土工格室加筋土加固机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以土工格室为研究对象,通过土工格室加筋土的抗弯承载特性和筋土界面特性的试验研究,探讨土上格室加筋土的加固机理。
     本研究通过承载力室内模型试验,得到PIV画像解析图片,利用PIV画像解析方法和数字图像处理技术,对地基内部砂的运动,细观结构的图像进行定量和定性分析,得出地基砂土在条形均布荷载作用下,加筋前后各项参数和各种应力、应变场的变化规律。在模型试验中将变形量测系统用于分析加筋地基加载变形破坏的位移、地基内部局部剪应变场的图像,用以研究加筋地基的破坏模式和破坏面发展机理。采用有限元模拟分析地基砂内部的局部应力状态,解析地基砂内外部的应力场、应力路径及内力变化。本研究将基础模型按照实际基础同比例缩小进行加筋土界面特性的试验研究实验,利用拉拔试验装置和位移计测土体内部位移连续变化进程,得到土工格室拉拔抵抗力产生的原理模式图像和土工格栅位移与拉拔抵抗力的分布状况图像,比较分析土工格室和土工格栅的拉拔特性,研究土工格室和土工格栅的位移传递机制。通过静承载力试验和纸状的压力传感器测定应力分布,对补强机理、应力分散效果进行探讨。利用应力测定系统,研究加筋土的网兜效应和抗弯刚性及应力分散效果。最后通过现场简易承载力试验比较不同种类补强材料的补强效果,复核土工格室模型与原型的系统相似定理。
     本研究利用以上方法,追踪加筋土地基的渐进性变形与破坏过程,捕捉加筋土地基的变形模式、滑动剪切面位置形状和剪切带特征。为研究砂土在拉拔水平荷载下的全场位移和局部位移的产生、发展和演化特点进行了量测和定量分析。
     PIV画像解析表明无土工格室补强地基内速度向量分布是在载荷板正下方往正中心方向运动显著,速度大,表明载荷板正下方应力集中,土工格室补强地基内速度向量分布是在载荷板正下方出现横方向的运动,速度小且均匀,表明应力集中现象被冲散。变形量测系统分析表明纯砂或无补强时地基内部砂在剪切过程中,最大剪应变的方向均在约10°的破裂线上,而土工格栅加筋土剪应变等值线,即最大剪应变几乎发生在水平方向上,且该水平面与筋材的布置十分一致。有限元模拟分析表明加筋砂土地基内部的高补强效果在局部应力状态已接近破坏状态,且破坏区域扩散后才表现出来。加筋土界面特性研究表明土工格栅应变软化来得快,应变软化开始直接进入到相当小的残留强度状态;而土工格室是应变软化来得迟,先显示出稍高的最大抵抗力,以后应变软化较短,最后表现出相当大的残留强度。土工格室的内部位移是从墙壁近旁开始向后方进行传播,其进展性土工格栅比土工格室更显著。应力扩散试验表明土工格栅、土工格室加筋土地基的应力曲线在中心附近的尖顶分布,而土工格栅配合土工格室加筋土地基的应力曲线在中心附近较宽阔范围内缓慢分布,即后者比前者应力扩散效果好。土工格栅配合土工格室加筋土地基承载力较大,而碎石作为填料使用时,土工格室碎石加筋土地基承载力比土工格栅配合土工格室加筋土地基承载力还大。
     土工格室与土工格栅主要区别在于,前者因具有一定的厚度,固具有一定的抗弯能力,能有效扩散从上部结构传来的竖向应力;同时发挥类似于“深基础”的作用,大大提高地基的承载能力。
     实验结果表明,有限元数值模拟的细观力学特性与土体的宏观力学现象密切相关,有限元法数值模拟技术分析研究加筋地基的承载力和变形特性是可行的。物理模型试验PIV图像的细观结构的变化特征,反应了土体的宏观力学响应特性,说明了通过对土体的PIV细观结构变化来反应土体破坏前后的强度和变形的可行性。通过对这两种细观观测结果进行关联性分析,同时与宏观试验结果进行对比分析,结果表明PIV图像的细观结构的变化特征与宏观力学响应特性具有很好的一致性。
     土工格室作为一种新型建筑材料具有良好适应性(适应多种填料)、良好的经济性(工程项目上应用土工格室最多节约达30%的投资)及良好的稳定性,土工格室工法能有效利用现场土质,减少土石方量,有效削减环境负荷,加快工程进度。对土工格室加筋结构的作用机理的研究还有待深化,提出一种实用的工程设计计算方法是当务之急。
Object of this study was geocell, which is geotechnical construction material using subgrade material as the main body. Purpose of this study was to investigate the mechanism of reinforcement effect of geocell reinforced soil through the experimental research on the bearing capacity of geocell reinforced soil and characteristics of the interface between reinforcement and soil.
