预处理对淀粉结构及化学反应活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉是一种来源广泛,价格低廉,且极具生物降解性的天然可再生高聚物资源,可通过物理、化学改性的方法制得性质各异、适用于不同应用领域的改性淀粉。但在淀粉的化学变性反应中,由于半结晶的淀粉颗粒由交错的结晶区和无定形区组成,结构致密的结晶区限制了化学试剂向淀粉分子内部的渗透,反应只能发生在颗粒表面,从而导致淀粉的反应活性和反应效率较低。因此,研究如何改变淀粉颗粒结构来提高淀粉的反应活性已成为一项极其重要的研究课题。
     本文在低温条件下用氢氧化钠/尿素对淀粉进行预处理,采用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)及红外光谱(FT-IR)对预处理淀粉进行表征分析,研究了淀粉在预处理过程中其结晶结构、颗粒形貌大小及分子基团的变化规律。研究结果表明氢氧化钠/尿素预处理降低了淀粉的结晶度,改变了其结晶结构,晶型由A型转变为VH型。预处理后淀粉的颗粒形貌发生了变化,由多角形转变为圆球形,颗粒变小,在500nm左右。红外光谱分析表明淀粉在预处理过程中并没有产生新的基团。通过考察氢氧化钠/尿素预处理对玉米淀粉的冷水溶解度、透明度、粘度特性及其热稳定性的影响来研究预处理对淀粉理化性质的影响。研究结果表明,预处理显著提高淀粉的冷水溶解度和淀粉糊的透明度;预处理淀粉糊的粘度降低;热稳定性降低。
     采用原淀粉及预处理淀粉为原料,以长链脂肪酸、月桂酸甲酯及辛烯基琥珀酸酐为酯化剂,在无溶剂条件下合成淀粉酯,并以取代度为评价指标,通过研究预处理对酯化反应取代度的影响来探讨预处理对淀粉化学反应活性的影响。利用正交试验对淀粉酯的合成工艺进行优化,考察了物料比、反应时间、反应温度对取代度的影响。采用FTIR、13CNMR、SEM、X-射线衍射、TG等技术对产物结构及性能进行表征。研究结果表明,在相同实验条件下,由于预处理淀粉结晶度的降低及比表面积的增大,其取代度比原淀粉高,表明预处理对淀粉的酯化反应有着显著的强化作用,反应活性提高。酯化反应发生在无定形区,其结晶类型保持不变,但结晶度增大。疏水性长碳链的引入减少了淀粉中的羟基数目因而使得淀粉酯的热稳定性提高。月桂酰基团的引入使淀粉酯的疏水性增加,粘度降低,乳化性及乳化稳定性提高。辛烯基琥珀酸基团的引入使得淀粉酯亲水性升高,粘度增大。
Starch is an abundant natural polysaccharide that is cheap, and fully biodegradable. It is usually modified physically or chemically to achieve a particular property and cater to the requirements for tailor-made. However, the intact starch granules inhibit chemical reagents from making contact with the molecules in the crystalline region, thus the chemical reactivity and reaction efficiency of native starch is usually low. Therefore, there are many methods destined to modify the structure in the crystalline region, or decrease the size of crystalline regions to increase reactivity of starch.
     In this thesis, native corn starch (NCS) was pretreated with NaOH/urea/H2O solution at cool temperature, the effects of pretreatment on crystal structure, granular morphology and functional groups were investigated, respectively, by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. During the pretreatment, the crystal structure of starch was damaged and the crystallinity decreased. X-ray diffraction revealed that PCS had the VH type crystalline pattern, which was different from NCS. It was found by scanning electron microscopy (SEM) that the PCS was spherical and the size of most PCS was about 500 nm. FT-IR showed that there were no new functional groups produced during the pretreatment process. The pretreatment effects on physicochemical properties of corn starch were investigated by analyzing the influence of pretreatment on cold-water solubility, transparency, viscosity and thermal stability. The pretreatment was evidenced to cause changes of physicochemical properties of corn starch: the degrading of the crystalline regions allowed greater entry of water into the interior of the granule thus led to the greater cold-water solubility and transparency of PCS, the viscosity of PCS decreased. In addition, the PCS also exhibited lower thermal stability.
