用户名: 密码: 验证码:
核黄素及核黄素结合蛋白对拟南芥抗病抗逆调控作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核黄素及其衍生物FMN和FAD在植物的生长发育过程中发挥着极其重要的作用。FMN和FAD作为黄素蛋白的辅基在植物的线粒体电子传递,光合作用,脂肪酸以及某些氨基酸等的代谢中发挥着重要的作用。尤其需要强调的是,它们广泛参与调控了植物细胞内活性氧(ROS)以及氧还平衡代谢调控。
     ROS代谢以及氧还平衡调控在植物的生长发育以及抗病抗逆境胁迫中发挥着极其重要的作用。而在植物抵抗非生物胁迫的过程中,早期阶段胁迫诱导的ROS上升起到一种信号分子作用,诱导植物合成更多的ROS清除物质。
     体外喷洒核黄素的水溶液能诱导植物增强对多种病原菌的抗性。体内核黄素含量改变也能导致植物相应地改变对多种病原菌的抗性。这说明核黄素在植物应答病害侵染上有着重要的作用。
     核黄素结合蛋白是一类能与核黄素特异结合的动物蛋白,对于它们的功能特点,在动物体内已经有较深入的研究。然而在植物体内,目前尚未发现能与核黄素特异性结合的蛋白,也未见类似功能基因被克隆的报道。这可能与动物和植物采用了不同的核黄素调控机制有关。
     我们实验室通过转基因技术将中华鳖体内的核黄素结合蛋白基因TsRfBP转入野生型拟南芥Col-0后,得到一系列能表达该结合蛋白的转基因植株。在这个现有的转基因材料的基础上,本文主要对其在抗病抗逆上的功能进行了初步的研究,得到了一些有意义的实验结果。此外,对植物进行核黄素体外喷洒实验,也是对核黄素抗病研究的有益且必要的补充。以下是我们的主要实验结果。
     1.转TsRfBP拟南芥增强对假单胞菌番茄变种DC3000的抗性但降低对大白菜软腐病的抗性
     在这一工作中,我们首先利用免疫胶体金和Northern杂交技术进一步验证了核黄素结合蛋白(RfbP)只在转基因植株K11(相对于野生型Col-0和空白对照RfbPi)中进行表达。在其应答两种不同营养类型病原物侵染上的初步研究中发现,与野生型(以及空白对照RfbPi)相比,开花提前(2-3周)而相对更成熟的K11植株对活体营养菌如Pseudomonas syringae subsp tomato DC3000的抗性增强但对死体营养菌如大白菜软腐病Pectobactor carotovora sp carotovora的抗性则削弱,而且这种趋势随年龄增长而有进一步增强(DC3000)或削弱(Pcc)的趋势。在进一步的研究中发现,K11植株有早衰趋势,它的叶片细胞更容易死亡,能积累更多的的H202,以及更严重的氧化损伤。在讨论中,我们发现用“年龄相关的抗性(Age-Related Resistance, ARR)”理论(即成熟植株或叶片比年幼植株或叶片抗病力强或弱)似乎能较好地解释这一现象。这主要是基于K11植株(与Co1-0对比)成熟更快和活性氧较高的特点而提出这个假说的。当然,该假说需要进一步的实验论证。
     2.转TsRfBP拟南芥既能促进生长又具有显著增强的干旱适应能力
     在这一工作中,我们主要比较了转基因植株K11和Co1-0的干旱适应能力并发现前者抗旱能力显著增强。考虑到核黄素代谢以及植物抗旱都与抗氧化应答有密切关系,所以这里主要从这个角度对其进行了比较研究。发现在正常条件下,K11虽然拥有较高的抗氧化酶(SOD,CAT,APX和GR酶)活力以及较高含量的抗氧化物质(抗坏血酸和谷胱甘肽)积累,然而其ROS积累较多,氧化损伤(离子渗漏和脂类氧化损伤)也更严重,其氧还平衡值(ASC/DHA和GSH/GSSG)也更低。然而有趣的是,在干旱胁迫处理下,与Co1-0相比我们发现其氧化损伤较轻,相应地其抗氧化能力下降较慢,其氧化平衡状态能保持较稳定的水平,从而表现出更强的干旱抗性或适应能力。然而K11比Col-0开花提前,成熟早,生长速度快。这似乎与通常所见的植物“抗旱-生长矛盾”现象(即抗旱往往生长较慢,生长快的往往抗旱较差)相悖。我们在讨论中提出“胁迫逃逸(stress escape)"的新假说(类似干旱逃逸)似乎能较好地解释黄素(即FMN和FAD)相对不足情况下,植物可能为了逃避这种因核黄素结合蛋白表达而导致的核黄素不足以及可能由此引发的轻度氧胁迫而加快植物生长并提前开花,从而避免因核黄素的进一步不足而可能导致的更严重后果(如植物死亡)出现。这一假说若能成立,将为指导今后培养优质抗旱农作物提供新思路。即只要将植物引入一种类似干旱逃逸的“胁迫逃逸”状态中,则“抗旱与促生长”这一对矛盾则有可能会同时得到解决。
     3.体外喷洒核黄素能降低拟南芥对盐害等非生物胁迫的抗性
     在这一工作中,我们的目的除了想了解体外施加核黄素能否诱导植物增强对非生胁迫的抗性外,还想了解在增强抗病的同时是否会有其它负面影响(如削弱对非生物胁迫的抗性)?这也是对其广谱抗病研究的一个补充。用不同浓度(抗病处理所用浓度)的核黄素水溶液预处理拟南芥7天后,发现作为能诱导植物增强对多种病原菌抗性的核黄素,不但不能同时诱导对盐害等非生物的抗性,反而增强了处理植株对这些胁迫的敏感性。这表现在处理植物氧化损伤加剧,抗氧化酶活力下降,氧还平衡值下降,H2O2积累上升。在进一步的实验中,我们通过对经核黄素预处理7天的植物叶片的抗氧化酶相关基因(MSD1,CAT1,APX1,GR1,GST1)的表达进行分子检测后发现,这些基因的表达都不同程度地下降了。在讨论中,我们认为核黄素介导的ROS(主要是单线态氧)可能是主要因素。文献报道中认为的单线态氧与H2o2/O2-在调控基因表达相拮抗的(后者能诱导植物增强对多种非生物胁迫抗性),这个结论与我们的观察和推测是一致的。这可能暗示着核黄素在应答非生物胁迫上可能主要通过其光敏产物之一的单线态氧发挥作用的(注:核黄素的其它光解产物无此功能),当然这一推测有待进一步的实验证据支持。