     In this study, PIV analysis images were obtained by the bearing capacity of indoor model test. Quantitative and qualitative analysis for internal sand movement of foundation and meso-structure images by using PIV image analysis method and digital image processing technology to get the change regularity of parameters, various stress and strain fields before and after reinforced in the strip of sand foundation under uniformly distributed loads. In model tests, displacement of reinforced foundation loading deformation and foundation internal local shear strain field image were analyzed using Deformation Measurement System to investigate the mechanism of reinforced foundation failure mode. Foundation internal local stress state results, stress field, stress path and stress variation were analyzed using Finite Element Simulation analysis. In this study, the basic model according to the actual same scaling was used in the test for reinforced soil interface charisteristics. Measuring process continuous change of internal displacement of soil by pull-out test device and displacement; comparing the pullout behavior of geocell and geogrid and studying displacement transfer mechanism of geocell and geogrid. Stress distribution determined by static bearing capacity tests and paper-like pressure sensor, in order to investigate the effect of stress dispersion and reinforcement mechanism. Discussing reinforced soil elastoplastic mattress effect, bending rigidity and stress dispersion effect by the stress measurement system. Finally, a simple site load test was used for comparison of reinforcement effect with different reinforcing material, and review similar theorem of geocell model and the prototype system.
     In this study, using above methods, tracked the progressive failure process and deformation of reinforced soil, captured deformation mode, sliding shear plane position shapes and shear zone of reinforced soil. Carried the measurement and quantitative analysis for the displacement occurred in drawing horizontal load of sand, development and evolution characteristics of the partial displacement
     PIV image analysis indicated that velocity vector distribution in the no geocell reinforced foundation showed obvious movement with high speed to the positive direction of the center beneath the load plate, which means that the stress concentration below the load board; while in occasion of geocell reinforced foundation, velocity vector distribution showed cross direction movement with small and uniform speed, which means that the phenomenon of stress concentration were dispersed. Deformation Measurement System analysis showed that in occasion of pure sand or no reinforcing, the maximum shear strain direction was almost at about10°rupture line for foundation internal sand in shear process. While Geogrid reinforced soil shear strain contour line, that the maximum shear strain almost occurred in the horizontal direction, and the horizontal plane was consistent with reinforcement layout. Foundation internal local stress state results were analyzed using Finite Element Simulation Analysis and showed that high reinforcing effect in the local stress state is close to failure state and shown after the failure field diffusion. In pullout test, geogrid displacement weak segment came faster and directly into state of residual small strength; however for geogcell, displacement weak segment came later, first showed slightly higher maximum resistance than the former, after short displacement weak segment, finally showed residual strength. Internal displacement of geocell model spread beginning from the wall to the back, its progress was less significant than geogrid. Stress diffusion test showed that stress curve distribution of geogrid or geocell reinforcd soil was in the vicinity of the spire. Meanwhile, for geogrid combined geocell type, stress curve was distributed in wide range near the center. Foundation bearing capacity was improved when geogrid combined with geocel. When gravel used as filler, bearing capacity of gravel reinforced geocell was larger than that of geogrid combined with geocell.
