水—岩耦合作用下采场底板综合分区特征及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水与岩体之间发生机械的、物理的或化学的相互作用,使岩体和地下水的性质或状态不断发生变化,这种相互作用也不断地改变着作用双方的力学状态和力学特性。采矿活动破坏了原始地应力的平衡,采场围岩应力发生重新分布,在新的应力场作用下,采场围岩产生变形和破坏;同时承压水的劈裂、挤入及软化溶蚀作用使岩体劈裂扩展、剪切变形和位移,增加岩体中结构面的孔隙度和连通性,从而增强了岩体的渗透性能,易于形成突水通道,如与采场工作面连通,则发生底板突水。本文以采场底板应力场、位移场演化规律为研究对象,采用理论分析、数值模拟、实验室试验及现场实测等综合研究方法,对底板应力分区、变形分区、破坏分区特征及其相互对应关系进行系统分析,揭示水-岩耦合作用下,不同面长、水压、采厚等条件下底板破坏深度及其稳定性,具体完成内容如下:
     (1)根据弹性力学相关理论,将煤层底板视为均质且各向同性的空间半无限体,简化上边界受力形式为weibull分布,得出底板空间应力解析式;
     (2)基于水-岩耦合作用原理,对有无水压作用下工作面底板端头位置、中间位置受力情况进行对比分析,结果表明:在承压水含水层附近,有水压作用时底板应力高于无水压作用;端头处高出的应力呈现两次波峰变化形态,中间位置呈现一次波峰变化形态;
     (3)水-岩耦合数值分析表明:随含水层水压及面长的增加,含水层中间位置最大主应力呈增大趋势,向两侧逐渐降低;受水压作用,底板垂直应力已降低区域又重新升高,充分卸载范围随水压的增加而减小;孔隙水压力分布规律表明:工作面两端头为突水集中区域,如果煤层开采后剪应力造成两端头处剪切破坏带裂隙发育充分,则容易发生突水事故;
     (4)基于采场围岩应力分布规律,得出采场围岩应力特征分区;①载荷缓慢升高区;②端头应力降低区;③拱形应力集中区;④端头关键承载区;
     (5)承压水上煤层开采相似模拟试验得出采场底板在采动应力及水压的作用下裂隙产生、发育演化规律。开采初期,在水平应力作用下岩层超出自身抗拉强度出现竖向张裂隙;采动中期,各岩层承载能力增加进而表现出整体抗弯性增强,产生竖向裂隙的同时出现一定量的层间裂隙;采动后期,含水层附近各岩层受水压及其上覆有一定承载能力岩层钳制作用,岩层整体性进一步增强,各岩层不同的挠曲变形造成层间相互错动,形成顺层裂隙;
     (6)数字图像相关法对底板移动变形规律进行分析表明:停采线前方35m~40m受超前压力影响,底板出现相对受压状态,其位移值低于未受采动影响区0.2m~0.4m;停采线向采空侧后退5m~10m,底板受压变形达到最大,该范围称之为压缩区;再向后30m~40m时,底板位移恢复到未受采动影响水平,称为压缩臌胀过渡区;离层臌胀区位于压缩膨胀过渡区后65m~75m,该区内产生底臌变形峰值点,最大底臌量为1.2m左右,其中峰值点位于开采范围中间位置后10m~20m左右;从峰值点向后一直延伸到切眼后煤体内10m~20m,底臌变形下降,该区域称为压实稳定区;
     (7)模型模拟过程中分析了水压从4.5MPa以0.5MPa压差值进行卸载,水压卸载到1.5MPa时,底臌量最高点下降幅度0.7m,由此表明:就采动应力及底板水压综合作用而言,底板岩层的变形以水压作用为主;
     (8)按位移特征整个底板空间分为两个明显区域,采空区对应底板空间大部分范围为底臌区,中部受矸石压实作用效果明显,底臌量有所下降或底臌趋势减缓,形成底臌变形减缓区;随与底板距离增加,下部各岩层承载能力的增强,底臌区内受矸石压实作用影响程度减弱,底臌形态从采场两端向中部逐渐增高,为底臌稳定发展区;含水层上边界到底板不受采动影响深度为底臌变形削弱区,该区域上边界由于受水力下压作用,使得底臌量比非承压水上开采进一步降低,总体亦呈中间高两端低的形态;
     (9)相拟材料模拟过程中对底板破坏深度采用并行电法进行实测,结果表明:顶板岩层破坏最显著区域为顶板上方48m,而底板岩层破坏最显著区域为底板下方19m。针对面长120m、160m、200m,水压1MPa、3MPa、5MPa,采厚1.0m、2.0m、3.0m、4.0mm、5.0m等开采条件,进行数值分析采场底板破坏形态及破坏深度,得出适合于面长100m以上,关于以上三因素的底板破坏深度拟合公式:y=57.1ln((?))+0.09M2+0.0644ep-127.727
     (10)对采场底板竖向空间从塑性破坏角度进行分带,分别是:充分破坏带、潜在导水破坏带、塑性破坏带。在充分破坏带内形成三个区,采场中部①区原拉破坏基础上产生新的剪切破坏,称重复破坏区;两端头的②区受中部压应力作用与①区力学联系降低,进一步加剧了破坏深度及拉应力受力范围,称之为破坏加剧区。在潜在导水破坏带内中部③区三向应力增大,尽管形成塑性破坏,但仍具备承载能力,称损伤破坏区;两侧剪切面到两端头形成④区,从破坏形式看以拉剪破坏为主,与③区相比三向应力增加幅度不大,为潜在突水区域,称为潜在透水破坏区;
     (11)针对A组煤底板岩石进行抗压、抗拉常规性试验得出相应强度值。采用MTS-815液压伺服系统对标准岩石试件进行蠕变试验,得出各级应力水平下试件轴向、横向蠕变参数值;