     综上所述,我们的研究工作显示外源的核黄素结合蛋白基因TsRfBP在拟南芥Col-0中表达后,可以通过影响植物体内核黄素及其衍生物FMN和FAD的含量,从而对其生长发育产生深刻的影响,并通过影响细胞内的氧化还原状态的调控和活性氧的代谢而进一步导致其对生物胁迫(此处主要是两类不同营养类型的病原细菌)和非生物胁迫(此处为干旱胁迫)的应答发生了显著的改变。而其中的促生长与抗旱性状的同时获得无疑为我们培育优质的抗旱农作物新品种提供了全新的思路和策略。而体外喷洒核黄素虽然能诱导植物增强增强对多种病原菌的抗性(前人报道),然而其造成的抗盐抗旱能力削弱的副作用也必需引起注意。此外,核黄素介导的活性氧(主要是单线态氧)可能是其在生物胁迫和非生物胁迫应答调控中的关键因素,而其有别于H202等活性氧的功能特点,为我们进一步研究活性氧作为信号分子参与调控植物对病害和逆境胁迫应答的机理解析提供了新的思路。
Riboflavin is the precursor of FMN and FAD, which play key roles in plant development and growth. They are required for many metabolism reactions such as mitochondrial electron transport, photosynthesis, fatty acid degradation and redox regulation. As for the redox homeostasis modulation, FAD is an indispensable component of many ROS-scavenging enzymes, such as glutathione reductase, monodehydrogen ascorbate reductase, and NADPH-dependent thiol reductase. Interestingly, FAD or FMN is also required for many ROS-generating enzymes, such as the NADPH-oxidase, glycolate oxidase and certain amine oxidases. In addition, riboflavin can generate singlet oxygen in the presence of light in vitro or in vivo.
     Reactive oxygen species (ROS) is an unavoidable toxic by-product of plant metabolism under favorable or adverse conditions. These ROS, such as superoxide anion, hydrogen peroxide, hydroxyl radical and singlet oxygen, also can function as signaling molecules in plant defense against pathogen attack and abiotic stress challenge. For example, H2O2is required for the hypersensitive response (HR) in pathogen resistance. In addition, the early increase of ROS content also plays an "alarm" role in plant for response the abiotic stress challenge.
     In vitro experiment indicates that riboflavin is an important "elicitor" in plant pathogen resistance. In addition, the in vivo experiment (up-or down-regulate endogenous riboflavin content in plant) also shows riboflavin has a close correlation with pathogen resistance. In our experiment, a riboflavin-binding protein encoding gene TsRfBP was introduced into Arabidopsis thaliana Col-0and acquired transgenic plant with low free riboflavin availability. Riboflavin-binding protein was expressed in animal cells and there is no report of similar gene or protein in plant species.
     Recently, riboflavin was applied on plant and acquired significant enhancement of pathogen defense capacity. For example, foliar spraying of riboflavin solution can confer Arabidopsis enhanced both biotrophic and necrotrophic pathogen resistance by trigger a noval signaling pathway. As for this broad-spectrum pathogen resistance, a "priming" hypothesis was proposed by our laboratory. Thus, we want to kow whether foliar application of riboflavin can also trigger abiotic stress tolerance.