     Using long-chain fatty acid, methyl laurate and octenyl succinic anhydride as esterification reagents, NCS and PCS were esterified under solvent-free conditions. Moreover, using the degree of substitution (DS) as an evaluating parameter, the NaOH/urea pretreatment effects on chemical reaction activity of starch were investigated by analyzing the influence of pretreatment on DS. The optimal reaction conditions were confirmed through orthogonal test, effects of molar ratio of the raw material, reaction temperature and reaction time on the degree of substitution (DS) of starch esters were studied. The products are characterized by FT-IR, 13CNMR, SEM, X-ray diffraction and TG. It shown that the smaller size and more amorphous domain of PCS improved the degree of substitution (DS) and reaction efficiency (RE) of PCS. The esterification occurred in the amorphous domain, thus the crystalline pattern did not changed but the crystallinity increased. The introduction of the long alkyl chains led to the better thermal stability of the starch ester. Lauroyl groups in the starch ester led to the better water resistance and emulsifying properties, and also resulted in the drop in viscosity. While the octyl alkenyl succinic acids in the starch ester enhanced the hydrophilicity and thus the viscosity increased.
引文
[1]唐赛珍,陶欣,我国可降解塑料的研究与发展,现代化工,2002, 22(1): 2~7
    [2] Franchetti S M, Marconato J C, Biodegradable polymers-A partial way for decreasing the amount of plastic waste. Quimica Nova, 2006, 29 (4): 811~816
    [3] Tester R F, Karkalas J, Starch. In: Steinbüchel A (Series Ed.) Vandamme E J, De Baets S, Steinbüchel A. (vol. Eds.), Biopolymers, vol. 6. Polysaccharides. II. Polysaccharides from Eukaryotes. Wiley-VCH: Weinheim, 2002: 381~438.
    [4] Donald A M, Waigh T A, Jenkins P J, et al. Internal structure of starch granules revealed by scattering studies. In: Frazier P J, Donald A M, Richmond P (Eds.), Starch: Structure and Functionality. The Royal Society of Chemistry: Cambridge, 1997: 172~179
    [5] Wurzburg, O. B. Introduction. In: Wurzburg O. B. Modified starches: properties and uses [M] Boca Raton: CRC Press, Inc. 1986, 3~16
    [6] Daniel J G, Brigitte B, Paul M B. Microscopy of starch: evidence of a new level of granule organization. Carbohydrate Polymers, 1997, 32(3~4): 177~191
    [7] Christopher G O. Towards an understanding of starch granule structure and hydrolysis. Trends in Food Science & Technology, 1997, 8: 375~382
    [8] Van der Burgt Y E M, Bergsma J, Bleeker I P, et al. Distribution of methyl substituents over crystalline and amorphous domains in methylated starches. Carbohydrate Research, 1999, 320: 100~107
    [9] Van der Burgt Y E M, Bergsma J, Bleeker I P, et a1. Distribution of methyl substituents in amylose and amylopectin from methytated potato starches. Carbohydrate Research, 2000, 325: 183~191
    [10]张燕萍,变性淀粉制造与应用,北京:化学工业出版社,2001
    [11] Singh N, Singh J, Kaur L, et al. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 2003(81): 219~231
    [12]惠斯特勒R J,贝密勒J N,帕斯卡尔E F著,淀粉的化学与工艺学,王雒文,闵大铨,杨家顺等译,北京:中国食品出版社,1988,230~238
    [13] Zobel H F. Starch crystal transformations and their industrial importance. Starch/St?rke, 1988, 40: 1~7
    [14] Tang H, Mitsunaga T, & Kawamura Y. Molecular arrangement in blocklets and starch granule architecture. Carbohydrate Polymers, 2006, 63: 555~560
    [15] Donald A M. Understanding starch structure and functionality. In: Eliassion A. C.Starch in food: structure, function and applications [M]. Cambridge and New York: Woodhead Publishing Limited and CRC Press LLC. 2004, 156~184
    [16] Christine G, Sylvia R, Horst A, et al. Crystalline parts of three different conformations detected in native and enzymatically degraded starches. Starch/st?rke, 1993, 45(9): 309-314