     Main difference between geocell and geogrid is that geocell has a certain thickness and a certain bending ability, therefore can effective diffusion the vertical stress from the superstructure; at the same time play a role similar to the "deep foundation", greatly improved the bearing capacity of foundation.
     The results indicated that using Finite Element Simulation Analysis, the variety feature of micro-structure is consistent with the macroscopic mechanical response feature. Finite Element Simulation analysis is feasible for studying on bearing capacity and deformation characteristic of reinforced foundation. The variety feature of physical model test PIV images reflect macroscopic mechanical response feature of soil, that means the feasibility for response strength before and after failure and deformation of soil by the microscopic structure change. Comparing the relationship analysis of two types of micro-structure with the macroscopic test results indicated that PIV images of micro-structure is consistent with macroscopic mechanical response feature.
     Greocell as a new type of building material, that has good adaptability (adapt to variety filler), good economy (application of geocell can save up30%of investment) and good stability. Geocell method can effectively use the field soil, reduce earthwork, effectively reduce the environmental load and speed up the progress of works. Study on the mechanism of geocell reinforced structure remains to be deepening. To propose a practical engineering design calculation method is a priority.
引文
[1]石玉华.加筋土坡设计与施工技术分析与评价.重庆交通大学硕士论文.2009:1-98
    [2]白建颖.土工合成材料测试、应用与标准.北京:中国土工合成材料工程协会,2009:1-127
    [3]刘颍.航道工程软体排沉排的受力分析.武汉理工大学博士论文.2010:1-51
    [4]石玉华.加筋土坡设计与施工技术分析与评价.重庆交通大学博士论文.2010:1-141
    [5]王来力.土工合成材料行业的标准及质量控制.会议论文.2009:1-10
    [6]柏幸程.土工格室在新疆伊犁山区高填路基当中的应用.新疆农业大学.2008:1-8
    [7]傅舰锋.土工格室柔性结构层力学性状的试验研究.长安大学博士论文.2002:1-6
    [8]史旦达.单、双向塑料土工格栅与不同填料界面作用特性对比试验研究.岩土力学,2009,30(8):2237-2244
    [9]洋溢,周健.条形基础加筋砂土地基室内模型试验的分析研究[J].同济大学,2006,(3):1-81
    [10]姚祖康.公路设计手册路面第三版.北京:人民交通出版社,2006:74-117
    [11]刘华北.水平与竖向地震作用下土工格栅加筋土挡墙动力分析[J].岩土工程学报,2006,28(5):594-599
    [12]高江平.土压力计算原理与网状加筋土挡土墙设计理论.北京:人民交通出版社,2004:1-147
    [13]管振祥.土工格栅加筋土挡墙水平变形影响因素敏感性分析[J].铁道建筑,2008,(5):74-77
    [14]杨庆.土工格栅加筋砂土地基性能模型试验研究[J].大连理工大学学报,2006,46(3):390-394
    [15]包承纲.土工合成材料应用原理与工程实践.北京:中国水利水电出版社,2008:127-155