     (12)建立了底板粘弹性岩梁力学分析模型,由虚功原理及能量泛函变分条件,得出采动应力及底板水压不同作用时间下,受粘弹性岩梁抗弯能力下降的影响,底板弹性岩梁挠度及拉应力变化趋势。分析了岩梁弹性模量、粘滞系数及水压变化对其形变影响程度,得出:加固底板以提高岩梁力学性质,一方面增加弹性模量,有助于加强底板抗变形能力,另一方面提高了导水破坏区岩石粘滞系数,减缓完整岩梁受力变形强度;疏水降压可有效降低岩梁边界受力,使其稳定性增强;
     (13)针对潘北矿A3煤层地质条件及水文地质条件,结合采场底板破坏深度计算公式,对水压4.5MPa,面长100m、120m、160m、200m时底板破坏深度进行计算,得出为满足安全生产的需要所采取的防治措施;
     (14)为保证11113工作面安全回采,确定工作面面长120m;分层开采上分层厚2.8m-3.2m,平均3.0m;实施探放水工程使水压降为0.5MPa。针对现有开采技术条件及水文条件,计算突水系数满足规程要求,同时对工作面底板长期稳定性进行分析表明:现有水文地质及开采技术条件下工作面发生滞后突水可能性很小。对工作面进行现场矿压监测,实测表明初次来压步距38m,周期来压步距18m,工作面推进110m,无底板突水及异常矿压显现。
The mechanism of the interaction of physical、chemical or mechanical between groundwater and rock which not only changes the quality and state of rock and groundwater, but also the mechanical state and the mechanical properties of both sides constantly. Mining activities undermine the balance of the original stress and make stope rock stress redistribute, and stope surrounding rock will produce deformation and failure under new stress field. Meanwhile, the effects of press water splitting, squeeze and soften dissolution make rock mass splitting extension, shear deformation and displacement and increase rock structural plane porosity and connectivity, which increase the permeability of rock mass, be easy to form water inrush channel and make floor water inrush if connecting to stope face. By taking the stope floor stress field, displacement field evolution as the research object, the thesis is done to systematically analyze the stress, deformation and failure partition characteristics and the corresponding relationship between the systematic research on the floor, reveals depth of destroyed floor and its stability of different facial length mining thickness, pressure under the Water-Rock coupling, using comprehensive study methods of similarity simulation test, computer numerical simulation, theoretical analysis and example analysis, etc. The detail research contents are as following:
     (1)According to the elastic mechanics theory, the floor of coal seam was regarded as a homogeneous and isotropic half-infinite body and its boundary stress was simplified to the form of Weibull distribution, which can obtain arbitrary stress analysis of the floor space.