    [17] Tester R F, Karkalas J., and Qi X. Starch-composition, fine structure and architecture. Journal of Cereal Science, 2004(39): 15l~165
    [18] Cheetham N W H, Tao L P. Variation in crystalline type with amylose content in maize starch granules. Carbohydrate Polymers, 1998, 36: 277~284
    [19] Gerard C, Planchot V, Buleon A, Colonna P. Crystalline structure and gelatinization behaviour of genetically modified maize starches. In P. Colonna & S.Guilbert, Biopolymer Science: Food and non-food applications, Les Colloques. Paris: INRA. 1999, 91: 59~63
    [20]苏琼,王彦斌,淀粉精细化学品合成及其应用,北京:民族出版社,2004,23
    [21] Yamin F F, Lee M, Pollak L M, et al. Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred line B73. Cereal Chemistry, 1999, 76: 175~181
    [22] Tester R F, Morrison W R. Swelling and gelatinization of cereal starches. Cereal Chemistry, 1990, 67: 558~563
    [23]丁文平,王月慧,夏文水,脉冲核磁共振和DSC测定淀粉回生的比较研究,粮食与饲料工业,2006,1:43~44
    [24] Cheetham N W H, Tao L P. The effects of amylase content on amylase molecular size and on the average chain length of amylopectin in maize starches. Carbohydrate Polymers, 1997, 33: 251~261
    [25]侯汉学,不同来源淀粉的结构与功能相关性及半干法阳离子化机理研究,硕士学位论文,山东农业大学,2007
    [26] Hoover R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 2001, 45: 253~267
    [27] Singh J, Singh N. Studies on the morphological and rheological properties of granule cold water soluble corn and potato starches. Food Hydrocolloids, 2003, 17: 63~72
    [28] Buleon A, Colonna P, Planchot V, et al. Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 1998, 23: 85~112
    [29] FAO Food and Nutrition Paper~66. Carbohydrates in human nutrition. Report of a joint FAO/WHO Expert Consultation, Rome, 1997
    [30] Bao J S, Corke H, Sun M. Genetic diversity in the physicochemical properties of waxy rice (Oryza sativa) starch. Journal of the Science of Food and Agriculture , 2004, 84: 1299~1306
    [31] Lii C Y, Tsai M L, Tseng K H. Effects of amylase content on the rheological properties of rice starch. Cereal Chemistry, 1996, 73: 415~420
    [32] Chen Z H, Schols H A, Voragen A G J. Diferently sized granules from acetylated potato and sweet potato starches differ in the acetyl substitution pattern of their amylase populations. Carbohydrate Polymer, 2004, 56: 219~226
    [33] Shi X H, BeMiller J N. Aqueous leaching of derivatized amylose from hydroxypropylated common corn starch granules. Starch/St?rke, 2002, 54: 16~19
    [34] Richard F T, John K, Xin Q. Starch-composition, fine structure and architecture. Journal of Cereal Science, 2004, 39(2): 151~165
    [35]何小维,黄强,罗发兴等,超声处理后的玉米淀粉与环氧丙烷的反应机理,华南理工大学学报(自然科学版),2005,3(8):91~94
    [36] Shogren R L. Modification of maize starch by thermal processing in glacial acetic acid. Carbohydrate Polymers, 2000, 43(4): 309~315
    [37] Cao Y M, Qing X S, Sun J, et al. Graft copolymerization of acrylamide on to carboxymethyl starch. European Polymer Journal, 2002, 38 (9): 1921~1924
    [38] Achremowicz B, Gumul D, Piasek A B, et al. Air oxidation of potato starch over Cu( II) catalyst. Carbohydrate Polymers, 2000, 42(1): 45~50
    [39]顾正彪,吴加根,淀粉丙烯睛接枝共聚物及其皂化物的颗粒结构特性,无锡轻工大学学报,1999,18(1):21~25
    [40]杨铭铎,曲敏,李元瑞,氧化玉米淀粉磷酸酯的研究(II)?基本性质的探讨,中国粮油学报,2001,16 (5):50 ~54
    [41]吕生华,马建中,降解淀粉/DMDAAC~AM接枝共聚物复鞣剂的合成及应用,精细化工,2003,20(9):561~563
    [42] Mostafa K M. Graft polymerization of methacrylic acid on starch and hydrolyzed starches. Polymer Degradation and Stability, 1995, 50(2): 189~194
    [43] Shogren R L. Rapid preparation of starch esters by high temperature/pressurere action. Carbohydrate Polymers, 2003, 52 (3): 319~326
