用户名: 密码: 验证码:
小菜蛾对多杀霉素和氯虫苯甲酰胺抗性的特征及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小菜蛾Plutella xylostella (Lepidoptera:Yponomeutidae)属于鳞翅目菜蛾科,是世界范围内的一种重要害虫,每年造成的经济损失达40~50亿美元。小菜蛾寄主植物种类达40多种,主要为害十字花科蔬菜。由于生活周期短、繁殖能力强、世代重叠严重及田间不合理用药,使小菜蛾几乎对所有的防控用药(至少涉及84种杀虫剂)产生了不同程度的抗性。小菜蛾抗药性问题给十字花科蔬菜生产带来严重威胁和巨大挑战,抗性治理形势严峻。
     多杀霉素是一种作用于烟碱型乙酰胆碱受体的抗生素类药剂,氯虫苯甲酰胺是作用于昆虫鱼尼丁受体的二酰胺类杀虫剂。这两种新型杀虫剂均对鳞翅目等靶标害虫具有优异的防治效果,并具备良好的环境安全性。本文系统研究了小菜蛾对多杀霉素和氯虫苯甲酰胺抗性的特征(包括抗性筛选、抗性稳定性、交互抗性谱及抗性遗传方式等)以及抗性机理,研究结果对于了解小菜蛾对新型杀虫剂抗性演化的分子机理及制订抗性治理对策具有重要意义。
     1.小菜蛾对多杀霉素抗性特征的分析
     利用浸叶法对小菜蛾SZ-Spin56品系进行26代连续筛选,获得多杀霉素高抗品系SZ-Spin83。与室内敏感品系Roth和室内对照品系SZ相比,SZ-Spin83品系对多杀霉素的抗性分别达到10,000倍和4,000倍。对该高抗品系用多杀霉素继续筛选或停止筛选,抗性均无显著变化,表明小菜蛾SZ-Spin83品系对多杀霉素抗性稳定(抗性基因已经纯合)。交互抗性测定结果显示,SZ-Spin83品系对阿维菌素和乙基多杀菌素存在高水平交互抗性(交互抗性分别为468倍和2396倍),对茚虫威、高效氯氰菊酯、氟虫腈、溴虫腈、巴丹、啶虫隆、丁醚脲、虫酰肼、氰氟虫腙和氯虫苯甲酰胺均没有明显交互抗性。抗性遗传方式分析表明,小菜蛾SZ-Spin83品系对多杀霉素的抗性受位于常染色体、共显性遗传的两个或两个以上基因控制。
     2.小菜蛾对多杀霉素的抗性机制
     三种解毒酶抑制剂(PBO、DEM和DEF)在室内敏感品系Roth、室内对照品系SZ和抗性品系SZ-Spin83中对多杀霉素均不存在显著的增效作用(增效比<2倍)。SZ-Spin83品系多功能氧化酶、酯酶和谷胱甘肽S-转移酶活性相对于敏感品系Roth有所升高(<2倍),但与其初始种群SZ品系水平相当(<1.2倍)。因此,代谢酶介导的解毒作用与SZ-Spin83品系对多杀霉素的抗性关系不大,其主导抗性机理可能为靶标变异。通过RT-PCR和RACE技术克隆了小菜蛾烟碱型乙酰胆碱受体Pxa2基因,该基因在多杀霉素抗性品系和敏感品系间不存在保守的氨基酸突变位点,并且该基因mRNA表达水平在抗性品系SZ-Spin83与其初始种群SZ之间没有显著差异。另外,对已报道的多杀霉素抗性基因Pxa6进行了研究。通过对敏感品系Roth55个和抗性品系SZ-Spin8358个阳性克隆的测序,检测到Pxa6亚基的6种转录本,其中3种类型为本研究首次发现。Pxa6基因在抗性和敏感品系间不存在保守的氨基酸突变位点,同时SZ-Spin83品系与其初始种群SZ相比,Pxa6的mRNA表达量没有差异。因此,我们认为小菜蛾对多杀霉素的抗性机理以靶标抗性为主,但与烟碱型乙酰胆碱受体a6亚基(Pxa6)和α2亚基(Pxa2)无关,或为nAChR其它亚基突变所致,亦不排除其它靶标基因参与抗性演化的可能性。
     3.小菜蛾对氯虫苯甲酰胺的敏感毒力基线和抗性监测
     利用浸叶法测定了2007-2009年间采集自我国11个地区的16个田间种群和7个室内饲养品系对氯虫苯甲酰胺的敏感性。16个田间种群的LC50值介于0.221-1.104mg/L之间,敏感性波动幅度在5倍以内;7个室内饲养品系基于LC50值的敏感性波动范围小于10倍。同时,利用16个田间种群的毒理学数据确定了15mg/L的诊断剂量,7个室内品系和5个田间小菜蛾种群在该剂量下的平均死亡率为99.75%(98%-100%)。该结果表明我国小菜蛾田间种群对尚未用于蔬菜害虫防控的氯虫苯甲酰胺具有较高的敏感性。本研究建立的小菜蛾对氯虫苯甲酰胺敏感毒力基线对于抗性监测与预警具有重要价值。
     在2010-2011年间,监测了我国12个地点采集的20个小菜蛾种群对氯虫苯甲酰胺敏感性的变化。结果表明,采自北部地区的14个田间种群对氯虫苯甲酰胺仍然敏感,LC50值在0.226-0.71mg/L,波动范围仅3倍。采自广东省的6个田间种群对该药剂的抗性水平差异很大,LC50值在0.343-256.2mg/L之间,波动幅度达770倍。与敏感品系Roth相比,广东珠海(ZH)和增城(ZC)种群分别具有150倍和2,140倍的抗性。该结果表明,必须合理使用氯虫苯甲酰胺防治小菜蛾以延缓抗性;同时,加强小菜蛾对氯虫苯甲酰胺抗性的监测,在高抗地区必须停止使用氯虫苯甲酰胺。
     4.小菜蛾对氯虫苯甲酰胺抗性特征的分析
     2011年秋季采集的对氯虫苯甲酰胺具有抗性的PY、ZH和ZC种群(F3测定抗性倍数为18-1,150倍),对氟虫双酰胺表现出相近的抗性水平(15-800倍),说明二酰胺类的两种药剂之间存在着交互抗性。药剂选择压力移除以后,ZC种群对氯虫苯甲酰胺的抗性表现出不稳定性,由2,040倍下降至25倍仅用6代时间。抗性遗传方式分析表明,小菜蛾ZC高抗种群对氯虫苯甲酰胺的抗性为常染色体、不完全隐性遗传。由ZC分离一部分建立ZC-R品系,对其进行的增效实验表明PBO、DEF和DEM对氯虫苯甲酰胺毒力具微弱的增效作用(增效比为2.2~2.9),表明代谢酶介导的解毒作用在氯虫苯甲酰胺的抗性形成中作用有限,靶标抗性可能为小菜蛾对氯虫苯甲酰胺抗性的主要机理。
     5.小菜蛾鱼尼丁受体的变异与氯虫苯甲酰胺抗性的关系
     昆虫鱼尼丁受体是二酰胺类杀虫剂的作用靶标。我们克隆了小菜蛾的鱼尼丁受体基因(PxRyR)cDNA全长,从而为研究靶标抗性奠定基础。PxRyR由15,495bp的ORF框、267bp的5'-UTR区和351bp的3'-UTR区组成,编码5164个氨基酸,分子量约为583.7KDao PxRyR具备鱼尼丁受体的普遍特征:保守的羧基端结构,此区域含6个跨膜结构域可形成功能性的Ca2+通道,胞浆区为大的氧基端结构域。PxRyR与昆虫RyR在氨基酸水平上的一致性很高,为78%-80%. PxRyR全长cDNA存在10个缺失多态性位点,说明单个PxRyR基因可以产生多种类型的转录本。同时,PxRyR基因在小菜蛾卵期、幼虫期和成虫期mRNA表达量分别是蛹期的1.36、2.47和1.40倍,幼虫期表达量显著高于蛹期;在幼虫不同组织部位中的表达量相对一致,没有显著差异。
     分别以氯虫苯甲酰胺抗性小菜蛾品系ZC-R和室内敏感品系Roth为材料,利用PxRyR碱基13,349位存在的保守替换位点作为抗性、敏感个体的分子标记,通过遗传分析发现氯虫苯甲酰胺抗性与PxRyR基因连锁。对抗性和敏感品系PxRyR基因羧基端1691个氨基酸序列进行了比对分析,发现抗性品系ZC-R在氨基酸4790(I到K)和4946(G到E)位存在50%和41%的突变频率,遗传分析结果表明G4946E点突变与氯虫苯甲酰胺抗性具有相关性。以β-actin和EF-1α基因为内参的定量PCR分析表明,ZC-R品系PxRyR基因mRNA表达量仅为室内敏感品系Roth和室内对照品系SZ的41-46%。上述研究结果表明,小菜蛾对氯虫苯甲酰胺的抗性与鱼尼丁受体基因连锁,该基因可能通过氨基酸点突变、mRNA表达下调或两者协同作用导致高水平抗性的形成。
The diamondback moth, Plutella xylostella (L.)(Lepidoptera:Plutellidae), is one of the most damaging, cosmopolitan economic pests of cruciferous vegetables, especially in the tropical and subtropical areas. A conservative estimate of total costs associated with its management is about US$4-5billion every year. Its short generation time, high fecundity, and extensive selection pressure in the field, have resulted in rapid evolution of resistance to various classes of insecticides (including84kinds of active ingredients). P. xylostella has become one of the most difficult pests to control in cruciferous vegetables.