     (2)Based on the principle of the water-rock interaction, the force of end position and intermediate position of working face floor was comparatively analyzed with water pressure or not, and results showed that floor stress with pressure is higher than the one without pressure near confined aquifers, stress in end position presents two peaks change shape and stress in intermediate position presents one peak change shape.
     (3) Water-Rock numerical analysis shows that:With the aquifer water pressure and face length increasing, the maximum principal stress in intermediate position of aquifers tended to increase and gradually reduced to the sides; vertical stress of the floor in stress decreasing zone rises again at the action of pressure, fully uninstall range decreases with the increase of pressure; pore water pressure distribution showed that the two ends of working face were concentrated area of water inrush, it is prone to water inrush if shear failure area cracks at the two ends which are caused by shear stress develop fully after coal mining.
     (4) Based on the stope surrounding rock stress distribution, partition characteristics of surrounding rock stress was obtained:①Load slowly increased area;②End stress reduced area;③Arched stress concentration area;④End key bearing area.
     (5) Fissure production and development evolution law of stope floor under the stress and pressure were obtained by similar simulation test of coal mining above aquifer. Rock exceeds its tensile strength and vertical tensile cracks occur under the horizontal stress when early mining; bearing capacity of the rock increases and then its overall bending resistance reinforces in mining metaphase, a certain amount of interlayer fissure occur at the same time in vertical cracks occurring; after the mining activities, pressure and overlying rock which has a certain capacity clamps the rock near aquifer and integrity of rock was further enhanced, bedding fissure forms because of the deflection caused by the different rock layers mutual dislocation.
     (6) The analysis using digital image correlation method to the movement and deformation laws of the floor shows that:The floor appears relative compression deformation by advanced pressure influence at35cm~40cm ahead of the stopping line, the displacement value is2mm~4mm lower than the one in unaffected zones of coal mining; deformation of the floor gets to the maximum by press at5cm~10cm behind the stopping line towards gob in which is called the formation of the compression zone; Floor displacement restored to the level of mining influence unaffected at more than30cm~40cm behind the stopping line in which is called the compression tympanites transition zone, the separation zone is at65cm~75cm behind compression tympanites transition zone where floor heave deformation peak point appears, the maximum of floor heave reaches about12mm of which the peak point is located10cm~20cm behind the middle position; floor heave deformation decreases from the peak point to10cm~20cm behind the cut in coal body in which is called the restoration of compaction zone.
     (7) Floor heave value is analyzed by pressure uninstalled in differential pressure to 0.5MPa from4.5MPa in simulation process, the highest point of floor heave falls7mm when pressure is1.5MPa, it is shown that:As far as the comprehensive force of mining stress and pressure is concerned, floor strata deformation dominated by three gray water pressure.
     (8) The entire floor space is divided into two obvious zones by displacement characteristic, most of floor space range corresponded with gob was floor heave zone, floor heave value declines or trend slows down in the central by obvious gangue compaction effect where is formed floor heave deformation reduction zone; with increase of distance to the floor, floor heave form was gradually increased to the central from both ends of the stope by carrying capacity of the lower rock enhanced and influence degree of gangue compaction effect weaken in which is called floor heave stability development zone;the area from the upper boundary of aquifer to the depth not affected by mining in the floor is called floor heave deformation weakening zone, in this area, floor heave is further lower than the one mining without confined water by the region boundary due to hydraulic pressure and the overall is also high in the middle and low in both ends of form.