    [44] Singh N, Chawla D, Singh J. Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chemistry, 2004, 86(4): 601~608
    [45]刘粼,酶-化学复合法制备醋酸酯淀粉,食品科学,1999,(1):37~39
    [46] Govindasamy S, Campanella O H, Oates C G. The single screw extruder as a bioreactor for sago starch hydrolysis. Food Chemistry, 1997, 60(1): 1~11
    [47] Xu Y X, Dzenis, Hanna M A. Water solubility, thermal characteristics andbiodegradability of extruded starch acetate foams. Industrial Crops and Products, 2005, 21(3): 36l~368
    [48]张本山,张友全,曾新安,杨连生,预糊化玉米淀粉亚微晶结构及性质的研究,郑州工程学院学报,2000,21(4):23~26
    [49]张干伟,童群义,淀粉来源及预处理方式对淀粉接枝共聚反应的影响,无锡轻工大学学报,23(6):23~26
    [50]梅小峰,朱谱新,吴大诚,淀粉糊化对接枝共聚反应的影响,棉纺织技术,2005,33(5):261~264
    [51] Gunaratne A, Hoover R. Effct of heat-moisture treatment on the stmcture and physicochemical properties of tuber and root starches. Carbohydrate Polymers, 2002, 49(4): 425~437
    [52]罗志刚,高群玉,杨连生,湿热处理对淀粉性质的影响,食品科学,2005,26(2):50~54
    [53]徐忠,缪铭,王鹏等,湿热处理对不同淀粉颗粒结构及性质的影响,哈尔滨商业大学学报(自然科学版),2005,21(5):649~653
    [54]赵凯,张守文,方桂珍等,压热处理对玉米淀粉颗粒结构及热焓特性的影响研究,食品科学,2004,25(11):31~33
    [55] Jacobs H, Mischenko N, Koch M H J, et al. Evaluation of the impact of annealing on gelatinisation at intermediate water content of wheat and potato starches: A differential scanning calorimetry and small angle X-ray scattering study. Carbohydrate Research, 1998, 306: 1~10
    [56]张守文,赵凯,杨春华等,热处理对不同淀粉糊性质的影响研究,中国食品学报,2005,5(4):87~90
    [57] Hoover R, Vasanthan, et a1. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume and tuber starches. Carbohydrate Research, 1994, 252: 33~53
    [58] Frano C M L, Ciacco. Effect of heat-moisture treatment on the enzymetic susceptihility of corn starch granules. Starch/St?rke, 1995, 47: 223~228
    [59] Perera C, Hoover. Influence of hydroxypropylation on retrogredntion properties of native, defatted and heat-moisture treated potato starches. Food Chemistry, 1999, 64: 361~375
    [60] Baldwin P M, Adler J, Davies M C, et al. Starch damage part 1: Characterization of granule damage in ball~milled potato starch study by SEM. Starch/St?rke, 1995, 47: 247~251
    [61] Tamaki S. Structural change of maize starch granules by ball~mill treatment. Starch/St?rke, 1988, 50: 342~348
    [62] Tamaki S. Structural change of potato starch granules by ball~mill treatment. Starch/St?rke, 1997, 49: 431~436
    [63] Huang Z Q, Lu J P, Li X H, et al. Effect of mechanical activation on physico~chemical properties and structure of cassava starch. Carbohydrate Polymers, 2007, 68: 128~135
    [64]黄祖强,童张法,胡华宇等,机械活化对木薯淀粉冻融稳定性的影响,食品工业科技,2006,3(27):58~60
    [65] Huang Z Q, Xie X L, Chen Y, et al. Ball-milling treatment effect on physicochemical properties and features for cassava and maize starches. Comptes Rendus Chimie, 2008, 11: 73~79
    [66]黄祖强,陈渊,梁兴唐等,机械活化对木薯淀粉的支链淀粉含量及抗性淀粉形成的影响,高校化学工程学报,2007,21(3): 471~476
    [67]黄祖强,陈渊,钱维金等,机械活化对木薯淀粉醋酸酯化反应的强化作用,过程工程学报,2007,3:501~505
    [68]黄祖强,陈渊,钱维金等,机械活化对玉米淀粉结晶结构与化学反应活性的影响,化工学报,2007,5:1307~1313
    [69] González Z, Pérez E. Evaluation of lentil starches modified by microwave irradiation and extrusion cooking. Food Research International, 2002, 35: 415~420
    [70] Luo Z G, He X W, Fu X. Effect of microwave radiation on the physicochemical properties of normal maize, waxy maize and amylomaize V starches. Starch/Starke, 2006, 58: 468~47
    [71] Ndife M, Sumnu G, Bayindirh L. Differential scanning calorimetry determination of gelatinization rates in different starches due to microwave heating. Lebensmittel-Wissenschaft und-Technologie, 1998, 31: 484~488
    [72]邱怡,叶君,毕彦霖等,微波辐射下高含水量木薯淀粉的热效应及结晶结构的变化,造纸科学与技术,2007,26(2):34~36