     1. Ectopic expression of riboflavin-binding protein gene TsRfBP incuces Pst DC3000resistance but impairs Pcc in transgenic Arabidopsis thaliana
     Here, the TsRfBP was further identified in the transgenic plant K11with Northern blot and immunolocalization techniques. Then, we compared the pathogen resistance between the Col-0and the transgenic plant K11(carried riboflavin-binding protein) in two growth time points (20-day and40-day old). In compared with the Col-0, enhanced Pst DC3000(Pseudomonas syringae pv tomato DC3000, a biotrophic or facultative pathogen) and impaired Pcc (Pectobacter carotovora subsp. carotovora, a necrotrophic pathogen) resistance were observed in K11plant. Higher content of H2O2accumulation and severe cell death were monitored in K11over Col-0in the vegetative growth stages. In addition, accelerated senescence (or more matured growth state) was observed in K11over Col-0under our growth conditions. As for this interesting phenomenon, an "ARR-like" or Age-Related Response like mechanism was proposed to illustrate these two different trophic pathogen response, although more detailed experimental evidence was required to support this hypothesis.
     2. Ectopic expression of riboflavin-binding protein gene TsRfBP paradoxically enhances both plant growth and drought tolerance in transgenic Arabidopsis thaliana
     In the second chapter, we compared the antioxidant response of the Col-0and the transgenic plant K11under drought stress exposure. Under favorable conditions, higher accumulation of H2O2and TBARS, lower values of redox ratio were observed in K11over Col-0. However, enhanced drought tolerance was monitored in the K11over the Col-0coupled with higher accumulation of soluble sugar and free proline content. In consistent with these, lower decrease of antioxidant enzyme (SOD, CAT, APX and GR) activities and higher redox homeostasis were measured in K11over Col-0under stress exposure. In addition, faster growth rate, accelerated flowering and enhanced senescence are the basic features of "drought escape" strategy adopted by certain plant under gradual enhancement of drought stress. Here, we proposed a "stress escape" concept to illustrate the low riboflavin-mediated "both plant growth and drought tolerance enhancement" phenomenon observed in the K11plant over its Col-0counterparts. This work may help us to improve crop plant with higher growth rate and greater drought tolerance.
     3. Exogenous riboflavin fails to induce salt stress tolerance in Arabidopsis thaliana
     In the chapter Ⅲ, Arabidopsis thaliana were pretreated with different concentration (0,20μM,200μM and2mM) of riboflavin solution and their abiotic stress tolerance (such as salt, drought, and shade) were compared in this experiment. Reduced salt and drought tolerance were observed in the riboflavin-pretreated plants compared with the control (0μM riboflavin treated group). In line with these, enhanced oxidative damage, decreased antioxidant enzyme activities and redox ratio values were measured in the riboflavin-pretreated plant than these in the control Arabidopsis under salt conditions. Expression level of stress-related genes (MSD1, CAT1, APX1et al.) was down-regulated in the riboflavin-treated leaves over the control. In the discussion, we considered the riboflavin-mediated ROS production play a key role in the impaired abiotic stress tolerance observed in this experiment. In addition, it suggests that this abiotic stress tolerance impairement should be considered in the pathogen resistance with exogenous riboflavin application.
     In conclusion, riboflavin-binding protein mediated pathogen response and drought tolerance give us a noval insight of the roles of riboflavin in environmental stress response of plant. The exogenous riboflavin fails to induce abiotic stress tolerance indicates the riboflavin-mediated ROS (singlet oxygen) should play a different role in environmental stress challenge (including pathogen and salt stress et al. resistance).
引文
1.李忠光,龚明(2005)植物中超氧阴离子自由基测定方法的改进。云南植物研究27:211-216
    2.李忠光, 宋玉泉,龚明(2005)二甲酚橙法用于测定植物组织中的过氧化氢。云南师范大学学报27:50-54
    3.孙枫(2009)核黄素受体蛋白(RIR)与RIR类似蛋白(AtRIR)以及转录因子RAP2.6L在拟南芥防卫反应中的功能研究。博士学位论文,南京农业大学
    4. Adam A, Farkas T, Somlyai G, Hevesi M, Kiraly Z (1989) Consequence of O2 generation during a bacterially induced hypersensitive reaction in tobacco:deterioration of membrane lipids. Physiol Mol Plant Pathol 34:13-26
    5. Aguilar I, Alamillo JM, Garcia-Olmedo F, Rodriguez-Palenzuela P (2002) Natural variability in the Arabidopsis response to infection with Erwinia carotovora subsp. carotovora. Planta 215:205-209
    6. Andi S, Taguchi F, Toyoda K, Shiraishi T, Ichinose Y (2001). Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol 42:446-449
    7. Aono M, Saji H, Fujiyama K, Sugita M, Kondo N, Tanaka K (1995) Decrease in activity of glutathione reductase enhances paraquat sensitivity in transgenic Nicotiana tabacum. Plant Physiol 107:645-648
    8. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391-396
    9. Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Ad 27:84-93
    10. Attolico AD, De Tullio MC (2006) Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana (L.) Heynh. Plant Physiol Biochem 44:462-466
    11. Azami-Sardooei Z, Franca SC, De Vleesschauwer D, Hofte M (2010) Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response. Physiol Mol Plant Pathol 75:22-29