     Spinosad is the first commercialized member of spinosyn class of insecticides, which primarily attacks the nicotinic acetylcholine receptor. Chlorantraniliprole is the first commercial insecticide from a novel class of chemistry, the anthranilic diamides, which selectively binds to insect ryanodine receptors (RyRs). Both insecticides have high insecticidal potency and good mammalian safety. In the present study, we investigated the characteristics (including resistance selection, stability, cross-resistance and mode of inheritance) and mechanisms for resistance to spinosad and chlorantraniliprole in P. xylostella. The information from our research will be valuable in understanding resistance mechanisms at molecular level and in developing rational resistance management strategies.
     1. Characterization of spinosad resistance in the SZ-Spin83strain of P. xylostella
     The SZ-Spin83strain developed4,000-fold and10,000-fold resistance to spinosad under laboratory selection when compared with SZ (the progenitor strain of SZ-Spin83) and Roth (the susceptible strain) respectively. With or without continuous selection by spinosad, resistance in SZ-Spin83was stable with no significant change. Compared with the SZ strain, the SZ-Spin83strain showed high levels of cross-resistance to abamectin (468-fold) and spinetoram (2396-fold), no obvious cross-resistance to indoxacarb, beta-cypermethrin, fipronil, chlorfenapyr, cartap, chlorfluazuron, diafenthiuron, tebufenozide, metaflumizone and chlorantraniliprole. Inheritance analysis results showed that spinosad resistance in SZ-Spin83strain of P. xylostella was autosomal, co-dominant, and polygenic.
     2. Mechanisms of spinosad resistance in the SZ-Spin83strain of P. xylostella
     The synergistic effects of PBO, DEM and DEF on spinosad were determined in the Roth, SZ and SZ-Spin83strains, and the results showed that the three inhibitors did not significantly synergize spinosad against the three strains (SR<2-fold). In order to evaluate the role of metabolic detoxification mechanisms in spinosad resistance, the activities of P450monooxygenases, esterases and glutathione S-transferases were measured in the three strains. Metabolic enzyme activities in SZ-Spin83were0.68~1.81-fold compared with the Roth strain, and there was no significant difference in activities between SZ-Spin83and SZ strains. Enzyme activity results were consistent with those of the synergism experiments, supporting that metabolic detoxification was not involved in spinosad resistance in SZ-Spin83, and taget-site resistance may be the the major resistance mechanism. To investigate possible target site resistance mechanisms, a nAChR subunit gene (Pxa2) was cloned and characterized from SZ-Spin83and Roth strains. There was no conservative difference at amino acid level among the Roth, SZ and SZ-Spin83strains. Pxa2mRNA expression, quantified by real-time PCR, was no significantly different between SZ-Spin83and SZ strains. Recent studies reported that Pxa6gene mutation was associated with spinosad resistance in a strain of P. xylostella. To determine if SZ-Spin83resistance was due to the same mutation,55from Roth and58from SZ-Spin83of Pxa.6transcripts were sequenced and analyzed. Six isoforms of Pxa6were detected, three of which are novel isoforms. However, our results showed no evidence of a selective sweep associated with the Pxa6in the resistant SZ-Spin83strain, and the mRNA expression levels were similar among the resistant and susceptible strains. Our work suggested neither Pxa2nor Pxa6was associated with spinosad resistance in SZ-Spin83. It is suggested that other nAChR subunits or other receptor genes other than nAChR could be responsible for spinosad resistance in SZ-Spin83.
     3. Baseline susceptibility and resistance monitoring of P. xylostella to chlorantraniliprole
     The susceptibility of16field populations and seven laboratory maintained strains of P. xylostella to chlorantraniliprole were determined through leaf dip bioassay during2008-2009. The susceptibility variation among16field populations was low (5-fold), with median lethal concentrations (LC50values) varying from0.221to1.104mg/liter. However, wider ranges of variation in LC50s (10-fold) were observed among seven laboratory strains. A discriminating concentration (15mg/liter) was calibrated from pooled toxicological data of the16field populations, seven laboratory strains and five field populations showed an average mortality of99.75%(from98to100%). The results indicated field P. xylostella populations were sensitive to this chemical, will also be useful in resistance monitoring and early warning.
     20field populations of P. xylostella sampled in2010-2011from China were tested with laboratory bioassays to determine if susceptibility to chlorantraniliprole had changed in the field. The LC50s was about three fold (from0.226to0.71mg/liter) among the14field populations from northern China, but reached as high as770-fold (from0.343to265.2mg/liter) among the six field populations from southern China (Guangdong Province). Among the six populations, very high levels of resistance were detected in Zhuhai (ZH)(150-fold) and Zengcheng (ZC)(2140-fold). The present work suggests that we should rational use chlorantraniliprole, inorder to extend the useful life of this compound. Meanwhile, we urge to stop use of chlorantraniliprole in somewhere if high level of resistance had evolved in field.
     4. Characterization of field-evolved resistance to chlorantraniliprole in P. xylostella
     Three field populations of P. xylostella collected from southern China in2011showed parallel resistance levels to chlorantraniliprole (from18-to1150-fold) and flubendiamide (from15-fold to800-fold), indicating strong cross-resistance between these two diamide insecticides. In the absence of selection pressure, resistance to chlorantraniliprole in ZC population declined from2040-fold (Gi) to25-fold (G7). Genetic analysis showed that chlorantraniliprole resistance in the ZC population was autosomal and incompletely recessive. The ZC-R strain (derived from ZC) had670-fold resistance to chlorantraniliprole. Synergist bioassays performed on ZC-R showed chlorantraniliprole toxicity was synergized by PBO, DEM and DEF at low levels. This work showed metabolic detoxification was involved in chlorantraniliprole resistance in the ZC-R strain to some extent, and target-site resistance may be the major mechanism.