     (9)Measure the floor's failure depth using parallel electrical method in similar material simulation process, the results indicate that the most significant region of roof strata destruction is located at48cm above the roof, and the most significant region of floor strata destruction is located at19cm below the floor. For the mining conditions like face length(120m、160m、200m)、pressure(11MPa、3MPa、5MPa) and mining thickness(1.0m、2.0m、3.0m、4.0m、5.0m), floor failure depth fitting formula can be obtained with analyzing mining floor failure modes and failure dept, which is suitable for face length of more than300and about the above three factors. y=57.11n((?))+0.09M2+0.0644eP-127.727
     (10) Stope floor damage divided from the failure point which are A--full damage zone; B--potential water damage zone; C--plastic failure zone. Three areas form band in the full destruction, mining new shear failure of the original field central tension failure basis, called repeated failure zone; two ends of the central area is controlled by the compressive stress and the mechanical contact interval decreased, further aggravating the damage depth and pull stress range, called the destruction area. Three dimensional stress increases in the middle of③zone, despite the formation of plastic damage, but still have the capacity which called the damage zone; both sides of shear surface④form the two ends from failure to shear failure, stress increase is not large compared with③zone, as a potential water inrush area, called the potential permeable failure zone.
     (11)Have compressive and tensile strength of conventional testing of the rock group A coal seam and obtain the corresponding intensity value. Have creep test of standard with MTS-815hydraulic servo system and get the specimen axial and lateral creep parameters under different stress levels.
     (12)The mechanics analysis model of the floor viscoelastic rock beam is established and the variation tendency of the deflection plate intact rock beam and tensile stress is obtained by the principle of virtual work and energy functional variation condition under the influence of the viscoelastic rock beam flexural capacity decreased in different action time with mining stress and pressure. Analyze influence degree of rock beam elastic modulus, coefficient of viscosity and pressure to the deformation and obtain the result that reinforcement floor can improve the mechanical properties of rock beam, on the one hand, modulus increasing is helpful to strengthen the floor deformation resistance, on another hand, the water area of rock viscous coefficient of destruction improving can slow down the intact rock beam deformation and strength; drainage can effectively reduce the rock beam boundary stress and improve the stability.
     (13) For the Panbei Mine A3coal geology and hydrogeology conditions, combining with the stope floor failure depth calculation formula, calculating floor failure depth under the conditions as pressure (4.5MPa) and face length (120m、160m、200m), prevention measurements for safety production are obtained.
     (14) In order to ensure the safety mining of11113working face, the working face length is decided to120m, the thickness of higher slice is decided to2.8m-3.2m, mean3.0m and pressure is reduced to0.50MPa using water drainage project. In view of the existing mining conditions and hydrological conditions, calculate inrush coefficient to meet requirements of the regulations and analyze long-term stability of face floor. The results shows that it is likely to occur hysteresis water inrush in face under the existing mining hydrological conditions. For pressure monitoring field to the work surface, the field experiment shows that the first weighting interval is38m and the periodic weighting step distance is18m, there are no water inrush and abnormal underground pressure behavior when advance distance reaches100m.
引文
[1]虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社,2005.
    [2]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993.
    [3]刘晓丽.水-岩耦合过程及其多尺度行为的理论与应用研究[D].北京:清华大学,博士学位论文,2008.
    [4]武强,金玉洁.华北型煤田矿井水防治决策系统[M].北京:煤炭工业出版社,1995.
    [5]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [6]涂敏.承压水上开采底板失稳破坏规律研究[J].矿山压力与顶板管理,2005(2):26-28.
    [7]王永红,沈文著.中国煤矿水害预防及治理[M].煤炭工业出版社,1996.
    [8]朱珍德,郭海庆.裂隙岩体水力学基础[M].北京:科学出版社,2007.
    [9]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特性[M].北京:科学出版社,2004.
    [10]SHAOJF,ZHOUH,CHAUKT.Coupling between anisotropic damage and permeability Variation in brittle rocks[J].International Journal for Numerical and AnalytiCal Methods in Geomeehanies, 2005,29:1231-1277.
    [11]郭文婧,马少鹏,康永军等.基于数字散斑相关方法的虚拟引伸计及其在岩石裂纹动态观测中的应用[J].岩土力学,2011,32(10):3196-3200.
