et al. Three-dimensional bubbles near a free surface. Journal of Computational Physics.1998,146:105-123P P
    [86]Zhang Y L, Yeo K S, Khoo B C, et al.3D jet impact and toroidal bubbles. Journal of Computational Physics.2001,166:336-360P
    [87]张振宇,王起棣,张慧生.表面张力对近固壁二空化泡影响的数值研究.力学学报.2005,37(1):100-104页
    [88]姚熊亮,张阿漫.简单Green函数法模拟三维水下爆炸气泡运动.力学学报.2006,38(6):749-759页
    [89]Rogers J C W, Szymczak W G.. Numerical solution of hydrodynamic free boundary problems. International Journal of Numerical Mathematics. 1990,95:241-266P
    [90]Wilkerson S A, Schittke H. Bubble Dynamics Calculations Using the DYSMAS/ELC Finite Difference Code. AD-A241549.1988:662-682P
    [91]Wilkerson S A. Boundary Integral Technique for Explosion Bubble Collapse Analysis. AD-A267369.1993:365-380P
    [92]Brett, John M. Numerical Modeling of Shock Wave and Pressure Pulse Generation by Underwater Explosions. AD-A352831.1998:23-35P
    [93]Keller J B. Damping of underwater explosion bubble oscillation. Journal of Applied Physics.1956,27 (10):69-78P
    [94]Heaton K C. Migration of the Gas Globe from Underwater Explosion. The Effects of Drags and Radiative Energy Loss. AD-P004937.1985:15-30P
    [95]Chahine G L, Kalumuck.K.M. Simulation of surface piercing body coupled response to underwater bubble dynamics utilizing 3DYNA YNAFS:a three-dimensional BEM code. Computer Mechanics.2003,66(3):489-497P
    [96]鲁传敬.三维水下爆炸气泡的数值模拟.航空学报.1996,17(1):92-95页
    [97]刘榕海.利用水下爆炸法评价爆炸危险性的研究.爆炸与冲击.1993,2:26-33页
    [98]李玉民,倪芝芳.水中爆炸气泡脉动流场的数值计算.爆炸与冲击.1996,4:376-381页
    [99]Zong Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble. Journal of Fluids and Structures.2005, 20:359-372P
    [100]方斌,朱锡,等.水平刚性面下方水下爆炸气泡垂向运动理论研究.爆炸与冲击.2006,4:345-350页
    [101]黄骏德,殷沐德,等.爆炸载荷下固支方板大变形的塑性动力响应.海军工程大学学报.1985,4:73-80页
    [102]刘土光,张涛.固支加筋方板在爆炸载荷作用下的刚塑性动力响应分析.爆炸与冲击.1991,14(1):55-65页
    [103]唐文勇,陈铁云.加筋板结构的塑性动力响应分析.上海交通大学学报.1996,30(8):73-80页
    [104]黄震球.固支加筋方板的大挠度塑性动力响应.固体力学学报.1995,16(1):7-12页
    [105]王忠年.冲击荷载作用下任意多边形薄板的塑性动力响应.固体力学学报.振动与冲击.1992,4:36-43页
    [106]张涛,刘土光,等.加筋板弹性大挠度的冲击响应分析.爆炸与冲击.2002,22(4):301-307页
    [107]朱锡,刘燕红,张振中,等.非接触爆炸载荷作用下舰船板架的塑性动力响应.武汉造船.1998,6:1-4页
    [108]方斌,朱锡,张振华.水下爆炸冲击波载荷作用下船底板架的塑性动力响应.哈尔滨工程大学学报.2008,29(4):326-331页
    [109]徐向东,崔维成.船体梁与加筋板极限强度可靠性设计.船舶力学.2001,5(3):48-58页
    [110]Kmiecik M, Guedes S C. Response surface approach to the probability distribution of the strength of compressed plates. Marine Structures.2002, 15(2):139-156P
    [111]Zheng Y, Das P K. Improved response surface method and its application to stiffened plate reliability analysis. Engineering Structures.2000,22(5): 544-551P
    [112]Guedes S C, Teixeira A P. Structural reliability of two bulk carrier designs. Marine Structures.2000,13(2):107-128P
    [113]Guedes S C. Design Equation for the Compressive Strength of Unstiffened Plate Elements with Initial Imperfections. Journal of Construction Steel Research.1988,9(4):287-310P
    [114]Timoshenko S P. History of strength of materials. New York:McGrawhill Book Co.,1953
    [115]Rutherford S E, Caldwell J B. Ultimate longitudinal strength of ships:a case study. Trans.SNAME,1990:441-471P
    [116]John W G. On the strength of iron ship. Trans Inst Naval Arch..1874, (15):74-93P
    [117]Vasta J. Lessons learned from full-scale structural tests. Trans.SNAME, 1958:165-243P
    [118]桑国光,张圣坤.结构可靠性原理及其应用.上海:上海交通大学出版社,1986
    [119]龚恢.船舶总纵弯曲强度可靠性分析.上海交通大学硕士学位论文.1982:
    [120]桑国光,龚恢.船体梁抗弯能力计算.中国造船.1984,1:65-75页
    [121]袁杰.应用结构可靠性原理制定船舶总纵强度安全标准问题.上海交通大学硕士学位论文.1986:
    [122]桑国光.应用结构可靠性原理研究船舶总弯曲强度.中国造船.1986,(4):100-121页
    [123]袁杰,桑国光.船舶总纵强度可靠性分析.中国造船.1987,(4):45-47页
    [124]郭昌捷.油轮总纵强度的相对可靠度及局部安全因子.大连理工大学学 报.1988,28(2):81-87页
    [125]周国华等.船舶结构(总纵强度)可靠性分析及其应用.中国船舶科学研究中心技术报告90142,1990.