    12. Baier M, Dietz K (2005) Chloroplasts as source and target of cellular redox regulation:a discussion on chloroplast redox signals in the context of plant physiology. J Exp Bot 56:1449-1462
    13. Barna B, Fodor J, Harrach BD, Pogany M, Kiraly Z (2012) The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol Biochem DOI:org/10.1016/j.plaphy.2012.01.014
    14. Barna B, Gyorgyi B (1992) Resistance of young versus old tobacco leaves to necrotrophs, fusaric acid, cell wall-degrading enzymes and autolysis of membrane lipids. Physiol Mol Plant Pathol 40:247-257
    15. Bartosic M, Ostatna V, Palecek E (2009) Electrochemistry of riboflavin-binding protein and its interaction with riboflavin. Bioelectrochemistry 76:70-75
    16. Bates LS, Waldren SP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207
    17. Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu J, Fernie AR, Sweetlove LJ (2007) The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol 143:312-325
    18. Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642-1650
    19. Beckers G, Conrath U (2007) Priming for stress resistance:from lab to the field. Curr Opin Plant Biol 10:425-431
    20. Bertoni G, Mill D (1987) A simple method to monitor growth of bacterial population in leaf tissue. Phytopathol 77:832-835
    21. Bestwick CS, Brown IR, Bennett MHR, Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9:209-221
    22. Beutler E (1969) Effect of flavin compounds on glutathione reductase activity:in vitro and in vivo studies. J Clin Invest 48:1957-1966
    23. Blankenhorn G (1978) Riboflavin binding in egg-white flavoprotein:the role of tryptophan and tyrosine. Eur J Biochem 82:155-160
    24. Blum A (2005) Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159-1168
    25. Boretsky YR, Protchenko OV, Prokopiv TM, Mukalov IO, Fedorovych DV, Sibirny AA (2007) Mutations and environmental factors affecting regulation of riboflavin synthesis and iron assimilation also cause oxidative stress in the yeast Pichia guilliermondii. J Basic Microbiol 47: 371-377
    26. Bournonville CFG, Diaz-Ricci JC (2011) Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochem Anal 22:268-271
    27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254
    28. Briggs WR, Huala E (1999) Blue-light photoreceptors in higher plants. Ann Rev Cell Dev Biol 15:33-62
    29. Carter WO, Narayanan PK, Robinson JP (1994) Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leuk Biol 55:253-258
    30. Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H, Montagu MV, Inze D, Camp WV (1998) Defense activation and enhanced patho3gen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA 95:5818-5823
    31. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Func Plant Biol 30:239-264
    32. Clark MS (1997) Plant Molecular Biology, A Laboratory Manual. Springer, Berlin.
    33. Coley PD, Bryant JP, Chapin Ⅲ FS (1985) Resource availability and plant antiherbivore defense. Science 230:895-899
    34. Commoner B, Lippincott BB (1958) Light-induced free radicals in FMN and flavoprotein enzymes. Proc Natl Acad Sci USA 44:1110-1116
    35. Conklin PL, Last RL (1995) Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol 109:203-212
    36. Conrath U, Pieterse C, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210-216
    37. Conrath U, Chen Z, Riciglano JR, Klessig DF (1995) Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc Natl Acad Sci USA 92:7143-7147
    38. Couee I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449-459
    39. Dawson KR, Unklesbay NF, Hedrick HB (1988) HPLC determination of riboflavin, niacin, and thiamin in beef, pork, and lamb after altemate heat-processing methods. J Agric Food Chem 36: 1176-1179
    40. de Carvalho MHC (2008) Drought stress and reactive oxygen species. Plant Signal Behav 3: 156-165
    41. De Gara L, de Pinto MC, Tommasi F (2003) The antioxidant system vis-a-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol Biochem 41:863-870
    42. Deng B, Deng S, Sun F, Zhang S, Dong H 2011. Down-regulation of free riboflavin content induces hydrogen peroxide and a pathogen defense in Arabidopsis. Plant Mol Biol 77:185-201
    43. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coordin Chem Rev 233-234:351-371
    44. Dhindsa RS, Dhindsa PP, Thorpe TA (1980) Leaf senescence correlated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93-101
    45. Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69:577-592
    46. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085-1097
    47. Dong H, Beer SV (2000) Riboflvin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathol 90:801-811
    48. Dong H, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H (2005) The ABI2-dependent abscisic scid signaling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221: 313-327
    49. Eichler M, Lavi R, Shainberg A, Lubart R (2005) Flavins are source of visible-light-induced free radical formation in cells. Las Surg Med 37:314-319
    50. Escobar JA, Rubio MA, Lissi EA (1996) SOD and catalase inactivation by singlet oxygen and peroxyl radicals. Free Rad Biol Med 20:285-290
    51. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress:effects, mechanisms and management. Agron Sustain Dev 29:185-212