    [73] Lewandowicza G, Jankowski T, Fornal J. Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydrate Polymers, 2000, 42: 193~199 Lewandowicza G, Jankowski T, Fornal J. Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches. Carbohydrate Polymers, 1997, 34: 213~220
    [74] Mao G J, Wang P, Meng X S, et al. Crosslinking of Corn Starch with Sodium Trimetaphosphate in Solid State by Microwave Irradiation. Journal of Applied Polymer Science, 2006, 102: 5854~5860
    [75] Singh V, Tiwari A. Microwave-accelerated methylation of starch. Carbohydrate Research, 2008, 343:151~154
    [76] Yu H M, Chen S-T, Suree P, et al. The Effects of Microwave Irradiation on the Acid-Catalyzed Hydrolysis of Starch. The Journal of Organic Chemistry, 1996, 61(26):9608-9614
    [77] Singh V, Tiwari A, Pandey S, et al. Microwave-accelerated Synthesis and Characterization of Potato Starch-g-poly(acrylamide). Starch/St?rke, 2006, 58: 536~543
    [78] Mason T J, Paniwnyk L, Lorimer J P. The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 1996, 3(3): 253~260
    [79] Jacobs H, Delcour A. Hydrothermal modifications of granular starch, with retention of the granular structure: a review. Journal of Agricultural and Food Chemistry, 1998, 46(8): 2895~2905
    [80] Isona Y, Kumagai T. Ultrasonic degradation of waxy rice starch. Bioscience Biotechnology Biochemistry. 1994, 58(10): 1799~1802
    [81]林建萍,黄强,楼建明,超声波在淀粉变性上的应用,上海纺织科技,2002,30 (4):22~23
    [82]雷娜,超声波对淀粉超分子结构及反应性能的影响,硕士学位论文,华南理工大学,2001
    [83] Seguchi M, Hignsa T. Study of wheat starch structures by sonication treatment. Cereal Chemistry, 1994, 71(6): 639~641
    [84]李坚斌,温雪馨,李琳等,超声场对马铃薯淀粉颗粒形貌与结晶结构的影响,农业工程学报,2008,24(4):284~286
    [85] Gallant D, Degrois M. Microscopic effects of ultrasound on the structure of potato starch. Starch/St?rke, 1972, 24: 116~123
    [86] Higiwara S, Nishiyama K. Effect of ultrasonic irradiation on the structure of potato starch granules. J Jan Soc Starch Sci, 1984, 31: 127~133
    [87]张永和,超声波降解作用对淀粉性质的影,食品工业(台湾),2001,33(6):19~31
    [88]赵奕玲,廖丹葵,张友全等,超声波对木薯淀粉性质及结构的影响,过程上程学报,2007,7(6):1138~1143
    [89] Renata C B, Bozena R, Salah L, et al. Degradation of chitosan and starch by 360kHz ultrasound. Carbohydrate Polymers, 2005, 60(2): 175~184
    [90]罗志刚,扶雄,罗发兴等,超声处理下水相介质中高链玉米淀粉糊的性质,华南理工大学学报(自然科学版),2008,36(11):74~78
    [91] Huang Q, Li L, Fu X. Ultrasound Effects on the Structure and Chemical Reactivity of Corn starch Granules. Starch/St?rke, 2007, 59: 371~378
    [92]耿予欢,张本山,高大维,超声波影响异麦芽低聚糖生产的研究,食品工业科技,1999,20 (1):14~16
    [93]高大维,陈满香,梁站等,超声波催化糖化酶水解淀粉的初步研究,华南理工大学学报(自然科学版),1994,22(1):70~74
    [94]颜栋美,姚艾东,电离辐射在食品中的应用,食品科学, 1996, 6:19~23
    [95] Kerf M D, Mondelaers W, Lahorte P, et al. Characterisation and disintegration properties of irradiated starch. Internationa1 Journa1 of Pharmaceutics, 200l, 221(1~2): 69~76
    [96] Joseph O A, Kwaku G D, Amanda M. Effect ofγ-irradiation on some physicochemical and thermal properties of cowpea (Vigna unguiculata L. Walp) starch. Food Chemistry, 2006, 95: 386~393
    [97] Joseph O A, Kwaku G D, Amanda M. Functional properties of cowpea (Vigna unguiculata L. Walp) flours and pastes as affected byγ-irradiation. Food Chemistry, 2005, 93: 103~111
    [98] Kang K J, Byun M W, Yook H S, et al. Production of modified starches by gamma irradiation. Radiation Physics and Chemistry, 1999, 54: 425~430
    [99] Yu Y, Wang J. Effect ofγ-ray irradiation on starch granule structure and physicochemical properties of rice. Food Research International, 2007, 40: 297~303
    [100] Wu D X, Shu Q Y, Wang Z H, er al. Effect of gamma irradiation on starch viscosity and physicochemicalproperties of different rice. Radiation Physics and Chemistry, 2002, 65: 79~86