     5. Relationship between variations of the ryanodine receptor of P. xylostella and chlorantraniliprole resistance
     The full-length cDNA of a ryanodine receptor gene (PxRyR) was cloned and characterized from P. xylostella by RNA-Seq, RT-PCR and RACE technologies. The cDNAs of PxRyR contain a15,495-bp open reading frame,267-bp5'untranslated region (UTR) and a3'-UTR of351-bp. The predicted mature protein consists of5164amino acids with a predicted molecular weight of583.7-kDa. PxRyR shares common structural features with known RyRs:the well-conserved COOH-terminal domain, which forms a functional Ca2+channel, and a large hydrophilic NH2-terminal domain. PxRyR shows a high level of amino acid sequence identity (78-80%) to the insect RyR isoforms. Ten deletion polymorphism sites were detected in PxRyR cDNAs, suggesting a single PxRyR can produce many polymorphic transcripts. Although the highest mRNA expression level was observed in larva and the lowest in pupa, there was a relatively stable expression during the developmental period from egg to adult. The relative mRNA expression levels of PxRyR were similar among the head, thorax, and abdomen of the fourth-instar larva body.
     We used the A/C polymorphism at the site13,349bp as a molecular marker of PxRyR cDNA to test the linkage between PxRyR locus and chlorantraniliprole resistance in the ZC-R strain. Backcross analysis results showed that chlorantraniliprole resistance was genetically linked with PxRyR in ZC-R. We sequenced a cDNA fragment encoding1691amino acids in the COOH-terminal domain of PxRyR. Two point mutations (I4790K, G4946E) were existed in resistant ZC-R strain, but only G4946E was associated with resistance to some extent. PxRyR mRNA expression levels in the resistant ZC-R strain, quantified by real-time PCR, was reduced to41~46%of the Roth and SZ strains. It was concluded that chlorantraniliprole resistance was linked with the PxRyR locus, and both amino acid mutations and reduced mRNA expression of PxRyR could be involved in resistance.
引文
1. 陈之浩,刘传秀,李凤良等.贵州主要菜区小菜蛾抗药性调查.贵州农业科学.1992;215-219.
    2. 冯夏,陈焕瑜,帅应恒.广东小菜蛾对苏云金杆菌的抗性研究.昆虫知识.1996;39(3):238-244.
    3. 冯夏,李振宇,吴青君等.小菜蛾抗性治理及可持续防控技术研究与示范.应用昆虫学报.2011;48(2):247-253.
    4. 龚佑静.小菜蛾对Bt毒素CrylAc抗性的生化与分子机理.南京农业大学博士学位论文.2010.
    5. 郭世俭,林文彩,章金明.浙江省主要菜区小菜蛾抗药性的研究.浙江农业学报.2003;15(1):19-22.
    6. 何玉仙,杨秀娟,翁启勇.小菜蛾抗药性研究及其治理.江西农业大学学报.2001;23(3):320-324.
    7. 胡进锋.小菜蛾对阿维菌素抗性机理的研究.中国农业大学博士学位论文.2007.
    8. 黄剑,吕敏,王群利等.抗阿维菌素小菜蛾的细胞色素P450酶系研究.农药学学报.2005;7(4):316-322.
    9. 黄剑,吴文君.小菜蛾抗药性研究进展.贵州大学学报(自然科学版).2003;20(1):97-104.
    10.李腾武,高希武,郑炳宗等.小菜蛾对阿维菌素的抗性遗传方式和相对适合度研究.昆虫学报.2000:43(3):255-263.
    11.李显春,王荫长.农业害虫抗药性问答.北京:中国农业出版社.1997.
    12.梁沛,高希武,郑炳宗等.小菜蛾对阿维菌素的抗性机制及交互抗性研究.农药学学报.2001;3(1):41-45.
    13.刘传秀,李凤良,韩招久等.小菜蛾对溴氰菊酯抗性选育及其机理.植物保护学报,1995;22(4):367-372.
    14.罗雁婕.云南小菜蛾抗药性及药剂对其乙酰胆碱酯酶的抑制作用研究.中国农业大学硕士学位论文.2007.
    15.蒲鑫.小菜蛾田间种群对阿维菌素的抗性遗传、交互抗性及抗性机理.南京农业大学硕士学位论文.2010.
    16.沈晋良,吴益东.棉铃虫抗药性及其治理.北京:中国农业出版社.1995.
    17.王维专,陈伟平,卢叔勤等.广州、深圳地区小菜蛾对啶虫隆、Bt的抗性监测.植物保护学报,1993;20(3):273-276.
    18.王治明.内江市小菜蛾发生特点及其综合防控措施.中国植保导刊.2011;31(8):32-33.
    19.吴刚,尤民生,赵士熙.小菜蛾抗性稳定性及抗性治理对策研究.农药学学报.2001;3(1):83-86.
    20.吴敏,韩召军,孟建业等.南京地区小菜蛾的抗药性检测及初步分析.昆虫学报.2005;48(4):633-636.
    21.吴青君,徐宝云,朱国仁等.京郊延庆县小菜蛾种群抗药性监测.中国蔬菜.2005;7:25-26.
    22.吴青君,张文吉,张友军等.表皮穿透和GABAA受体不敏感性在小菜蛾对阿维菌素抗性中的作用.昆虫学报.2002;45(3):336-340.
    23.吴世昌,顾言真.杀灭菊酯对小菜蛾的毒效检测.植物保护.1986;12(3):19-20.
    24.吴益东,陈松,净新娟等.棉铃虫抗药性检测方法.昆虫学报.2001;44(1):56-61.
    25.吴益东,沈晋良,谭福杰.棉铃虫对氰戊菊酯抗性品系和敏感品系的相对适合度研究.昆虫学报.1996;39(3):233-237.
    26.尤民生,魏辉.小菜蛾的研究.北京:中国农业出版社.2007.
    27.袁国瑞.小菜蛾GABA受体基因克隆及棉铃虫羧酸酯酶的功能表达.南京农业大学博士学位论文.2011.
    28.赵锋.小菜蛾抗药性监测、抗性选育及抗性生化机理研究.华中农业大学硕士学位论文.2005.
    29.赵善欢.昆虫毒理学.北京:农业出版社.1993.
    30.赵宇.小菜蛾对多杀菌素的抗性机理.南京农业大学硕士学位论文.2008.
    31.朱剑翔.小菜蛾对多杀菌素抗性的初步研究.南京农业大学硕士学位论文.2006.
    32.朱树勋,司升云,吴世雄.武汉地区小菜蛾田间抗药性监测.植物保护.1995;2:29-30.
    33. Abro G, Jayo A, Syed T. Ecology of diamondback moth, Plutella xylostella (L.) in Pakistan.1. Host plant preference. Pakistan Journal of Zoology.1994; 26 (1):35-38.
    34. Ahmad M, Arif MI, Ahmad Z. Susceptibility of Helicoverpa armigera (Lepidoptera:Noctuidae) to new chemistries in Pakistan. Crop Protection.2003; 22 (3):539-544.
    35. Altmann JA. An investigation of resistance in cabbage moth (Plutella xylostella L.) to pyrethroids in the Lockyer Valley. Graduate Diploma, Queensland Agricultural College, Lawes, Queensland, Australia.1988.
    36. Ankersmit GW. DDT-resistance in Plutella maculipennis (Cutis) (lep.) in Java. Bulletin of Entomological Research.1953; 44:421-425.
    37. APRD. Arthropod Pesticide Resistance Database. URL http://wwwpesticideresistanceorg/(accessed 10 Febryary 2012).
    38. Asakawa M. Current status of insecticide resistance of agricultural insect pests. Plant Protection. 1975; 29:257-261.
    39. Atsumi S, Miyamoto K, Yamamoto K, et al. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin CrylAb in the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America.2012; 109 (25):E1591-1598.