    52. Feierabend J, Engel S (1986) Photoinactivation of catalase in vitro and in leaves. Arch Biochem Biophys 251:567-576
    53. Fischer M, Bacher A (2006) Biosynthesis of vitamin B2 in plants. Physiol Plant 126:304-318
    54. Flors C, Nonell S (2006) Light and singlet oxygen in plant defense against pathogens:phototoxic phenalone phytoalexins. Acc Chem Res 39:293-300
    55. Fobert P, Despres C (2005) Redox control of systemic acquired resistance. Curr Opin Plant Biol 8: 378-382
    56. Foyer C, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863-872
    57. Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355-364
    58. Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in Poplar trees. Plant Physiol 109:1047-1057
    59. Franks SJ (2011) Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol 190:249-257
    60. Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571-580
    61. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses:a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436-442
    62. Galston AW, Baker RS (1949) Inactivation of enzymes by visible light in the presence of riboflavin. Science 109:485-486
    63. Gay C, Collins J, Gebicki J (1999) Hydroperoxide assay with the ferric-xylenol orange complex. Anal Biochem 273:149-155
    64. Gechev T, Gadjev I, Van Breusegem F, Inze D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59:708-714
    65. Giancaspero TA, Locato V, de Pinto MC, De Gara L, Barile M (2009) The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondira and maintenance of cellular redox status. FEBS J 276:219-231
    66. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909-930
    67. Glyan'ko AK, Ischenko AA (2010) Structural and functional characteristics of plant NADPH oxidase:a review. Appl Biochem Microbiol 46:463-471
    68. Goellner K, Conrath U (2008) Priming:it's all the world to induced disease resistance. Eur J Plant Pathol 121:233-242
    69. Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751-757
    70. Guevara I, Zak Z (1993) Fluorescence quenching in riboflavin-binding protein and its complex with riboflavin. J Protein Chem 12:179-185
    71. Hakala-Yatkin M, Tyystjarvi E (2011) Inhibition of photosystem Ⅱ by the singlet oxygen sensor compounds TEMP and TEMPD. Biochim Biophys Acta 1807:243-250
    72. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312-322
    73. Hamajima S, Ono S (1995) Sequence of a cDNA encoding turtle riboflavin-binding protein:a comparison with avian riboflavin-binding protein. Gene 164:279-282
    74. Hamdia MA, Shaddad MAK (2010) Salt tolerance of crop plants. J Stress Physiol Biochem 6: 64-90
    75. Hamilton JG, Zangerl AR, Delucia EH, Berenbaum MR (2001) The carbon-nutrient balance hypothesis:its rise and fall. Ecol Lett 4:86-95
    76. Harman D (1956) Aging:a theory based on free radical and radiation chemistry. J Gerontol 11: 298-300
    77. He Y, Tang R, Hao Y, Stevens RD, Cook CW, Ahn SM, Jiang L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei Z (2004) Nitric Oxide Represses the Arabidopsis Floral Transition. Science 305:1968-1971
    78. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:180-198
    79. Hideg E (2008) Photosynthesis inhibition by exogenously generated singlet oxygen-a note of caution. Acta Biol Szeged 52:85-88
    80. Hodges GM, Smolira MA, Livingston DC (1984) Scanning electron microscope immuno-cytochemistry in practice. In:Polak J, Vaendell I (eds) Immunolabelling for electron microscopy. Elsevier, Amsterdam, pp 189-233
    81. Holgate CS, Jackson P, Cowen PN, Bird CC (1983) Immunogold-silver staining:new method of immunostaining with enhanced sensitivity. J Histochem Cytochem 31:938-944
    82. Horibata S, Hasegawa S, Kudo G (2007) Cost of reproduction in a spring ephemeral species, Adonis ramose (Ranunculaceae):carbon budget for seed production. Ann Bot 100:565-571
    83. Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385-395
    84. Huang R, Choe E, Min DB (2004) Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen. J Food Sci 69:726-732
    85. Huang R, Kim HJ, Min DB (2006) Photosensitizing Effect of Riboflavin, Lumiflavin, and Lumichrome on the Generation of Volatiles in Soy Milk. J Agric Food Chem 54:2359-2364
    86. Hughes NM, Reinhardt K, Field TS, Gerardi AR, Smith WK (2010) Association between winter anthocyanin production and drought stress in angiosperm evergreen species. J Exp Bot 61:1699-1709
    87. Ishibashi Y, Yamaguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng S (2011) Hydrogen peroxide spraying alleviates drought stress in soybean plants. J Plant Physiol 168:1562-1567
    88. Ivey CT, Carr DE (2011) Tests for the joint evolution of mating system and drought escape in Mimulus. Ann Bot 109:583-598
    89. Jakab G, Ton J, Flors V, Zimmerli L, Metraux J, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139: 267-274
    90. Kauss H, Jeblick W (1995) Pretreatment of Parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiol 108:1171-1178
    91. Kim II S, Shin SY, Kim YS, Kim HY, Yoon HS (2009) Expression of a glutathione reductase from Brassica repa subsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli. Mol Cells 28:479-487
    92. Kirkensgaard KQ Hagglund P, Finnie C, Svensson B, Henriksen A (2009) Structure of Hordeum vulgare NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism. Biological Crystallography 65:932-941