    [126]顾学康,沈进威.非线性波浪弯矩的船体结构可靠性分析.舰船性能研究,1990,4:22-26页
    [127]束长庚,卢镇光,等.3500TEU集装箱主船体总纵强度可靠性分析.中国船舶科学研究中心技术报告.1995.
    [128]束长庚,卢镇光,等.11.8万吨油船主船体总纵强度可靠性分析.中国船舶科学研究中心技术报告.1995.
    [129]朱丽萍,张圣坤.船体极限总纵强度可靠性分析.上海交通大学学报.2002,31(11):96-101页
    [130]朱静,郭军,等.复合材料船体结构可靠性分析.中国造船.1996,4:32-40页
    [131]郭昌捷.受损船体极限强度分析与可靠性评估.中国造船.1998,4:49-56页
    [132]祁恩荣,崔维成.船体总纵极限强度可靠性分析的拉丁超立方抽样法.船舶力学.2002,6(3):52-61页
    [133]陈念众,张圣坤.复合材料船体纵向极限强度可靠性分析.中国造船.2002,43(2):29-35页
    [134]何福志,万正权,等.基于船体结构总纵极限强度的可靠性分析.船舶力学.2002,6(2):28-45页
    [135]Masaoka K, Talavera A L, Tsukamoto Y, et al. Ultimate strength and its structural reliability analysis of ship longitudinal bending using numerical database. Journal of Kansai Society of Naval Architects.2000,233: 115-121P
    [136]Incecik A, Pu Y. Deterministic and probabilistic assessment of FPSO hull girder strength. Proceeding of the Eighth International Symposium on Practical Design of Ships and Other Floating Structures.2001,16-21 September,947-953P
    [137]Yang J M, Huang J Y. Fuzzy reliability analysis of a ship longitudinal strength. Proceeding of the Eighth International Symposium on Practical Design of Ships and Other Floating Structures,2001, September:931-937P
    [138]Sun H H, Bai Y. Time-variant reliability assessment of FPSO hull girders Marine Structures.2003,16:219-253P
    [139]Xu H, Rahman S. A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. International Journal for Numerical Methods in Engineering.2004,61(7):1992-2019P
    [140]Abramowitz M, Stegun I. Handbook of mathematical functions. New York: Dover Publications, Inc..1972
    [141]Hohenbichler M, Gollwitzer S, Kruse W, Rackwitz R. New light on first and second-order reliability methods. Structural Safety.1987,4:267-284P
    [142]佟晓利,赵国藩.一种与结构可靠度几何法相结合的响应面法.土木工程学报.1997,30(4):51-57页
    [143]朱丽萍,张圣坤.船体总纵极限强度的可靠性计算.上海交通大学学报.1999(3):365-367页
    [144]恽寿榕,赵衡阳.爆炸力学.北京:国防工业出版社.2005
    [145]李维新.一维不定常流与冲击波.北京:国防工业出版社.1996:14页
    [146]金俨.水中爆炸冲击波对固支方板的破坏.北京理工大学硕士论文.2003:414页
    [147]隋树元,王树山.终点效应学.北京:国防工业出版社.2000:206页
    [148]马海洋,顾文彬,夏卫国,苘茂辉,王清洁.气泡脉动法计算炸药能量的探讨.西部探矿工程.2003,9:117-118页
    [149]亨利奇.爆炸力学及其应用.北京:科学出版社.1987:34页
    [150]Smith PD, Hetherington JG. Blast and ballistic loading of structures. Oxford, UK:Butterworth-Heinemann;1994
    [151]朱锡,白雪飞,张振华.空中接触爆炸作用下船体板架塑性动力响应及破口研究.中国造船.2004,45(2):43-50页
    [152]吴有生,彭兴宁,赵本立.爆炸载荷作用下舰船板架的变形与破损.中国造船,1995(4):55-61页
    [153]Liang C C, Tai Y S. Shock responses of a surface ship subjected to noncontact underwater explosions. Ocean Engineering.2006,33:748-772P
    [154]杨桂通,熊祝华.塑性动力学.北京:清华大学出版社.1984:166-168页
    [155]吴成,金俨,李华新.固支方板对水中爆炸作用的动态响应研究.高压物理学报.2003,17(4):275-281页
    [156]张俊芝,李桂青.界限为随机过程的工程结构时变动力可靠度.工业建筑.2001,10:24-27页
    [157]张志民.船首底部抨击强度的可靠性分析.哈尔滨工程大学博士学位论文.2001.