    40. Back JH, Kim JI, Lee DW, et al. Identification and characterization of ace1-type acetylcholine sterase likely associated with organophosphate resistance in Plutella xylostella. Pesticide Biochemistry and Physiology.2005; 81 (3):164-175.
    41. Balshaw D, Gao L, Meissner G Luminal loop of the ryanodine receptor:a pore-forming segment?. Proceedings of the National Academy of Sciences of the United States of America.1999; 96 (7): 3345-3347.
    42. Barroga SG, Morallp-Rejesus B. A survey of diamondback moth (.Plutella xylostella Linn.) populations for resistance to insecticide in the Philippines. Philippines Journal of Plant Industry. 1975; 40-41:1-14.
    43. Bate L, Gardiner M. Structure of a neuronal nicotinic acetylcholine receptor (nAChR). Expert Reviews in Molecular Medicine. Cambridge University Press.1999.
    44. Baxter SW, Badenes-Perez FR, Morrison A, et al. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics.2011; 189:675-679.
    45. Baxter SW, Chen M, Dawson A, et al. Mis-spliced transcripts of nicotinic acetylcholine receptor a6 are associated with field evolved spinosad resistance in Plutella xylostella (L.). PLoS Genetics. 2010; 6:1-10.
    46. Baxter SW, Zhao JZ, Shelton AM, et al. Genetic mapping of Bt-toxin binding proteins in a CrylA-toxin resistant strain of diamondback moth Plutella xylostella. Insect Biochemistry and Molecular Biology.2008; 38 (2):125-135.
    47. Bhat MB, Zhao J, Takeshima H, et al. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor. Biophysical Journal.1997; 73 (3):1329-1336.
    48. Bielza P, Quinto V, Contreras J, et al. Resistance to spinosad in the western flower thrips, Frankliniella occidentalis (Pergande), in greenhouses of south-eastern Spain. Pest Management Science.2007; 63 (7):682-687.
    49. Bielza P, Quinto V, Fernandez E, et al. Genetics of spinosad resistance in Frankliniella occidentalis (Thysanoptera:Thripidae).Journal of Economic Entomology.2007; 100 (3):916-920.
    50. Bielza P, Quinto V, Gravalos C, et al. Stability of spinosad resistance in Frankliniella occidentalis (Pergande) under laboratory conditions. Bulletin of Entomological Research.2008; 98 (4): 355-359.
    51. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry.1976; 72:248-254.
    52. Brown J, McCaffrey JP, Harmon BL, et al. Effect of late season insect infestation on yield, yield components and oil quality of Brassica napus, B-rapa, B-juncea and Sinapis alba in the Pacific Northwest region of the United States. Journal of Agricultural Science.1999; 132:281-288.
    53. Cao G, Han Z. Tebufenozide resistance selected in Plutella xylostella and its cross-resistance and fitness cost. Pest Management Science.2006; 62 (8):746-751.
    54. Carson W, Trumble J. Effect of insecticides for control of leafminers on lima beans. Arthrop Management Tests.1998; 23 (1):74-75.
    55. Chen S, Ebisawa K, Li X, et al. Molecular identification of the ryanodine receptor Ca2+sensor. Journal of Biological Chemistry 1998; 273:14675-14678.
    56. Cheng EY, Kao CH, Chiu CS. Insecticide resistance study in Plutella xylostella L. X:The IGR resistance and the possible management strategy. Journal of Agricultural Research of China.1990; 39:208-220.
    57. Cordova D, Benner E, Sacher M, et al. The novel mode of action of anthranilic diamideinsecticides: ryanodine receptor activation, Ed. by Lyga J, and Theodoritis G. Synthesis and Chemistry of Agrochemicals VII, American Chemical Society, Washington DC.2007; pp.223-234.
    58. Cordova D, Benner EA, Sacher MD, et al. Anthranilic diamides:anew class of insecticides with a novel mode of action, ryanodine receptor activation. Pesticide Biochemistry and Physiology.2006; 84 (3):196-214.
    59. Deng YL, Palmer CJ, Casida JE. House fly head gaba-gated chloride channel:four putative insecticide binding sites differentiated by [3H]EBOB and [35S]TBPS. Pesticide Biochemistry and Physiology.1993; 47 (2):98-112.
    60. Dermauw W, Ilias A, Riga M, et al. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae:Implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochemistry and Molecular Biology.2012; 42 (7):455-465.
    61. Dosdall LM, Mason PG, Olfert O, et al. The origins of infestations of diamondback moth, Plutella xylostella (L.), in canola in western Canada. In the management of diamondback moth and other crucifer pests proceedings of the fourth international workshop,26-29 November 2001, Ed. by Endersby NM and Ridland. Melbourne Melbourne, Australia:Department of Natural Resources and Environment.2004.
    62. Du GG, MacLennan DH. Functional consequences of mutations of conserved, polar amino acids in transmembrane sequences of the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. Journal of Biological Chemistry.1998; 273 (48):31867-31872.
    63. Dupont. coragen(?) insect control technical Bulletin.2007.
    64. Ebbinghaus-Kintscher U, Lummen P, Raming K, et al. Flubendiamide, the first insecticide with a novel mode of action on insect ryanodine receptors. Pflanzenschutz-NAChRichten Bayer.2007; 60117-140.
    65. Ebbinghaus-Kintscher U, Luemmen P, Lobitz N, et al. Phthalic acid diamides activate ryanodine-sensitive Ca2+ release channels in insects. Cell Calcium.2006; 39 (1):21-33.
    66. Edralin,OD, R M, Vasquez, F, et al. Update on DBM diamide resistance from the Philippines: causal factors and learnings, in:The sixth international workshop on management of the diamondback moth and other crucifer insect pests.21-25 March.2011. Ed. by Srinivasan R, Shelton AM and Collins HL. Kasetsart University, Kamphaeng Saen campus, Nakhon Pathom, Thailand.
    67. Endersby NM, Viduka K, Baxter SW, et al. Widespread pyrethroid resistance in Australian diamondback moth, Plutella xylostella (L.), is related to multiple mutations in the para sodium channel gene. Bulletin of Entomological Research.2011; 101 (4):393-405.
    68. Es-Salah Z, Lapied B, Le Goff G, et al. RNA editing regulates insect gamma-aminobutyric acid receptor function and insecticide sensitivity. Neuroreport.2008; 19 (9):939-943.
    69. Eziah VY, Rose HA, Clift AD, et al. Susceptibility of four field populations of the diamondback moth Plutella xylostella L. (Lepidoptera:Yponomeutidae) to six insecticides in the Sydney region, New South Wales, Australia. Australian Journal of Entomology.2008; 47:355-360.
    70. Eziah VY, Rose HA, Wilkes M, et al. Biochemical mechanisms of insecticide resistance in the diamondback moth (DBM), Plutella xylostella L. (Lepidopterata:Yponomeutidae), in the Sydney region, Australia. Australian Journal of Entomology.2009; 48:321-327.
    71. FAOSTAT. URL http://faostat.fao.org/(accessed 10 February 2012).2012.
    72. Ffrench-Constant RH, Rocheleau TA, Steichen JC, et al. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature.1993; 363 (6428):449-451.
    73. Gahan LJ, Gould F, Heckel DG. Identification of a gene associated with Bt resistance in Heliothis virescens. Science.2001; 293:857-860.
    74. Gahan LJ, Pauchet Y, Vogel H, et al. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis CrylAc toxin. PLoS Genetics.2010; 6 (12):e1001248.
    75. Gao JR, Deacutis JM, Scott JG. The nicotinic acetylcholine receptor subunit Md alpha 6 from Musca domestica is diversified via post-transcriptional modification. Insect Molecular Biology. 2007;16 (3):325-334.