    [16]杨晓华.土工格室工程性状及应用技术研究.长安大学博士论文.2005:8-13
    [17]张宝森.三维植被网技术的护坡机理及应用[J].中国水土保持,2001,(3):32--33
    [18]苏谦,蔡英.土工格栅、格室加筋砂垫层大模型试验及抗变形能力分析[J].西南交通大学学报,2001,(3):322-326
    [19]杨晓华,戴铁丁,许新桩.土工格室在铁路软弱基床加固中的应用.交通运输工程学报,2005,2(1):4-6
    [20]钱劲松,凌建明,黄琴龙.土工格栅加筋路堤的三维有限元分析.同济大学学报(自然科学版),2003,12(3):1-11
    [21]周志刚,郑健龙,宋蔚涛.土工格栅加筋柔性桥台的机理分析.中国公路学报,2000,1(5):74-77
    [22]木村孟.土质试验.大阪:社团法人地盘工学会,2000:121-157
    [23]森永教夫,日本铺装技术答疑.北京:人民交通出版社,2006:87-88
    [24]郑颖人.土工格栅加筋土挡墙有限元设计方法研究[D].解放军后勤工程学院博士论文. 2010:1-37
    [25]周春儿,何光春,龙丽吉.台阶式土工格栅加筋土挡墙结构优化设计[J].河海大学学报,2008,(5):713-717
    [26]莫介臻,何光春,周世良.台阶式格栅加筋挡墙现场试验及数值分析[J].土木工程学报,2008,41(5):12-14
    [27]马玉静,魏然.土工格栅加筋土挡墙工作性能参数的有限元分析[J].国防交通工程与技术,2009,(1):25-28
    [28]管振祥.土工格栅加筋土挡墙水平变形影响因素敏感性分析[J].铁道建筑,2008,(5):74-77
    [29]杨庆.土工格栅加筋砂土地基性能模型试验研究[J].大连理工大学学报2006,46(3):390-394
    [30]张克.土工格栅加筋砂土地基性能的模型试验研究及有限元分析[D].大连理工大学博士论文.2004:8-13
    [31]阙云.土工格栅加筋土路堤力学行为与设计方法研究[D].同济大学博士论文.2007:1-10
    [32]曾长贤.浅谈土工格栅加筋土陡路堤的设计方法[J].路基工程,2003,109(4):32-35
    [33]阙云.加筋土路基力学行为与设计方法的研究[D].同济大学博士论文.2007:1-10
    [36]松原三朗.铺装设计施工指针.东京:日本道路协会,2006:10-20
    [37]杜峰敏,于卫海.水泥稳定砂砾基层组成设计及施工[J].森林工程,2002,18(4):44-38.
    [38]易文,李德九,唐维忠.临长高速公路底基、下基层施工组织设计[J].森林工程,2002,18(4):50-51+53.
    [39]王海燕,庞慧峰.谈旧水泥路面注浆加固设计与施工[J].森林工程,2002,18(6):42-43.
    [40]黄志平,曹建文,邓威俊.砖混结构教学楼夹板墙的设计与施工[J].森林工程,2003,19(4):68-69+30.
    [41]李希胜.宿淮高速公路粉煤灰路堤设计与施工[J].森林工程,2004,20(6):56-57.
    [42]余爱华,王大明.《施工组织设计》课程建设的研究与实践[J].森林工程,2012,28(3):85-87+90.
    [43]浅川美利.土质工学.东京:彰国社,2006:130-206
    [44]松原三朗.编装施工便覧.东京:日本道路协会,2006:1-30
    [48]上野嘉久.实务ら见だ铁骨构造设计.京都:学芸出版社,2008:191-225
    [49]Fragaszy,R.Z.,Lawton,E. Bearing capacity of reiforced sand subgrade.Journal of Goetechnical Engineering Division. ASCE1984;110 (10):1500-1507
    [50]Guido,U.A.,Chang D.K.,Sweeny,M.A. Comparasion of geogrid and geotextile reinforced earth slabs. Canandian Geotechanical Journal 1986;23:435-440
    [51]geocell mattress foundation.Geotextile and Geomembranes 1993; 12:687-705
    [52]Omar,M.T.,Das,B.M.,Puri,V.K,Cook,E.E.,Yen,S.C. Ultimate bearing capacity of shallow foundations on sand with geogrid reinforcement. Canandian Geotechanical Journal 1993;30:545-549
    [53]Khing,KH.,Das,B.M.,Puri,V.K.,Yen,S.C. The bearing capacity of a geogrid reinforced sand. Geotextile and Geomembranes.1993;12:351-361