    93. Kliebenstein DJ, Rowe HC (2008) Ecological costs of biotrophic versus necrotrophic pathogen resistance, the hypersensitive response and signal transduction. Plant Sci 174:551-556
    94. Kolar J, Senkova J (2008) Reduction of mineral nutrient availability accelerates flowering of Arabidopsis thaliana. J Plant Physiol 165:1601-1609
    95. Kozik A (1982) Disulfide bonds in egg-white riboflavin-binding protein:chemical reduction studies. Eur J Biochem 121:395-400
    96. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325-331
    97. Kus JV, Zaton K, Sarkar R, Cameron RK (2002) Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell 14:479-490
    98. Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K (2007) Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:672-677
    99. Latha M, Bangaru Y, Karande AA (2008) Biochemical characterization of recombinant chicken riboflavin carrier protein. Mol Cell Biochem 308:1-7
    100. Lee M-H, Tzeng DD, Hsu F-S (2006) Photodynamic effects of methione-riboflavin mixture on antioxidant proteins. Plant Pathol Bull 15:17-24
    101. Leon J, Lawton MA, Raskin I (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol 108:1673-1678
    102. Levitt J (1972) "Responses of plants to environmental stresses." (Academic Press:New York)
    103. Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W (2011) Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci 180: 672-678
    104. Lichtenthaler HK (1987) Chlorophyll and carotenoids:pigments of photosynthetic biomembranes. Meth Enzymol 148:349-382
    105. Liedias F, Rangel P, Hansberg W (1998) Oxidation of catalase by singlet oxygen. J Biol Chem 273: 10630-10637
    106. Lindqvist Y, Branden CI (1985) Structure of glycolate oxidase from spinach. Proc Natl Acad Sci USA 82:6855-6859
    107. Liu F, Wei F, Wang L, Liu H, Zhu X, Liang Y (2010) Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol Mol Plant Pathol 74:330-336
    108. Logan BA, Monteiro G, Kornyeyev D, Payton P, Allen RD, Holaday AS (2003) Transgenic overexproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (malvaceae), from photoinhibition during growth under chilling conditions. Am J Bot 90: 1400-1403
    109. Lopez MA, Bannenberg G, Castresana C (2008) Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr Opin Plant Biol 11:420-427
    110. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781-1787
    111. Lu J, Tan D, Baskin M, Baskin CC (2010) Fruit and seed heteromorphism in the cold desert annual ephemeral Diptychocarpus strictus (Brassicaceae) and possible adaptive significance. Ann Bot 105: 999-1014
    112. Lurquin P (2002) High tech harvest:Understanding genetically modified food plants. Westview Press Cambridge, MA, USA.218 pp
    113. Mandels GR (1950) The photoinactivation of enzymes by riboflavin. Plant Physiol 25:763-766
    114. Manthey K.C, Rodrigue-Melendez R, Hoi JT, Zempleni J (2006) Riboflavin deficiency causes protein and DNA damage in HepG2 cells, triggering arrest in G1 phase of the cell cycle. J Nutr Biochem 17:250-256
    115. Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci USA 106:9109-9114
    116. Massey V, Strickland S, Mayhew SG, Howell LG, Engel PC, Matthews RG, Schuman M, Sullivan PA (1969) The production of superoxide anion radicals in the reaction of reduced flavins and flavinproteins with molecular oxygen. Biochem Biophys Res Comm 36:891-897
    117. Matiru VN, Dakora FD (2005) The rhizosphere signal molecule lumichrome alters seedling development in both legumes and cereals. New Phytol 166:439-444
    118. Melchiorre M, Robert G, Trippi V, Racca R, Lascano HR (2009) Superoxide dismutase and glutathione reductase overexpression in wheat protoplast:photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regul 57:57-68
    119. Meyre D, Leonardi A, Brisson G, Vartanian N (2001) Drought-adaptive mechanisms involved in the escape/tolerance stratagies of Arabidopsis Landsberg erecta and Columbia ecotypes and their F1 reciprocal progeny. J Plant Physiol 158:1145-1152
    120. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405-410
    121. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11: 15-19
    122. Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490-498
    123. Miyake CM, Shinzaki Y, Nishioka M, Horiguchi S, Tomizawa K (2006) Photoinactivation of ascorbate peroxidase in isolated tobacco chloroplasts:Galdieria partita APX maintains the electron flux through the water-water cycle in transplastomic tobacco plants. Plant Cell Physiol 2:200-210
    124. Monaco (1997) Crystal structure of chicken riboflavin-binding protein. EMBO J 16:1475-1483
    125. Mori T, Sakurai M (1995) Effects of riboflavin and increased sucrose on anthocyanin production in suspended strawberry cell cultures. Plant Sci 110:147-153
    126. Mori T, Sakurai M (1996) Riboflavin affects anthocyanin synthesis in nitrogen culture using strawberry suspended cells. J Food Sci 61:698-702
    127. Mou Z, Fan WH, Dong XN (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935-944
    128. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651-681
    129. Mutty SD, Hossenkhan NT (2008) Age-related resistance in commercial varieties of Solanum tuberosum to the late blight pathogen Phytophthora infestans. Plant Pathol J 7:168-173
    130. Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291-299