    76. Gao JR, Deacutis JM, Scott JG. The nicotinic acetylcholine receptor subunits Md alpha 5 and Md beta 3 on autosome 1 of Musca domestica are not involved in spinosad resistance. Insect Molecular Biology.2007; 16 (6):691-701.
    77. Gao L, Balshaw D, Xu L, et al. Evidence for a role of the lumenal M3-M4 loop in skeletal muscle Ca2+ release channel (ryanodine receptor) activity and conductance. Biophysical Journal.2000; 79 (2):828-840.
    78. Gao L, Tripathy A, Xu L, et al. Mutation of charged amino acids in a putative lumenal loop of the skeletal muscle Ca2+release channel results in the loss of high affinity [3H]ryanodine binding. Biophysical Journal.1999; 76 (1):A303-A303.
    79. Gassmann AJ, Carriere Y, Tabashnik BE. Fitness costs of insect resistance to Bacillus thuringiensis. Annual Review of Entomology.2009; 54:147-163.
    80. Gatehouse AM, Ferry N, Edwards MG, et al. Insect-resistant biotech crops and their impacts on beneficial arthropods. Philosophical Transactions of the Royal Society B:Biological Sciences.2011; 366 (1569):1438-1452.
    81. Georghiou GP. The evolution of resistance to pesticides. Annual Review Ecology and Systematics. 1972; 3:133-168.
    82. Georghiou GP, Garber MJ. Studies on the inheritance of carbamate-resistance in the housefly (Musca Domestica L.). Bulletin of World Health Organization.1965;32:181-196.
    83. Gong Y, Wang C, Yang Y, et al. Characterization of resistance to Bacillus thuringiensis toxin CrylAc in Plutella xylostella from China. Jounal of Invertebrate Pathology.2010; 104 (2):90-96.
    84. Grzywacz D, Rossbach A, Rauf A, et al. Current control methods for diamondback moth and other brassica insect pests and the prospects for improved management with Lepidopteran-resistant Bt vegetable brassicas in Asia and Africa. Crop Protection.2010; 29 (1):68-79.
    85. Gutteridge S, Caspar T, Cordova D, et al. Nucleic acids encoding ryanodine receptors. US Patent. 2003; 7205147.
    86. Hamada T, Sakube Y, Ahnn J, et al. Molecular dissection, tissue localization and Ca2+ binding of the ryanodine receptor of Caenorhabditis elegans. Jounal of Molecular Biology.2002; 324 (1) 123-135.
    87. Hardy JE. Plutella maculipennis, Curt., its natural and biological control in England. Bulletin of Entomology Research.1938; 29:343-372.
    88. Heckel D, Tabashnik B, Liu Y, et al. Diamondback moth resistance to Bt:relevance of genetics and molecular biology to detection and management. in:The management of diamondback moth and other crucifer pests:Proceedings of the 4th International Workshop,26-29 November 2001, Ed. by Ridland PM, and Endersby NM. Australia, pp.27-36.2004.
    89. Heckel DG, Gahan LJ, Liu YB, et al. Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis. Proceedings of the National Academy of Sciences of the United States of America.1999; 96 (15):8373-8377.
    90. Herrero S, Gechev T, Bakker PL, et al. Bacillus thuringiensis CrylCa-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics.2005; 6:96.
    91. Hosie AM, Baylis HA, Buckingham SD, et al. Actions of the insecticide fipronil, on dieldrin-sensitive and sieldrin-resistant gaba receptors of Drosophila-melanogastex. British Journal of Pharmacology.1995; 115 (6):909-912.
    92. Howard RJ, Garland JA, Seaman WL. Diseases and pests of vegetablecrops in Canada Entomological Society of Canada and The Canadian Phytopathological Society, Ottawa. pp.554. 1994.
    93. Hsu JC, Haymer DS, Chou MY, et al. Monitoring resistance to spinosad in the melon fly (Bactrocera cucurbitae) in Hawaii and Taiwan. ScientificWorld Journal.2012; 2012:750576.
    94. Huang J, Wu SF, Y YG. Evaluation of lethal effects of chlorantraniliprole on Chilo suppressalis and its larval Parasitoid, Cotesia chilonis. Agricultural Sciences in China.2011; 10:1134-1138.
    95. IRAC. IRAC MoA Classification v 7.1. Insecticide Resistance Action Committee.2011.
    96. Jiang WH, Lu WP, Guo WC, et al. Chlorantraniliprole susceptibility in Leptinotarsa decemlineata in the North Xinjiang Uygur Autonomous Region in China. Journal of Economic Entomology.2012; 105:549-554.
    97. Jones AK, Grauso M, Sattelle DB. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics.2005; 85 (2):176-187.
    98. Jones AK, Raymond-Delpech V, Thany SH, et al. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Research.2006; 16 (11):1422-1430.
    99. Jones AK, Sattelle DB. The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum. BMC Genomics.2007; 8327.
    100. Kane NS, Hirschberg B, Qian S, et al. Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. Proceedings of the National Academy of Sciences of the United States of America.2000; 97 (25):13949-13954.
    101. Kfir R. Origin of the diamondback moth (Lepidoptera:Plutellidae). Annals of the Entomological Society of America.1998; 91 (2):164-167.
    102. Kim YH, Lee JH, Lee SH. Determination of organophosphate and carbamate resistance allele frequency in diamondback moth populations by quantitative sequencing and inhibition tests. Journal of Asia-Pacific Entomology.2011; 14 (1):29-33.
    103. Kretsinger RH, Nockolds CE. Carp muscle calcium-binding protein. Ⅱ. Structure determination and general description.. The Journal of Biological Chemistry.1973; 248:3313-3326.
    104. Kumar KP, Gujar GT. Baseline susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to Bacillus thuringiensis CrylA toxins in India. Crop Protection.2005; 24 (3): 207-212.
    105. Kwon DH, Yoon KS, Clark JM, et al. A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch. Insect Molecular Biology.2010;19 (4):583-591.
    106. Lahm GP, Stevenson TM, Selby TP, et al. Rynaxypyr:a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorganic & Medicinal Chemistry Letters.2007; 17 (22):6274-6279.
    107. Lai T, Su J. Assessment of resistance risk in Spodoptera exigua (Hubner)(Lepidoptera:Noctuidae) to chlorantraniliprole. Pest Management Science.2011; 67 (11):1468-1472.
    108. Lai TC, Li J, Su JY. Monitoring of beet armyworm Spodoptera exigua (Lepidoptera:Noctuidae) resistance to chlorantraniliprole in China. Pesticide Biochemistry and Physiology.2011; 101 (3): 198-205.
    109. Lanner JT, Georgiou DK, Joshi AD, et al. Ryanodine receptors:structure, expression, molecular details, and function in calcium release. Cold Spring Harbor Perspectives in Biology.2010; 2 (11): a003996.
    110. Lee DW, Choi JY, Kim WT, et al. Mutations of acetylcholinesterasel contribute to prothiofos-resistance in Plutella xylostella (L.). Biochemical Biophysical Resarch Communications. 2007; 353 (3):591-597.
    111. Li A, Yang Y, Wu S, et al. Investigation of resistance mechanisms to fipronil in diamondback moth (Lepidoptera:Plutellidae). Journal of Economic Entomology.2006; 99:914-919.
    112. Li X, Degain BA, Harpold VS, et al. Baseline susceptibilities of B- and Q-biotype Bemisia tabaci to anthranilic diamides in Arizona. Pest Management Science.2012; 68 (1):83-91.
    113. Liang P, Gao X, Zheng B, et al. Study on resistance mechanisms and cross-resistance of abamectin in diamondback moth Plutella xylostella (L). Chinese Journal of Pesticide Science.2001; 3:41-45.