    [12]LEE Dongyeon, TIPPUR Hareesh V, KIRUGULIGE Madhu.Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography[J]. Journal ofComposite Materials,2009,43(19):2081-2108.
    [13]刘冬梅,蔡美峰,周玉斌等.岩石裂纹扩展过程的动态监测研究[J].岩石力学与工程学报.2006,25(3):467-472.
    [14]唐春安,徐小荷.岩石破裂过程失稳的尖点灾变模型[J].岩石力学与工程学报,1990,9(2):100-107.
    [15]PATERSON M S, WONG T F. Experimental rock deformation-the brittle field[M].Berlin: Springer; 2005.
    [16]JAEGER J C, COOK N G W, ZIMMERMAN R W.Fundamentals of rock mechanics[M].4th ed. Oxford:Blackwell,2007.
    [17]MOGI K. Experimental rock mechanics[M]. [S. l.]:Taylor & Francis,2007.
    [18]于学馥,郑颖人,刘怀恒等.地下工程位移稳定性分析[M].北京:煤炭工业出版社,1983:105-110.
    [19]蔡美峰,孔广亚,贾立宏.岩体工程系统失稳的能量突变判断准则及其应用[J].北京科技大学 学报,1997,19(4):325-328.
    [20]杨官涛.地下采场结构参数优化及稳定性的能量突变分析[D].长沙:中南大学资源与环境学院,2007.
    [21]汪洋,曾雄辉,尹健民,肖国强,等.考虑卸荷效应的深埋隧洞围岩分区破坏数值模拟[J].岩土力学,2012,33(4):1233-1239.
    [22]王学滨,潘一山.不同侧压系数条件下圆形巷道岩爆过程模拟[J].岩土力学,2010,31(6):1937-1942.
    [23]王卫军,侯朝炯,柏建彪等.综放沿空巷道底板受力变形分析及底鼓力学原理[J].岩土力学,2001,22(2):319-322.
    [24]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,1980.
    [25]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,2007,32(6):561-564.
    [26]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报:自然科学版2008,37(1):1-4.
    [27]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000.
    [28]左宇军,李术才,秦泗凤,李利平.动力扰动诱发承压水底板关键层失稳的突变理论研究[J].岩土力学,2010,31(8):2361-2365.
    [29]杨官涛,李夕兵,王其胜,李山存.地下采场失稳的能量突变判断准则及其应用[J].采矿与安全工程学报.2008.25(3):268-272.
    [30]白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):149-154.
    [31]王连国,宋扬.底板突水煤层的突变学特征[J].中国安全科学学报,1999(5):10-13.
    [32]施龙青,尹增德,刘永法.煤矿底板损伤突水模型[J].焦作工学院学报,1998,17(6):403-405.
    [33]陈占清.采动围岩中参变渗流系统的稳定性分析[J].中南大学学报(自然科学版).2004,35(1):129-132.
    [34]张金才,王建学.岩体应力与渗流的耦合及其工程应用[J].岩石力学与工程学报.2006,25(10):1981-1989.
    [35]Wang Jianxue,Zhang Jincai. Laboratory determination of fracture aperture, permeability and stress repationships[J],ournal of Coal Science & Engineering(China),2003,9(2):13-16.
    [36]胡耀青,赵阳升,杨栋等.承压水上采煤突水的区域监控理论与方法[J].煤炭学报,2000,25(3):252-255.
    [37]沈光寒,李白英,吴戈.矿井特殊开采的理论与实践[M].煤炭工业出版社,1992.
    [38]葛亮涛,叶贵钧等.中国煤田水文地质学[M].北京:煤炭工业出版社,2001.
    [39]张辉.带压开采工作面的突水机理及防治水工作[J].中国煤田地质,2004,16(增):45-47.
    [40]李抗抗,王成绪.用于煤层底板突水机理研究的岩体原位测试技术[J].煤田地质与勘探,1997,25(3):31-34.