    [54]D.peila, C.Oggeri, C.Castiglia. Ground reinforced embankments for rockfall protection design and evaluation of full scale tests. Landslides.2007,14(3):255-265
    [55]Miyata,Y. and Bathurst, RJ. Development of K-Stiffness method for vertical geosynthetic reinforced soil walls constructed with c-(?) soils. Canadian Geotechnical Journal.2007,44:1391-1461
    [56]Bathurst,R.J., Allen,T.M. and Nowak, A.S. Calibration concepts for load and resistance factor design (LDFD) of reinforced soil walls. Canadian Geotechnical Journal.2008,12:1377-1392
    [57]Huang B. and Bathrurst, R.J. Evaluation of soil-geogrid pullout models using a statistical approach. Geotechnical Testing Journal.132(6):1-16
    [58]Allen, T.M., A.S. and Bathrurst, R.J. Calibration to determine load and resistance factors for geotechnical and structural design. Transportation Research Board Circular E-C079,Washington, DC,93
    [59]Sitharam, T.G, Sireesh, S. and Dash S.K. Model studies of a circular footing supported on geocell-reinforced clay. Canadian Geotechnical Journal.2005,42(2):693-703
    [60]Cowland, J.W., and Wong, S.C.K. Performance of a road embankment on soft clay supported on a geocell mattress foundation. Geotextiles and Geomembranes.1993,12:687-705
    [61]Krisnaswamy, N.R., Rajagopal, K. and Madhavi, L.G. Model studies on geocell supported embankments constructed over soft foundations. ASTM Geotechnical Testing Journal.2000,23:45-54
    [62]Dash, S.K., Sireesh, S. and Sitharam, GT. Model studies on circular footing supported on geocell reinforced sand underlain by soft clay. Geotextiles and Geomembranes.2003, 21:197-219
    [63]T. Ajiki, et al. Experimental study on bearing capacity of geocell-reinforced soil, new horizons in earth reinforcement. Proc.5th Int. Sympo. Earth Reinforcement,2007:539-544
    [64]Tatsuoka, F., Hirakawa, D., Nojiri, M., Aizawa, H., Nishikiori, H., Soma, R., Tateyama, M. and Watanabe, K. A new type intergral bridge comprising geosynthetic-reinforced soil walls. Geosynthetics International, IS Kyushu 2007 Special Issue.2009,16(4):301-326
    [65]介玉新.加筋土的等效附加应力法分析及模型试验研究.清华大学博士学位论文.2008:8-13
    [66]曹新文.土工格室和土工网加固基床效果静态模型试验.西安交通大学学报,2001,(3):322-326
    [67]曹新文.土工格室和土工网改善基床动态性能模型试验.西安交通大学学报,2001,(4):350-354
    [68]苏歉.土工格栅,格室加筋砂垫层大模型试验及抗变形能力分析.西安交通大学学报,2001,(2):176-180
    [69]杨晓华.黄土路堤土工格室护坡冲刷模型试验研究.公路交通科技,2004,(9):21-24
    [70]杨晓华.土工格室加固饱和黄土地基工程性状及承载力.长安大学学报(自然科学版),2004,(3):5-8