    114. Liang P, Gao XW, Zheng BZ. Genetic basis of resistance and studies on cross-resistance in a population of diamondback moth, Plutella xylostella (Lepidoptera:Plutellidae). Pest Management Science.2003; 59 (11):1232-1236.
    115. Liu HQ, Cupp EW, Micher KM, et al. Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefaciatus. Journal of Medical Entomology.2004; 41 (3):408-413.
    116. Liu S, Wang X, Guo S, et al. Seasonal abundance of the parasitoid complex associated with the diamondback moth, Plutella xylostella (Lepidoptera:Plutellidae) in Hangzhou, China. Bulletin of Entomological Research.2000; 90 (3):221-231.
    117. Liu ZW, Williamson MS, Lansdell SJ, et al. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens(btown planthopper). Proceedings of the National Academy of Sciences of the United States of America.2005; 102 (24):8420-8425.
    118. Lynch PJ, Tong J, Lehane M, et al. A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. Proceedings of the National Academy of Sciences of the United States of America. 1999; 96 (7):4164-4169.
    119. Markussen MD, Kristensen M. Low expression of nicotinic acetylcholine receptor subunit Mdelpha2 in neonicotinoid-resistant strains of Musca domestica L. Pest Management Science.2010; 66 (11):1257-1262.
    120. Martin J, Geromanos S, Tempst P, et al. Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES. Nature.1993; 366 (6452):279-282.
    121.91. Masaki T, Yasokawa N, Tohnishi M, et al. Flubendiamide, a novel Ca(2+) channel modulator, reveals evidence for functional cooperation between Ca (2+) pumps and Ca(2+) release. Molecular Pharmacology.2006; 69 (5):1733-1739.
    122. McNall RJ, Adang MJ. Identification of novel Bacillus thuringiensis CrylAc binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochemistry and Molecular Biology. 2003;33 (10):999-1010.
    123. Meissner G. Adenine nucleotide stimulation of Ca2+-induced Ca2+release in sarcoplasmic reticulum. Journal of Biological Chemistry.1984; 259 (4):2365-2374.
    124. Meissner G. Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum. The Journal of Biological Chemistry.1984; 259 (4):2365-2374.
    125. Metcalf RL. Changing role of insecticides in crop protection. Annual Review of Entomology.1980; 25:219-256.
    126. Michael F, Copello JA. Ryanodine receptor calcium Rrelease channels. Physiological Reviews. 2002;82:893-922.
    127. Millar NS, Denholm I. Nicotinic acetylcholine receptors:targets for commercially important insecticides. Invertebrate Neuroscience.2007; 7:53-66.
    128. Morin SRW, Biggs MS, Sisterson L, et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proceedings of the National Academy of Sciences of the United States of America.2003; 1005004-5009.
    129. Moulton JK, Pepper DA, Dennehy TJ. Beet armyworm (Spodoptera exigua) resistance to spinosad. Pest Management Science.2000; 56 (10):842-848.
    130. Nauen R, Bretschneider T. New Modes of action of insecticides. Pesticide Outlook.2002; 2002 (13):241-245.
    131. Nyambo B, Lo'hr B. The role and significance of farmer participation in biocontrol-based IPM for brassica crops in East Africa. In:Proceedings of the 2nd International Symposium on Biological Control of Arthropods,12-16 September 2005; Ed. by Hoddle MS. Davos, Switzerland, pp. 290-301.
    132. Ogawa Y. Role of ryanodine receptors. Critical Reviews in Biochemistry and Molecular Biology. 1994; 29 (4):229-274.
    133. Ogawa Y, Murayama T, Kurebayashi N. Comparison of properties of Ca2+ release channels between rabbit and frog skeletal muscles. Molecular and Cell Biochemistry.1999; 190 (1-2):191-201.
    134. Orr N, Shaffner AJ, Richey K, et al. Novel mode of action of spinosad:receptor binding studies demonstrating lack of interaction with known insecticidal target sites. Pesticide Biochemistry and Physiology.2009; 95 (1):1-5.
    135. Oruku L, Ndun'gu B. Final socio-economic report for the peri-urban vegetable IPM thematic cluster. CABI Africa Regional Centre Report, Nairobi,2001. pp.49.
    136. Ottini L, Marziali G, Conti A, et al. Alpha and beta isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. Biochemical Journal.1996; 315 (Pt1):207-216.
    137. Paul-Pletzer K, Yamamoto T, Ikemoto N, et al. Probing a putative dantrolene-binding site on the cardiac ryanodine receptor. Biochemical Journal.2005; 387:905-909.
    138. Pepper BP, Carruth LA. A new plant insecticide for control of the european corn borer. Journal of Economic Entomology.1945; 38:59-66.
    139. Perry T, McKenzie JA, Batterham P. A Da6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochemistry and Molecular Biology.2007; 37: 184-188.
    140. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research.2001; 29 (9):e45.
    141. Proudfoot NJ, Brownlee GG.3'non-coding region sequences in eukaryotic messenger RNA. Nature. 1976; 263 (5574):211-214.
    142. Pu X, Yang YH, Wu SW, et al. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. Pest Management Science.2010; 66 (4):371-378.
    143. Puente E, Suner MM, Evans AD, et al. Identification of a polymorphic ryanodine receptor gene from Heliothis virescens (Lepidoptera:Noctuidae). Insect Biochemistry and Molecular Biology. 2000; 30 (4):335-347.
    144. Qian L, Cao GC, Song JX, et al. Biochemical mechanisms conferring cross-resistance between tebufenozide and abamectin in Plutella xylostella. Pesticide Biochemistry and Physiology.2008; 91 (3):175-179.
    145. Radermacher M, Rao V, Grassucci R, et al. Cryo electron microscopy and 3-dimensional reconstruction of the calcium-release channel ryanodine receptor from skeletal-muscle. Journal of Cell Biology.1994; 127 (2):411-423.
    146. Ramachandran S, Buntin GD, All JN. Response of canola to simulated diamondback moth (Lepidoptera:Plutellidae) defoliation at different growth stages. Canadian Journal of Plant Science.2000; 80:639-646.
    147. Rhoads AR, Friedberg F. Sequence motifs for calmodulin recognition. The FASEB Journal.1997; 11 (5):331-340.
    148. Rinkevich FD, Chen M, Shelton AM, et al. Transcripts of the nicotinic acetylcholine receptor subunit gene Pxylalpha6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella. Invertebrate Neuroscience.2010; 10 (1):25-33.
    149. Rodney GG, Moore CP, Williams BY, et al. Calcium binding to calmodulin leads to an N-terminal shift in its binding site on the ryanodine Receptor. Journal of Biological Chemistry.2001; 276 (3) 2069-2074.
    150. Rodney GG, Williams BY, Strasburg GM, et al. Regulation of RyRl activity by Ca(2+) and calmodulin. Biochemistry.2000; 39 (26):7807-7812.
    151. Roe RM, Young HP, Iwasa T, et al. Mechanism of resistance to spinosyn in the tobacco budworm, Heliothis virescens. Pesticide Biochemistry and Physiology.2010; 96 (1):8-13.
    152. Salgado V. The modes of action of spinosad and other insect control products. Down to Earth.1997; 52:35-43
    153. Salgado V, Sparks T. The spinosyns:chemistry, biochemistry, mode of actionn, and resistance in: Comprehensive Insect Molecular Science, vol.6; Control, Elsevier, New York,2005; pp.137-173.
    154. Sandur S. Implications of diamondback moth control for Indian farmers. Consultant Report for the Centre for Environmental Stress and Adaptation Research. La Trobe University, Victoria, Australia, 2004; pp.31.
    155. Sarfraz M, Keddie BA. Conserving the efficacy of insecticides against Plutella xylostella(L.)(.Lep., Plutellidae).Journal of Applied Entomology.2005; 129 (3):149-157.