    131.Natraj U, George S, Kadam PA (1988) Isolation and partial characterization of human riboflavin carrier protein and the estimation of this protein during human pregnancy. J Reprod Immunol 13: 1-16
    132. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5: 388-395
    133.Neuenschwander U, Vernooij B, Friedrich L, Uknes S, Kessmann H, Ryals J (1995) Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J 8:227-233
    134. Niinemets U (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants:past stress history, stress interactions, tolerance and acclimation. For Ecol Manage 260:1623-1639
    135. Noctor G, Foyer CH (1998) Ascorbate and glutathione:keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249-279
    136. Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181-194
    137. Ogawa K, Tasaka Y, Mino M, Tanaka Y, Iwabuchi M (2001) Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol 42:524-530
    138. op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320-2332
    139. Ouyang M, Ma J, Zou M, Guo J, Wang L, Lu C, Zhang L (2010) The photosensitive phsl mutant is impaired in the riboflavin biogenesis pathway. J Plant Physiol 167:1466-1476
    140. Panavas T, Rubinstein B (1998) Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Sci 133:125-138
    141. Phillips DA, Joseph CM, Yang G-P, Martinez-Romero E, Sanbom JR, Volpin H (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Natl Acad Sci USA 96:12275-12280
    142. Pierik R, de Wit M, Voesenek LACJ (2011) Growth-mediated stress escape:convergence of signal transduction pathways activated upon exposure to two different environmental stresses. New Phytol 189:122-134
    143. Pieterse C MJ, Van Loon LC (2004) NPR1:the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456-464
    144. Pilon-Smits EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea:effects on cadmium accumulation and tolerance. Physiol Plant 110:455-460
    145. Plazek A, Dubert F, Janowiak F, Krepski T, Tatrzanska M (2011) Plant age and in vitro or in vivo propagation considerably affect cold tolerance of Miscanthus x giganteus. Eur J Agron 34:163-171
    146. Polidoros AN, Scandalios JG (1997) Response of the maize catalases to light. Free Rad Biol Med 23:497-504
    147. Porter JR (2005) Rising temperatures are likely to reduce crop yields. Nature 436:174.
    148. Pouteau S, Albertini C (2009) The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. J Exp Bot 60:3367-3377
    149. Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765-771
    150. Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiol 115:137-149
    151.Redondo FJ, de la Pena TC, Morcillo CN, Lucas MM, Pueyo J (2009) Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules. Plant Physiol 149:1166-1178
    152. Rhee SG, Chang T-S, Jeong W, Kang D (2010) Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells 29:539-549
    153. Riera M, Valon C, Fenzi F, Giraudat J, Leung J (2005) The genetics of adaptive responses to drought stress:abscisic acid-dependent and abscisic acid-independent signalling components. Physiol Plant 123:111-119
    154. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631-19636
    155. Robert-Seilaniantz A, Navarro L, Bari R, Jones J DG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372-379
    156. Roje S (2007) Vitamin B biosynthesis in plants. Phytochemistry 68:1904-1921
    157. Ruane PH, Edrich R, Gampp D, Kell SD, Leonard RL, Goodrich RP (2004) Photochemical inactivation of selected viruses and bacteria in plantlet concent rates using riboflavin and light. Transfusion 44:877-885
    158. Rusterucci C, Zhao Z, Haines K, Mellersh D, Neumann M, Cameron RK (2005) Age-related resistance to Pseudomonas syringae pv. Tomato is associated with the transition to flowering in Arabidopsis and is effective against Peronospora parasitica. Physiol Mol Plant Pathol 66:222-231
    159. Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidase. Plant Physiol 141:336-340
    160. Saikia R, Yadav M, Varghese S, Singh BP, Gogoi DK, Kumar R, Arora DK (2006) Role of riboflavin in induced resistance against Fusarium wilt and charcoal rot disease of chickpea. Plant Pathol J 22:339-347
    161. Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897-904
    162. Sandoval FJ, Zhang Y, Roje S (2008) Flavin nucleotide metabolism in plants:monofunctional enzymes synthesize FAD in plastids. J Biol Chem 283:30890-30900
    163. Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56:1481-1489
    164. Sebela M, Radova A, Angelini R, Tavladoraki P, Frebort I, Pec P (2001) FAD-containing polyamine oxidase:a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci 160: 197-207
    165. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 25:192-205
    166. Serrato AJ, Perez-Ruiz JM, Spinola MC, Cejudo FJ (2004) A noval NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279:43821-43827
    167. Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8-14
    168. Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R (2010) Over-expression of the CBF2 transcriptional activator in arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61:261-273
    169. Singh KB, Foley RC, Onate-Sanchez (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430-436
    170. Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA 99:11640-11645
    171. Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258-260