    [71]赵明华.土工格室+碎石垫层结构体的稳定性分析.湖南大学学报(自然科学版),2003,(2):68-72
    [72]刘俊彦.土工格栅,土工格室加筋垫层对软土地基沉降控制效果的有限元分析线路.路基,2002,(12):5-7
    [73]杨晓华.土工格室加固浅层饱和黄土地基的有限元分析.中国公路学报,2005,(2):12-17
    [74]张季如.土工格室用于岩石边坡植被侵蚀防护的稳定性分析.岩土力学,2003,(3):359-362
    [75]杨晓华.土工格室生态护坡在黄土公路边坡防护中的应用.公路,2004,(8):179-182
    [76]俞永华.楔型柔性搭板作用性状仿真.长安大学学报(自然科学版),2004,(4):29-32
    [77]杨晓华.土工格室在太古公路路基不均匀沉降病害处治中的应用.重庆交通学院学报,2004,(5):27-29
    [78]徐少曼.考虑加筋垫层综合效应的堤坝下软基稳定分析法.土木工程学报,2000,(3):322-326
    [79]杨和平,万亮,谭波.土工格栅拉拔试验研究的现状与发展.长沙交通学院学报,2006,22(1):100-126
    [80]何友芳,尹光志,张东明.土工格栅与铜矿尾矿界面作用特性的实验研究.重庆建筑大学学报,2006,28(2):50-60
    [81]黄英,符必昌,金克盛.不同排水条件加筋红土三轴试验研究.昆明理工大学学报(理工版),2006,31(1):10-20
    [82]吴景海.土工合成材料界面作用特性的拉拔试验研究.岩土力学,2006,27(4):20-30
    [83]徐林荣,吕大伟,顾绍付.筋土界面参数的拉拔试验过程划分研究.岩土力学,2004,25(5):50-100
    [84]肖朝昀,王建华,纪刚.土工织物拉拔试验接触面的蠕变研究.建筑技术开发,2004,31(5):40-50
    [85]张鹏,王建华,陈锦剑.土工织物拉拔试验中筋土界面力学特性.上海交通大学学报,2004,38(6):140-200
    [86]Farragk, Acar Y B,Juran I.Pullout Resistance of geogrid reinforcements[C].geotextiles and geomembrances.1993,18(4):33-159
    [87]Yang Z.Strength and Deformation Caracteristics of Reinforced Sand [D]. Dissertation presented to the University of California at Los Angeles, Calif,1972
    [88]Donald H.Cray and talal AI-Refeai, Behiviour of Fabric-versus Fiber-Reinforced Sand [J]. Journal of Geotechnical Engineering, ASCE,1986,112(GT8):804-820
    [89]姚红志.土工格室柔性挡墙工程性状离心模型试验研究.长安大学学位论文.2005:(1-70)
    [90]肖广文.砂土夯实桩与土工格室加固铁路机床试验研究.西南交通大学学位论文.2005:1-8
    [91]陈华.塑料土工格栅加筋挡土墙动力有限元分析.昆明理工大学博士论文.2002:10-20
    [92]肖成志.土工格栅流变特性及格栅加筋挡土墙长期工作性能研究.大连理工大学博士论文.2005:8-10
    [93]杨国林.加筋土筋材工程特性试验研究.中国公路学报,2001,14(3):11-16
    [94]徐林荣.筋土界面参数测试方法合理选择研究.岩土力学,2003,24(3):458-462
    [95]马明存.塑料土工格栅加筋土抗拉拔特性试验研究.中国铁道科学,2004,6(1):36-39
    [96]崔立民,周爱君.纤维增强塑料在混凝土结构中的应用[J].森林工程,2003,19(3):68-69+3.
    [97]李彦坤,唐悦,商春林.利用塑料薄膜治理冰湖的研究[J].森林工程,1995,11(2):62-54.
    [98]林涛,粟金云,兰金德.塑料滑道集运材技术研究[J].森林工程,1996,12(3):10-11.
    [99]杨林,江怀军.塑料排水板加固软土地基的数值分析[J].森林工程,2010,26(5):68-71.
    [100]刘小丽.现场室内两用大型直剪仪研制.岩石力学,2006,27(1):168-172
    [101]李燕君.土工格栅加筋土支挡结构抗拔性能探讨.铁道标准设计,1996,3(3):35-38
    [102]杨广庆.土工格栅界面摩擦特性试验研究.岩土工程学报,2006,28(8):948-952
    [103]周志刚.土工加筋材料研究综述.长沙交通学院学报,2001,17(2):38-42
    [104]杨国林.加筋土筋材长期荷载蠕变试验研究.煤炭学报,2001,26(2):132-136
    [105]王钊.国外土工合成材料的应用研究.香港:现代知识出版社,2002:29-33
    [106]李玉辉.土工合成材料在西部公路排水设计中的应用[J].森林工程,2003,19(4):56-57.