    156. Sattelle DB. GABA receptors of insects. Advances in Insect Physiology.1990; 22:1-113.
    157. Sattelle DB, Cordova D, Cheek TR. Insect ryanodine receptors:molecular targets for novel pest control chemicals. Invertebrate Neuroscience.2008; 8 (3):107-119.
    158. Sattelle DB, Jones AK, Sattelle BM, et al. Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. Bioessays.2005; 27 (4):366-376.
    159. Sayyed AH, Ahmad M, Crickmore N. Fitness costs limit the development of resistance to indoxacarb and deltamethrin in Heliothis virescens (Lepidoptera:Noctuidae). Journal of Economic Entomology.2008; 101 (6):1927-1933.
    160. Sayyed AH, Omar D, Wright DJ. Genetics of spinosad resistance in a multi-resistant field-selected population of Plutella xylostella. Pest Management Science.2004; 60 (8):827-832.
    161. Sayyed AH, Saeed S, Noor-Ul-Ane M, et al. Genetic, biochemical, and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera:Plutellidae). Journal of Economic Entomology.2008; 101 (5):1658-1666.
    162. Sayyed AH, Wright DJ. Fipronil resistance in the diamondback moth (Lepidoptera:Plutellidae) inheritance and number of genes involved. Journal of Economic Entomology.2004; 97 (6) 2043-2050.
    163. Sayyed AH, Wright DJ. Genetics and evidence for an esterase-associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera:Plutellidae). Pest Management Science.2006; 62 (11):1045-1051.
    164. Schnizler K, Saeger B, Pfeffer C, et al. A novel chloride channel in Drosophila melanogaster is inhibited by protons. Journal of Biological Chemistry.2005; 280 (16):16254-16262.
    165. Schoonover JR., Larson LL. Laboratory activity of Spinosad on non-target beneficial arthropods. Arthropod Management Tests.1995; 20:357.
    166. Schuler TH, Martinez-Torres D, Thompson AJ, et al. Toxicological, electrophysiological, and molecular characterisation of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pesticide Biochemistry and Physiology.1998; 59 (3):169-182.
    167. Scott-Ward TS, Dunbar SJ, Windass JD, et al. Characterization of the ryanodine receptor-Ca2+ release channel from the thoracic tissues of the lepidopteran insect Heliothis virescens. Journal of Membrane Biology.2001; 179 (2):127-141.
    168. Scott JG. Toxicity of spinosad to susceptible and resistant strains of house flies, Musca domestica. Pesticide Science.1998; 54 (2):131-133.
    169. Scott JG Unraveling the mystery of spinosad resistance in insects. Journal of Pesticide Science. 2008;33 (3):221-227.
    170. Shao YM, Dong K, Zhang CX. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori. BMC Genomics.2007; 8:324.
    171.Shelton AM, Robertson JL, Tang JD, et al. Resistance of diamondback mom (Lepidoptera, Plutellidae) to Bacillus thvringiensis Subspecies in the Field. Journal of Economic Entomology. 1993; 86 (3):697-705.
    172. Shi J, Zhang L, Gao XW. Characterisation of spinosad resistance in the housefly Musca domestica (Diptera:Muscidae).Pest Management Science.2011; 67 (3):335-340.
    173. Shirai Y, Tanaka H, Miyasono M, et al. Low intrinsic rate of natural increase in BT-resistant population of diamondback moth, Plutella xylostella(L.)(Lepidoptera:Yponomeutidae).. Japanese Journal of Applied Entomology and Zoology.1998; 42 (2):59-64.
    174. Shiwa M, Murayama T, Ogawa Y. Molecular cloning and characterization of ryanodine receptor from unfertilized sea urchin eggs. American Journal of Physiology Regulatory, Integrative and Comparative Physiology.2002; 282 (3):R727-737.
    175. Shono T, Scott JG. Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome 1. Pesticide Biochemistry and Physiology.2003; 75 (1-2):1-7.
    176. Sial AA, Brunner JF. Selection for resistance, reversion towards susceptibility and synergism of chlorantraniliprole and spinetoram in obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera:Tortricidae). Pest Management Science.2012; 68 (3):462-468.
    177. Sial AA, Brunner JF, Doerr MD. Susceptibility of Choristoneura rosaceana (Lepidoptera: Tortricidae)to two new reduced-risk insecticides. Journal of Economic Entomology.2010; 103 (1): 140-146.
    178. Sinchaisri N, Apajirakul T, Noppun V. Evidence of resistance to insecticide of some key pests in Thailand. In:XVI International Congress on Entomology, August 3-9,1980; Kyoto, Japan. pp.411.
    179. Soberon M, Gill SS, Bravo A. Signaling versus punching hole:How do Bacillus thuringiensis toxins kill insect midgut cells?. Cell and Molecular Life Sciences.2009; 66 (8):1337-1349.
    180. Sokal RR, Rohlf RL. Biometry,2nd Ed. Freeman publish, San Francisco, CA.1981.
    181. Sparks TC, Crouse GD, Dripps JE, et al. Neural network-based QSAR and insecticide discovery: spinetoram. Journal of Computer-Aided Molecular Design.2008; 22 (6-7):393-401.
    182. Sparks TC, Dripps JE, Watson GB, et al. Resistance and cross-resistance to the spinosyns:A review and analysis. Pesticide Biochemistry and Physiology.2012; 102 (1):1-10.
    183. Stone BF. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bulletin of the World Health Organization.1968; 38 (2):325-326.
    184. Sudderuddin KI, Kok PF. Insecticide resistance in Plutella xylostella collected from the Cameron highlands of Malaysia. FAO Plant Protection Bulletin.1978; 26:53-57.
    185. Sukonthabhirom S, Dumrongsak D, Jumroon S, et al. Update on DBM diamide resistance from the Thailand:causal factors and learningsA. In:The sixth international workshop on management of the diamondback moth and other crucifer insect pests.21-25 March.2011. ed. By Srinivasan R, Shelton AM and Collins HL. Kasetsart University, Kamphaeng Saen campus, Nakhon Pathom, Thailand.
    186. Sun CN, Chi H, Feng HT. Diamondback moth resistance to diazinon and methomyl in Taiwan. Journal of Economic Entomology.1978; 71:551-554.
    187. Sunesen M, De Carvalho LP, Dufresne V, et al. Mechanism of Cl-selection by a glutamate-gated chloride (GluCl) receptor revealed through mutations in the selectivity filter. Journal of Biological Chemistry.2006; 281 (21):14875-14881.
    188. Tabashnik BE, Cushing NL, Finson N, et al. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera, Plutellidae). Journal of Economic Entomology. 1990; 83 (5):1671-1676.
    189. Tabashnik BE, Cushing NL, Johnson MW. Diamondback moth (Lepidoptera, Plutellidae) resistance to insecticides in Hawaii:Intra-Island variation and cross-resistance. Journal of Economic Entomology.1987; 80 (6):1091-1099.
    190. Tabashnik BE, Liu YB, de Maagd RA, et al. Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins. Applied and Environmental Microbiology.2000; 66 (10):4582-4584.
    191. Tabashnik BE, Liu YB, Dennehy TJ, et al. Inheritance of resistance to Bt toxin CrylAc in a field-derived strain of pink bollworm (Lepidoptera:Gelechiidae). Journal of Economic Entomology.2002; 95 (5):1018-1026.
    192. Takeshima H, Nishi M, Iwabe N, et al. Isolation and characterization of a gene for a ryanodine receptor/calcium release channel in Drosophila melanogaster. FEBS Letters.1994; 337 (1):81-87.
    193. Takeshima H, Nishimura S, Matsumoto T, et al. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature.1989; 339 (6224):439-445.