    [41]虎维岳,尹尚先.采煤工作面底板突水灾害发生的采掘扰动力学机制[J].岩石力学与工程学报.2010.29(1):3344-3348.
    [42]董书宁,虎维岳.中国煤矿水害基本特征及其主要影响因素[J].煤田地质与勘探,2007,35(5):34-37.
    [43]徐智敏.深部开采底板破坏及高承压突水模式、前兆与防治[J].煤炭学报,2011,36(8):1421-1422.
    [44]CHILeS J P, AUG C, GUILLEN A, et al. Modelling the geometry of geological units and its uncertainty in 3D from structural data:the potential-field method[R]//Orebody modelling and strategic mine planning-Uncertainty and risk management models. Carlton:Australasian Institute of Mining and Metallurgy,2006.
    [45]朱术云,鞠远江,姜振泉.“三软”煤层采动底板变形特征数值模拟与实测对比分析[J].湖南科技大学学报(自然科学版),2010,25(1):13-16.
    [46]姜耀东,吕玉凯,赵毅鑫,张党育.承压水上开采工作面底板破坏规律相似模拟试验[J].岩石力学与工程学报,2011,30(8):1571-1578.
    [47]刘玉德,尹尚先,顾秀根.高突危险水体上煤层开采下限及带压开采分区研究[J].中国安全生产科学技术,2010,6(3):65-68.
    [48]刘天泉.论煤层底板中的裂隙带最大深度及分布特征[J].煤炭学报,1990(2).
    [49]张金才,张玉卓,刘天泉.岩层渗流与煤层底板突水[M].北京:地质出版社,1997.
    [50]李白英等.预防采掘工作面底板突水的理论和实践[J].山东矿业学院学报,1986(3).
    [51]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报(自然科学版),1999,18(4):11-18.
    [52]李加祥,李白英.受承压水威胁的煤层底板“下三带”理论及其应用[J].中州煤炭,1990(5):6-8.
    [53]刘宗才,于红.“下三带”理论与底板突水机理[J].中国煤田地质,1991,3(2):38-41.
    [54]施龙青,韩进.底板突水机理及预测预报[M].中国矿业大学出版社,2004.
    [55]施龙青,韩进.开采煤层底板“四带”划分理论与实践[J].中国矿业大学学报,2005,34(1):16-23.
    [56]魏久传,李白英.承压水上采煤安全性评价[J].煤炭地质与勘探,2000,28(4):57-59.
    [57]陈刚,王琼,杜福荣.煤层开采对底板突水的影响[J].煤矿安全,2005,36(5):34-36.
    [58]翟培合.采场底板破坏及底板水动态监测系统研究[D].硕士学位论文.山东科技大学,2005.
    [59]曹胜根,姚强岭等.承压水体上采煤底板突水危险性分析与治理[J].采矿与安全工程学报,2010,27(3):346-350.
    [60]徐德金,承压水体上岩浆岩底板采动效应的数值分析[J].采矿与安全工程学报,2011,28(1):144-147.
    [61]刘盛东,杨彩,赵立瑰.含水层渗流突变过程地电场响应的物理模拟[J].煤炭学报,2011,36(5),772-777.
    [62]刘盛东,吴荣新,张平松等.三维并行电法勘探技术与矿井水害探查[J].煤炭学报,2009,34(7):927-932.
    [63]张平松,刘盛东,吴荣新等.采煤面覆岩变形与破坏立体电法动态测试[J].岩石力学与工程学报,2009,28(9):1870-1875.
    [64]吴荣新,张平松,刘盛东.双巷网络并行电法探测工作面内薄煤区范围[J].岩石力学与工程学报,2009,28(9):1834-1838.
    [65]刘盛东,王勃,周冠群等.基于地下水渗流中地电场响应的矿井水害预警实验研究[J].岩石力学与工程学报,2009,28(2):267-272.
    [66]刘盛东,张平松.分布式并行智能电极电位差信号采集方法[P].中国专利:200410014020.0,2006-07-26.
    [67]段宏飞,姜振泉,朱术云等.综采薄煤层采动底板变形破坏规律实测分析[J].采矿与安全工程学报,2011,28(3):407-414.