    [107]马玉静,杨广庆.土工格栅加筋土挡墙有限元分析与试验研究[J].铁道建筑,2009,2(3):58-60
    [108]杜兵民.土工格栅加筋土挡墙有限元分析的应用研究实例[J].黑龙江交通科技,2009,(7):12-14
    [109]陈波,高伟,白义松,徐明.浅议技术标准与规范的地位及作用[J].黑龙江交通科技, 2008,(2):28-31
    [110]刘霖,李桂英,李驰.土工格栅与风积砂土界面作用特性的试验研究[J].内蒙古公路与运输,2003,(1):4-6
    [111]刘文白,周健.土工格栅与土界面作用特性试验研究[J].岩土力学,2009,30(4):965-970
    [112]包承钢.土工合成材料界面特性的研究及试验验证[J].岩石力学与工程学报,2006,25(9):1735-1744
    [113]张文慧.双向土工格栅与粘土界面作用特性试验研究[J].岩土力学2007,28(5):1031-1034
    [114]杨广庆.返包式土工格栅加筋土高挡墙现场试验研究[J].岩土力学,2008,29(2):517-522
    [115]TANCHAISAWAT T, BERGODA, D T, LAI Y P. Numerical simulation of geogrid reinforced lightweight geomaterials on soft ground area[C]//Proceedings of the 4th Asian Regional Conference on Geosynthetics in Shanghai. Hangzhou:Zhejiang University Press,2008:286-290
    [116]BOUSHEHRIAN A H, HATAF N. Bearing capacity of ring footings on reinforced clay[C]//Proceedings of the 4th Asian Regional Conference on Geosynthetics in Shanghai. Hangzhou:Zhejiang University Press,2008:328-331
    [117]CHEW S H, PHOH H L. Piled embankment with geosynthetic reiforcement[C]//Special lecture, Merer Lecture, Keynote Lectures & Invited Reports, Geosynthetics Asia 2008. Shanghai
    [118]PALMERIA E M, MILLIGAN W E. Scale and other factors affecting the results of pull-out tests of grids buried in sand[J]. Geotechnique,1989,39(3):511-524
    [119]TSUTOMU Nakamura, TOSHIYURI Mitachi, ISAO Ikamura. Direct shear testing method as a means for estimating geogrid-sand interface shear-displacement behavivor[J]. Soils and Foundations,1999,39(4):1-8
    [120]Radoslaw L. Michalowski and Lei Shi. Deformation patterns of reinforced foundation sand at failure [J]. Geotechnical and Geoenviromental Engineering,2003,129(6):439-449
    [121]M. Sugimoto and A. M. N. Alagiyawanna. Pullout behavior of geogid by test and Numerical Analysis [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003,129(4):361-371
    [122]Khalid A, Alshibli and Stein Sture. Shear band formation in plane strain experiments of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000(6):495-503
    [123]Jean Salencon. The influence of confinement on the bearing capacity of strip footings [J]. C.R. Mecanique,2002(330):319-326
    [124]Fanyu Zhu, Jack I. Clark and Ryan Philips. Scale Effect of Strip and Circular Footings Resting on Dense Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001(7):613-621
    [125]D. J. White, W. A. Take, etc. A deformation measurement system for geotechnical testing based on digital imaging, close-range photogrammenty, and PIV image analysis.15th International Conference on Soil Mechanics Engineering, Rotterdam:Balkema, 2002:539-542
    [126]J.P. Giroud and Jie Han. Design method for geogrid-reinforced Unpaved Roads. I. Development of Design Method [J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(8):775-786

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700