    [101] Graham J A, Panozzo J F, Lim P C, et al. Effects of gamma irradiation on physical and chemical properties of chickpeas (Cicerarietinum). Journal of the Science of Food and Agriculture, 2002, 82: 1599~1605
    [102] Nemtanu M R, Minea R, Kahraman K, et al. Electron beam technology for modifying the functional properties of maize starch. Nuclear Instruments and Methods in Physics Research A, 2007, 580: 795~798
    [103] Wu Z W, Song X Y. Carboxymethylation ofγ-Irradiated Starch. Journal of Applied Polymer Science, 2006, 101: 2210~2215
    [104] Wongsuban B, Muhammad K, Ghazali Z, et al. The effect of electron beam irradiation on preparation of sago starch/polyvinyl alcohol foams. Nuclear Instruments and Methods in Physics Research B, 2003, 211: 244~250
    [105] Zou J J, Liu C J, Eliasson B. Modification of starch by glow discharge plasma. Carbohydrate Polymers, 2004, 55: 23~26
    [106] Bertolini A C, Mestres C, Colonna P, et al. Free radical formation in UV and gamma-irradiated cassava starch. Carbohydrate Polymers, 2001, 44(3): 269~271
    [107] Suda K, Nispa M. Enhancement of the grafting performance and of the water absorption of cassava starch graft copolymer by gamma radiation. Radiation Physics and Chemistry, 1997, 49(6): 689~696
    [108]张力田,变性淀粉,华南理工大学出版社,1999,18 ~19,169~172
    [109] Kerr R W. Degradation of corn starch in the granule state by acid. Starch/St?rke, 1952, 4: 39~41
    [110] Kang K, Kim J K, Kim S K. Three stage hydrolysis pattern of rice starch by acid treatment. J. Appl. Glycosci.1994, 4: 201~204
    [111] Vasanthan T, Bhatty R S. Physicochemical properties of small- and large- granule starches of waxy, regular, and high~amylose barleys. Cereal Chemistry, 1996, 73: 199~207
    [112]孙秀萍,酸水解淀粉制备淀粉微晶及其结晶结构与性质的研究,硕士论文天津大学,2003
    [113] Jayakody L J, Hoover R. The effect of lintnerization on cereal starch granules. Food Research International, 2002, 35: 665~680
    [114] Singh V, Ali S Z. Acid degradation of starch: The effect of acid and starch type. Carbohydrate Polymers, 2000, 41: 191~195
    [115] Thirathumthavorn D, Charoenrein S. Thermal and Pasting Properties of Acid-treated Rice Starches. Starch/St?rke, 2005, 57: 217~222
    [116]孙秀萍,于九皋,刘延奇,不同淀粉的酸解历程及性质研究,精细化工,2004,21(3):202~205
    [117] Atichokudomchai N, Shobsngob S, Chinachoti P, et al. A Study of Some Physicochemical Properties of High-Crystalline Tapioca Starch. Starch/St?rke, 2001, 53: 577~581
    [118] Kainuma K, French D. Naegeli amylodextrin and its relationship to starch granule structure. I. Preparation and properties of amylodextrins from various starch types. Biopolymers, 1971, 10: 673~680.
    [118] Wang Y J, Truong V Den, Wang L F. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydrate Polymers, 2003, 52: 327~333
    [120] Gunaratne A, Gunaratne, Corke H. Influence of prior acid treatment on acetylation of wheat, potato and maize starches. Food Chemistry, 2007, 105: 917~925
    [121]刘亚伟,张杰,酸解-水热处理对甘薯抗性淀粉形成的影响研究,食品科学,2003,24 (6):41~45
    [122] Chung H J, Jeong H Y, Lim S T. Effects of acid hydrolysis and defatting on crystallinity and pasting properties of freeze-thawed high amylase corn starch. Carbohydrate Polymers, 2003, 54(4): 449~455
    [123]Atichokudomchai N, Varavinit S, Chinaclloti P. A Study of annealing and freeze-stabllity of acid-modified tapioca starches by diferential scaning calorimetry(DSC). Starch-Starke, 2002, 54(11): 343~349
    [124]Oosten B J. Tentative hypothesis to explain how electrolytes affect thegelatinization temperature of starches in water. Starch/ St?rke, 1982, 34: 233
    [125] Chen J, Jane J. Preparation of granular cold-water-soluble starches by alcoholic-alkaline treatment. Cereal Chemistry, 1994, 71(2): 618~622
    [126]秦海丽,顾正彪,酒精碱法制备颗粒状冷水可溶淀粉的研究进展,粮食与饲料工业,2005,1:18~19