    [68孙建,王连国等.倾斜煤层底板破坏特征的微震监测[J]岩土力学,2011,32(5):1589-1595.
    [69]臧思茂,崔芳鹏,王书强,苏俊辉.团柏煤矿下组煤开采底板突水防治技术与对策[J].煤炭科学技术,2011,39(6):93-96.
    [70]靳德武,刘英锋,冯宏等.煤层底板突水监测预警系统的开发及应用[J].煤炭科学技术,2011,39(11):14-17.
    [71]高召宁,孟祥瑞,赵光明.煤层底板变形与破坏规律直流电阻率CT探测[J].重庆大学学报,2011,34(8):90-96.
    [72]张渊.开采矿压对底板的损伤破坏及其对突水的诱发作用[J].太原理工大学学报,2002,33(3):252-256.
    [73]何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报.2005.24(16):2803-2813.
    [74]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,2005.
    [75]徐芝纶.弹性力学[M].北京:高等教育出版社,2004.
    [76]吴家龙.弹性力学[M].北京:高等教育出版社,2001.
    [77]陈占清等.采动岩体蠕变与渗流耦合动力学[M].北京:科学出版社,2010.
    [78]FENG Mei-mei, MAO Xian-biao, BAI Hai-bo, MIAO Xie-xing. Analysis of water insulating effect of compound water-resisting key strata in deep mining[J]. Journal of China University of Mining & Technology,2007,17(1):663-669.
    [79]Zhang H Q,He Y N,Tang C A,et al.Application of an improved flow-stress-damage model to the criticality assessment of water inrush in a mine:a case study[J].Rock Mechanics and Rock Engineering,2009,42(6):911-930.
    [80]郑少河,朱维申.裂隙岩体渗流损伤祸合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156-159.
    [81]郑少河,姚海林,葛修润.裂隙岩体渗流场与损伤场的祸合分析[J].岩石力学与工程学报,2004,23(9):1413-1418.
    [82]赵延林.裂隙岩体渗流-损伤-断裂耦合模型及其应用[J].岩石力学与工程学报,2008,27(8):1634-1643.
    [83]FLAC3D(Fast Lagrange Analysis of Continua in 3 Dimensions),Version 3.0,User manual, USAr:Itasca Consulting Group,Inc.1997.
    [84]孙书伟等FLAC3D在岩土工程中的应用[M].北京:中国水利水电出版社,2011.
    [85]彭苏萍,王金安.承压水体上安全采煤—对拉工作面开采底板破坏机理与突水预测防治方法[M].北京:煤炭工业出版社,2000.
    [86]陈荣华,王路珍等.数字图像相关法在相似材料模拟试验中的应用[J].实验力学,2007,22(6)605-611.
    [87]Kang Yilan,Zheng Gaofei,Qin Qinghua. Effect of moisture on mechanical behavior of polymer by experiments[J].Key Engineering Materials,2003,25(1-2):7-12.
    [88]Chevalier L,Calloch S.Hild F,MarcoY. Digital image correlation used to analyze the multiaxial behavior of rubberlike materials[J]. European Journal of Mechanics-A/Solids,2001,20(1):169-187.
    [89]Wang Y, Cuitino A M. Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation[J]. International Journal of Solids and structures, 2002,39(13-14):3777-3796.
    [90]Nicolella D P,Nicholls A E,Lankford J,Davy D T. Machine vision photogrammetry:a technique for measurement of micro structural strain in cortical bone[J]. Journal of Biomechanics,2001, 34(1):135-139.
    [91]Zhang D S,Eggletio C D,Arola D D. Evaluating the mechanical behavior of arterial tissue using digital image correlation[J]. Exp Mech,2002,42(1):409-416.
    [92]张平松,胡雄武,吴荣新.岩层变形与破坏电法测试系统研究[J].岩土力学,2012,33(3):952-956.
    [93]张平松,吴基文,刘盛东.煤层采动底板破坏规律动态观测研究[J].石力学与工程学报,2006,25(增刊1):3009-3013.