    [158]Park B W. Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosion loadings. International Journal of Impact Engineering.2006,32:1721-1736P
    [159]Twisdale L A, Sues R H, lavelle F M. Reliability-based design methods for protective structures. Structure Safty.1994,15(2):17-33P
    [160]周霖,徐更光.含铝炸药水中爆炸能量输出结构.火炸药学报.2003,26(1):30-36页
    [161]Keil A H. The Response of Ships to underwater Explosion. Trans.SNAME, 1961,69:366-410P
    [162]张守中.爆炸与冲击动力学.北京:兵器工业出版社.1993:115-346页
    [163]张效慈,李玉节,赵本立.深水爆炸水动压力场对潜艇结构的动态影响.中国造船.1997,(3):61-68页
    [164]David K, Ward C.王国荣,俞耀明,徐兆亮译.数值分析.北京:机械工业出版社.2005:432-434页
    [165]姚熊亮.船体振动.哈尔滨:哈尔滨工程大学出版社.2004:173-187页
    [166]倪振华.振动力学.西安交通大学出版社.1990,145-146页
    [167]Hsin Y L, Hong H. Reliability analysis of reinforced concrete slabs under explosive loading. Structural Safety.2001,23:157-178P
    [168]祁恩荣,崔维成,彭兴宁,等.破损船体非对称弯曲极限强度分析与可靠性评估.中国造船.2006,41(2):41-48页
    [169]崔鲁宁,浦金云.非接触爆炸作用下舰船动力系统生命力的研究方法.军械工程学院学报.2003,15(3):68-72页
    [170]浦金云,邱金水,程智斌.舰船生命力.武汉:海军上程大学.2001
    [171]何建.大型非对称浮体结构整体破坏分析.哈尔滨工程大学博士学位论文.2005.
    [172]张国栋,李朝晖.船体破损后外载荷与船体极限弯矩.中国造船.1997(3):28-33页
    [173]Lewis E V, et al. Load criteria for ship structural design. Report No. SSC-224, Ship Structure Committee, Washington, DC, USA,1973
    [174]Moan T, Jiao G. Characteristic still-water load effects for Production ships. Report MK/R 104/88, The Norwegian Institute of Technology, Trondheim, Norway,1988
    [175]DNV, Hull structural design ships with length 100 metres and above, Rules for classification of ships. Part 3 Chapter 1, Det norske Veritas, Norway, 1994.
    [176]Kaplan M, Benatar M, Bentson J et al. Analysis and assessment of major uncertainties associated with ship hull ultimate failure. Report No.SSC-322, Ship Structure Committee, Washington, DC, USA,1984
    [177]Mansour A E. Reliability of Marine Structures. Draft Final Report, Contract No.DTCG23-86-C-20054. University of California, Berkeley, 1986:8-86P
    [178]中国船级社.钢质海船入级与建造规范.北京:人民交通出版社.2006
    [179]Mansour A E, Wirsching P H. Sensitivity factors and their application to marine structures. Marine structures.1995,8:229-255P
    [180]Chen N Z, C Guedes Soares. Reliability assessment for ultimate longitudinal strength of ship hulls in composite materials. Probabilistic Engineering Mechanics.2007,22:330-342P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700