    [127]卢玉栋,吴宗华,糊化条件对淀粉溶解度及性能的影响,中国造纸学报,2003,18(1):94 ~96
    [128]阮少兰,刘亚伟,阮竞兰等,颗粒冷水可溶淀粉制备技术研究,中国粮油学报,2005,20 (4):29~33
    [129]高群玉,蔡丽明,陈惠音等,颗粒状冷水可溶马铃薯淀粉的制备及性质研究,食品工业科技,2007,28(3):117~120
    [130]高群玉,蔡丽明,陈惠音等,颗粒状冷水可溶木薯淀粉的制备及性质研究,武汉工业学院学报,2006,25(4):1~5
    [131] Chen J, Jane J. Properties of Granular Cold-Water-Soluble Starches Prepared by Alcoholic-Alkaline Treatments. Cereal Chemistry, 1994, 71(6): 623~626
    [132]王霆,宋冶,郑秀丽,羧甲基玉米淀粉合成新工艺,东北林业大学学报,2005,33( 4) :1 13~114
    [133] Tijsen C J, Voncken R M, Beenackers A A C M. Design of a continuous Process for the production of highly substituted granular carboxymethyl starch. Chemical Engineering Science, 2001, 56(2): 411~418
    [134]刘晓婷,董海洲,碱催化干法制备阳离子淀粉的研究,中国粮油学报, 2004,19(3):38~41
    [135] Pal S, MaI D, Singh R P. Cationic starch: an effective flocculating agent. Carbohydrate Polymers, 2005, 59(4): 417~423
    [136]具本植,张淑芬,杨锦宗,氨基甲酸乙基淀粉的半干法制备,现代化工,2003,23(8):22~24
    [137] Wang,Y J, Wang L F. Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers, 2003, 52: 207~217
    [138]玉秀艳,朱文仓,王彪,氧化淀粉研究的新进展,粘接,2004,25(3):35~38
    [139]王彦斌,苏琼,双氧水氧化淀粉的机理初探,西南民族学院学报,1997,23(3):278~280
    [140]杜建功,赵雅琴,张占拄,双氧水对淀粉的氧化性能研究,化工科技,2001,9(6):16~18
    [141] Olayide S L. Composition, physicochemical properties and retrogradationchara characteristics of native, oxidized, acetylated and acid-thinned new cocoyam (xanthosoma sagittifolium) starch. Food Chemistry, 2004, 87(2): 205~218
    [142] Kuakpetoon D, Wang Y J. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylase content. Carbohydrate Research, 2006, 341(11): 1896~1915
    [143] Evers A O, McDermott E E. Scanning electron microscopy of wheat starch II. Structure of granules modified alpha-amylolysis, preliminary report. Starch/St?rke, 1970, 22: 23~26
    [144] Evers A O, Gough B M, Pybus J N. Scanning Electron Microscopy of Wheat Starch. IV. Digestion of large Granules by Glucoamylase of Fungal (Aspergillus niger) Origin). Starch/St?rke, 1971, 23: 16~18
    [145] Whistler R L. Microporous granule starch matrix composition. US 4985082, 1991
    [146] Takahiro N, Yasuhiro T, Tadahiro N. Factors Relating to Digestibility of Raw Starch by Amylase.淀粉科学(日), 1993, 40(3): 271~276
    [147] Celia M L, Franco S, Preto J R, César F C. Factors that Affect the Enzymatic Degradation of Natural Starch Granules-Effect of the Size of the Granules. Starch/St?rke, 1992, 44(11): 422~426
    [148] Franco C M L, Ciacco C F, Tavares D Q. Studies on the susceptibility of granular cassava and corn starches to enzymatic attack. II Study of the granular structure of starch. Starch/St?rke, 1988, 40 (1): 29 ~ 32
    [149] Sreenath H K. Studies on starch granules digestion byα-amylase. Starch/St?rke, 1992, 44(2): 61~63
    [150]徐忠,廖铭,刘命理等,玉米多孔淀粉颗粒结构及性质的研究,食品科学,2006,27(1):128~132
    [151]林江涛,刘国琴,微孔性变性淀粉的研究,郑州粮食学院学报,1999,20(4):245~250
    [152]任便利,陈均志,叶林宇,酶-化学法制取氧化淀粉,粮食与饲料工业, 2005,(l1):21~22
    [153]赛华丽,高群玉,梁世中,抗性淀粉的酶法研制,食品与发酵工业,28(5):6~9
    [154] Wootton M, Ho P, Kensington N S W. Alkali gelatinization of wheat starch. Starch/St?rke, 1989, 7: 261~265
    [155] Ragheb A A, El-Thaiouth I A, Tawfik S, et al. Gelatinization of starch in aqueous alkaline solutions. Starch/St?rke, 1995, 9: 338~345
    [156] Robert S A, Cameron R E. The effects of concentration and sodium hydroxide on the rheological properties of potato starch gelatinization. Carbohydrate Polymers, 2002, 50: 133~143
    [157] Hebeish A, Abd El-Thalouth I, El-Kashouti M. Gelatinization of Rice Starch in Aqueous Urea Solutions. Starch/St?rke, 1981, 33: 84~90
    [158] KirpershlakéZ, Pakshver A B, Malyugin Y Y, er al. Low-temperature solubility of cellulose in aqueous alkali solutions containing urea. Translated from Khimicheskie Volokna, 1979, 6: 26~27