    [94]张平松,刘盛东,吴荣新.地震波CT技术探测煤层上覆岩层破坏规律[J].岩石力学与工程学报,2004,23(15):2510-2513.
    [95]SHIMA H. Two-dimensional automatic resistivity inversion technique using alpha centers[J]. eophysics,1990,55(6):628-694.
    [96]SASAKI Y.3D resistivity inversion using the finite-element method[J].Geophysics,1994, 59(11):1839-1848.
    [97]LOKE M H.BARKER R D.Practical techniques for 3Dresistivity surveys and data inversion[J]. Geophysical Prospecting,1996,44(3):499-523.
    [98]七维高科有限公司.综合优化软件包1stOpt使用手册[Z].2003.
    [99]钱颂迪.运筹学[M].北京:清华大学出版社,1990.
    [100]徐玖平.运筹学[M].北京:科学出版社,2004.
    [101]郑雨天.岩石力学的弹塑粘性理论基础[M].北京:煤炭工业出版社,1988.
    [102]王祥秋,陈秋南,韩斌.岩巷道流变破坏机理与合理支护时间的确定[J].有色金属,2000,52(4):14-17.
    [103]王力平.混凝土试块流变试验分析研究[J].岩石力学与工程学报,2001,21(06):782-786.
    [104]王立忠,丁利,赵志远,李玲玲.结构性软土应力-应变关系分段特征研究[J].中国土木工程学会第九届土力学及岩土工程学术会议论文集[C].2003,305-318.
    [105]Anandarajah A. On influence of fabric anisotropy on the stress-strain behaviour of clays[J]. Computer and Geotechnics,2000,27(1):1-17.
    [106]陈晓斌,张家生,封志鹏.红砂岩粗粒土流变工程特性试验研究[J].岩石力学与工程学报,2007,26(3):601-607.
    [107]邓荣贵,周德培,张倬元.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6):780-784.
    [108]阎岩,王思敬,王恩志.基于西原模型的变参数蠕变方程[J].岩土力学,2010,31(10):3025-3036.
    [109]XIAO Hong-bin, MIAO Peng, ZHAN Chun-shun.Research on measurement and disciplinarian of vertical swelling force of expansive soils by ameliorative experiments[C]//Proceedings of an International Conference on Geotechnical Engineering. Changsha:[s. n.],2007.
    [110]李术才.复杂应力状态下断续节理岩体断裂损伤机理研究及其应用[J].岩石力学与工程学,1999,18(2):142-146.
    [111]陈卫忠,李术才,邱祥波.断裂损伤耦合模型在围岩稳定性分析中的应用[J].岩土力学,2002,23(2):288-291.
    [112]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791.
    [113]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,25(3):433-447.
    [114]郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156-159.
    [115]郑少河.裂隙岩体渗流场—损伤场耦合理论研究及应用[D].武汉:中国科学院武汉岩土力学研究所,2000.
    [116]赵延林,曹平,汪亦显.裂隙岩体渗流-损伤-断裂耦合模型及其应用[J].岩石力学与工程学报,2008,27(8):1634-1643.
    [117]赵吉坤,张子明,刘仲秋.大理岩破坏过程的三维细观弹塑性损伤模拟研究[J].岩土工程学报,2008,30(9):1309-1315.
    [118]赵吉坤,张子明.三维大理岩弹塑性损伤及细观破坏过程数值模拟[J].岩石力学与工程学报,2008,27(3):487-494.
    [119]刘建新,唐春安,朱万成.煤岩串联组合模型及冲击地压机理研究[J].岩土工程学报,2004,26(2):276-280.
    [120]谢和平,陈忠辉,周宏伟等.基于工程体与地质体相互作用的两体力学模型初探[J].岩石力学与工程学报,2005,24(9):1457-1464.
    [121]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [122]叶东生,屈永利,杜飞虎.煤矿底板岩溶水水害防治的理论与实践[M].北京:地质出版社,2010.
    [123]龙驭球.能量原理新论[M].北京:中国建筑工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700