    172. Snyrychova I, Ayaydin F, Hideg E (2009) Detecting hydrogen peroxide in leaves in vivo-a comparison of methods. Physiol Plant 135:1-18
    173. Sooryanarayana K, Sarkar S, Adiga PR, Visweswariah SS (1998) Identification and characterization of receptors for riboflavin carrier protein in the chicken oocyte. Role of the phosphopeptide in mediating receptor interaction. Biochim Biophys Acta 1382:230-242
    174. Suzuki N, Koussevitzky S, Mittler R, Mittler G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259-270
    175.Taheri P, Tarighi S (2010) Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J Plant Physiol 167:201-208
    176. Taheri P, Tarighi (2011) A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani. J Plant Physiol 168:1114-1122
    177. Tanou G, Molassiotis A, Diamantidis G (2009) Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. J Plant Physiol 166:1904-1913
    178. Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955-1962
    179. Thomma B PHJ, Penninckx I AMA, Broekaert WF, Cammue B PA (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63-68
    180. Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187-1194
    181. Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271-1281
    182. Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310-317
    183. Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogen. Plant Physiol 141:373-378
    184. Toth IK, Birch P RJ (2005) Rotting softly and stealthily. Curr Opin Plant Biol 8:424-429
    185. Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960-968
    186. Umezawa T, Shimizu K, Kato M, Ueda T (2000) Enhancement of salt tolerance in soybean with NaCl pretreatment. Physiol Plant 110:59-63
    187. van Kan JAL (2006) Licensed to kill:the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247-253
    188. Vellosillo T, Vicente J, Kulasekaran S, Hamberg M, Castresana (2010) Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogen. Plant Physiol 154:444-448
    189. Vincent G (2006) Leaf life span plasticity in tropical seedlings grown under contrasting light regimes. Ann Bot 97:245-255
    190. Vorwieger A, Gryczka C, Czihal A, Douchkov D, Tiedemann J, Mock HP, Jakoby M, Weisshaar B, Saalbach I, Baumlein H (2007) Iron assimilation and transcription factor controlled synthesis of riboflavin in plants. Planta 226:147-158
    191. Vranova E, Inze D, Breusegem FV (2002) Signal transduction during oxidative stress. J Exp Bot 53: 1227-1236
    192. Wada KC, Takeno K (2010) Stress-induced flowering. Plant Signal Behav 5:944-947
    193. Wahid A, Perveen M, Gelani S, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283-294
    194. Wasylewski M (2000) Binding study of riboflavin-binding protein with riboflavin and its analogues by differential scanning calorimetry. J Protein Chem 19:523-528
    195. Woo HR, Goh C, Park J, de la Serve BT, Kim J, Park Y, Nam HG (2002) Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gene.31: 331-340
    196. Woo HR, Kim JH, Nam HG, Lim PO (2004) The delayed leaf senescence mutants of Arabidopsis, orel, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45:923-932
    197. Wormuth D, Heiber I, Shaikali J, Kandlbinder A, Baier M, Dietz K-J (2007) Redox regulation and antioxidative defense in Arabidopsis leaves viewed from a systems biology perspective. J Biotechnol 129:229-248
    198. Wu T, Guo A, Zhao Y, Wang X, Wang Y, Zhao D, Li X, Ren H, Dong H (2010) Ectopic expression of the rice lumazine synthase gene contributes to defense responses in transgenic tobacco. Phytopathol 100:573-581
    199. Xiao S, Dai L, Liu F, Wang Z, Peng W, Xie D (2004) COS1:an Arabidopsis coronathine insensitive1 suppressor essential for regulation of jasmonic-mediated plant defense and senescence. Plant Cell 16:1132-1142
    200. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165-S183
    201. Xu FJ, Jin CW, Liu WJ, Zhang YS, Lin XY (2011) Pretreatment with H2O2 alleviates aluminum-induced oxidative stress in wheat seedlings. J Integr Plant Biol 53:44-53
    202. Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Over-expression of the Arabidopsis 14-3-3 protein GF14 in cotton leads to a "stay-green" phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007-1014
    203. Ye Z, Rodriguez R, Tran A, Hoang H, de los Santos D, Brown S, Vellanoweth RL (2000) The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Sci 158:115-127
    204. Yoon HS, Lee IA, Lee H, Lee B, Jo J (2005) Overexpressin of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli. Biochem Biophys Res Commun 326:618-623
    205. Yu CW, Murphy TM, Sung WW, Lin CH (2002) H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean. Func Plant Biol 29:1081-1087
    206. Zeier J (2005) Age-dependent variations of local and systemic defense responses in Arabidopsis leaves towards an avirulent strain of Pseudomonas syringae. Physiol Mol Plant Pathol 66:30-39
    207. Zhang J, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedling. New Phytol 132:361-373
    208. Zhang S, Yang X, Sun M, Sun F, Deng S, Dong H (2009) Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J Integr Plant Biol 51:167-174
    209. Zheng DB, Lim HM, Pene JJ, White HB (1988) Chicken riboflavin-binding protein cDNA sequence and homology with milk folate-binding protein. J Biol Chem 263:11126-11129
    210. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700