    194. Talekar NS, Shelton AM. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology.1993; 38:275-301.
    195. Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology Evolution.2007; 24 (8):1596-1599.
    196. Tang JD, Gilboa S, Roush RT, et al. Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutellidae) from Florida. Journal of Economic Entomology.1997; 90 (3):732-741.
    197. Tang ZH, Wood RJ, Cammack SL. Acetylcholinesterase activity in organophosphorus and carbamate resistant and susceptible strains of the Culex-Pipiens Complex. Pesticide Biochemistry and Physiology.1990; 37 (2):192-199.
    198. Thompson JD, Higgins DG, Gibson TJ. Clustal W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research.1994; 22 (22):4673-4680.
    199. Tiewsiri K, Wang P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin CrylAc in cabbage looper. Proceedings of the National Academy of Sciences of the United States of America.2011; 108 (34):14037-14042.
    200. Tohnishi M, Nakao H, Furuya T, et al. Flubendiamide, a novel insecticide highly active against lepidopterous insect pests. Journal of Pesticide Science.2005; 30 (4):354-360.
    201. Tripathy A, Xu L, Mann G, et al. Calmodulin activation and inhibition of skeletal muscle Ca+ release channel (ryanodine receptor). Biophysical Journal.1995; 69 (1):106-119.
    202. Tsukahara Y, Sonoda S, Fujiwara Y, et al. Molecular analysis of the para-sodium channel gene in the pyrethroid-resistant diamondback moth, Plutella xylostella (Lepidoptera:Yponomeutidae) Applied Entomology and Zoology.2003; 38:23-29.
    203. Tsukamoto M. The log dosage-probit mortality curve in genetic researches of insect resistance to insecticides. Botyu-Kagaku.1963; 28 (4):91-98.
    204. Vazquez-Martinez O, Canedo-Merino R, Diaz-Munoz M, et al. Biochemical characterization, distribution and phylogenetic analysis of Drosophila melanogaster ryanodine and IP3 receptors, and thapsigargin-sensitive Ca2+ ATPase. Journal of Cell Science.2003; 116 (Pt 12):2483-2494.
    205. Verkerka RHJ, Wright DJ. Multitrophic interactions and management of the diamondback moth:a review. Bulletin of Entomological Research.1996; 86205-216.
    206. Wang D, Qiu XH, Ren XX, et al. Resistance selection and biochemical characterization of spinosad resistance in Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae). Pesticide Biochemistry and Physiology.2009; 95 (2):90-94.
    207. Wang D, Qiu XH, Wang HY, et al. Reduced fitness associated with spinosad resistance in Helicoverpa armigera. Phytoparasitica.2010; 38 (2):103-110.
    208. Wang W, Mo JC, Cheng JA, et al. Selection and characterization of spinosad resistance in Spodoptera exigua (Hubner) (Lepidoptera:Noctuidae). Pesticide Biochemistry and Physiology. 2006;84 (3):180-187.
    209. Wang X, Li X, Shen A, et al. Baseline susceptibility of the diamondback moth (Lepidoptera: Plutellidae) to chlorantraniliprole in China. Journal of Economic Entomology.2010; 103 (3): 843-848.
    210. Wang XL, Wu SW, Yang YH, et al. Molecular cloning, characterization and mRNA expression of a ryanodine receptor gene from diamondback moth, Plutella xylostella. Pesticide Biochemistry and Physiology.2012; 102 (3):204-212.
    211. Wang XL, Wu YD. High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella.. Journal of Economic Entomology.2012; 105 (3):1019-1023.
    212. Watson GB. Actions of insecticidal spinosyns on gamma-aminobutyric acid responses from small-diameter cockroach neurons. Pesticide Biochemistry and Physiology.2001; 71 (1):20-28.
    213. Watson GB, Chouinard SW, Cook KR, et al. A spinosyn-sensitive Drosophila melanogaster nicotinic acetylcholine receptor identified through chemically induced target site resistance, resistance gene identification, and heterologous expression. Insect Biochemistry and Molecular Biology.2010; 40 (5):376-384.
    214. Wierenga RK, Hol WG. Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature.1983; 302 (5911):842-844.
    215. Wyss CF, Young HP, Shukla J, et al. Biology and genetics of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera:Noctuidae), highly resistant to spinosad. Crop Protection.2003; 22 (2):307-314.
    216. Xiong H, Feng X, Gao L, et al. Identification of a two EF-hand Ca2+ binding domain in lobster skeletal muscle ryanodine receptor/Ca2+ release channel. Biochemistry.1998; 37(14):4804-4814.
    217. Xu X, Bhat MB, Nishi M, et al. Molecular cloning of cDNA encoding a drosophila ryanodine receptor and functional studies of the carboxyl-terminal calcium release channel. Biophysical Journal.2000; 78 (3):1270-1281.
    218. Xu XJ, Yu LY, Wu YD. Disruption of a cadherin gene associated with resistance to CrylAc delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and Environmental Microbiology.2005; 71 (2):948-954.
    219. Yamaguchi N, Xin C, Meissner G. Identification of apocalmodulin and Ca2+-calmodulin regulatory domain in skeletal muscle Ca2+ release channel, ryanodine receptor. Journal of Biological Chemistry.2001; 276 (25):22579-22585.
    220. Yap KL, Ames JB, Swindells MB, et al. Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins.1999; 37 (3):499-507.
    221. Yin XH, Wu QJ, Li XF, et al. Sublethal effects of spinosad on Plutella xylostella (Lepidoptera:Yponomeutidae). Crop Protection.2008; 27 (10):1385-1391.
    222. Young HP, Bailey WD, Roe RM. Spinosad selection of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera:Noctuidae), and characterization of resistance. Crop Protection. 2003; 22 (2):265-273.
    223. Young HP, Bailey WD, Roe RM, et al. Mechanism of resistance and cross-resistance in a laboratory, spinosad-selected strain of the tobacco budworm and resistance in laboratory-selected cotton bollworms, in:Proceedings of the 2001 Beltwide Cotton Production Conference, National Cotton Council, Memphis TN,2001; pp.1167-1171.
    224. Zalucki MP, Shabbir A, Silva R, et al. Estimating the economic cost of one of the world's major insect pests, Plutella xylostella (Lepidoptera:Plutellidae):just how long is a piece of string?. Journal of Economic Entomology.2012; 105:1115-1129.
    225. Zarka a, Shoshan-Barmatz V. Characterization and photoaffinity labeling of the ATP binding site of the ryanodine receptor from skeletal muscle. European Journal of Biochemistry/FEBS.1993; 213 (1).-147-154.
    226. Zhang S, Kono S, Murai T, et al. Mechanisms of resistance to spinosad in the western flower thrip, Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae). Insect Science.2008 15: 125-132.
    227. Zhao F, Li P, Chen SR, et al. Dantrolene inhibition of ryanodine receptor Ca2+release channels: molecular mechanism and isoform selectivity. Journal of Biological Chemistry.2001; 276 (17): 13810-13816.
    228. Zhao JZ, Collins HL, Li YX, et al. Monitoring of diamondback moth (Lepidoptera:Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate. Journal of Economic Entomology. 2006; 99 (1):176-181.
    229. Zhao JZ, Li YX, Collins HL, et al. Monitoring and characterization of diamondback moth (Lepidoptera:Plutellidae) resistance to spinosad. Journal of Economic Entomology.2002; 95(2): 430-436.
    230. Zhao M, Li P, Li X, et al. Molecular identification of the ryanodine receptor pore-forming segment. Journal of Biological Chemistry.1999; 274 (37):25971-25974.
    231. Zheng XS, Ren XB, Su JY. Insecticide susceptibility of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) in China. Journal of Economic Entomology.2011; 104 (2):653-658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700