    [159] Zhou J P, Zhang L N, Cai J. Behavior of Cellulose in NaOH/Urea Aqueous Solution Characterized by Light Scattering and Viscometry. Journal of Polymer Science: Part B: Polymer Physics, 2004, 42: 347~353
    [160] Cai J, Zhang L N. Unique Gelation Behavior of Cellulose in NaOH/Urea Aqueous Solution. Biomacromolecules 2006, 7: 183~189
    [161] Qi H S, Chang C Y, Zhang L N. Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose, 2008, 15: 779~787
    [162] Cai J, Zhang L, Chang C, et al. Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/Urea solution at low temperature. Chemical Physics and Physical Chemistry, 2007, 8: 1572~1579
    [163] Cai J, Zhang L, Zhou J, et al. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure andproperties. Advanced Materials, 2007, 19: 821~825
    [164]肖苏尧,淀粉纳米颗粒的制备及其作为抗癌药物基因载体的研究,博士学位论文,湖南大学,2007
    [165]滕凤恩,王煜明,X射线分析原理与晶体衍射实验,长春:吉林大学出版社,2002, 338
    [166] Kurakake M, Noguchi M. Effects on Maize Starch Properties of heat-treatmet with Water-Ethanol Mixtures. Cereal Science, 1997, 25(2): 253~260
    [167] Zhou J P, Zhang L N. Solubility of cellulose in NaOH/urea aqueous solution. Polymer Journal, 2000, 32(10): 866~870
    [168] Hornig S, Heinze T. Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromolecules, 2008, 9(5): 1487~1492
    [169] Van Soest J J G, Hulleman S H D, de Wit D, et al. Crystallinity in Starch Bioplastics. Ind Crops Prod, 1996, 5(1):11~22
    [170]梁勇,非晶颗粒态淀粉及其生物与化学反应活性研究,博士学位论文,华南理工大学,2002
    [171]刘延奇,酸酶催化水解对淀粉结晶结构与性质的影响研究,博士学位论文,天津大学,2003
    [172] Huang M F, Yu J G, Ma X F. Studies on the properties of montmorillonite-reinforced thermoplastic starch composites. Polymer, 2004, 45: 7017~7023
    [173] Lin J H,Lee SY, Chang Y H. Effect of acid-alcohol treatment on the molecularstructure and physicochemical properties of maize and potato starches. Carbohydrate Polymers, 2003, 53( 4): 475~482
    [174] Karim A A, Norziah M H, Seow C C. Methods for the Study of Starch Retrogradation. Food Chemistry, 2000, 71(1): 9~36
    [175] Liu D G, Wu Q L, Chen H H,et al. Transitional properties of starch colloid with particle size reduction from micro to nanometer. Journal of Colloid and Interface Science, 2009, 339: 117~124
    [176] Jeon Y S, Ichon-city, Viswanathan A, et al. Studies of Starch Esterification: Reactions with Alkenyl succinates in Aqueous Slurry Systems. Starch/St?rke, 1999, 51(2-3): 90~93
    [177] Chi H, Xu K, Xue D H, et al. Synthesis of dodecenyl succinic anhydride (DDSA) corn starch. Food Research International, 2007, 40: 232~238
    [178] Ruan H, Chen Q H, Fu M L, et al. Preparation and properties of octenyl succinic anhydride modified potato starch. Food Chemistry, 2009, 114: 81~86
    [179] Abdollahzadeh E, Mehranian M, Vahabzadeh. Empirical Modeling of Starch Ester Synthesis from Octenylsuccinic Anhydride. Starch/St?rke, 2008, 60: 398~407
    [180] He G Q, Song X Y, Ruan H, et al. Octenyl Succinic Anhydride Modified Early Indica Rice Starches Differing in Amylose Content. Journal of Agricultural and Food Chemistry, 2006, 54: 2775~2779
    [181] Song X Y, He G Q, Ruan H, et al. Preparation and Properties of Octenyl Succinic Anhydride Modified Early Indica Rice Starch. Starch/St?rke, 2006, 58: 109~117
    [182] Rajesh B, Rekha S. Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydrate Polymers, 2006, 66: 521~527
    [183] Thirathumthavorn D, Charoenrein S. Thermal and pasting properties of native and acid-treated starches derivatized by 1-octenyl succinic anhydride. Carbohydrate Polymers, 2006, 66: 258~265
    [184] Jyothi A N, Rajasekharan K N, Moorthy S N, et al. Synthesis and Characterization of low DS Succinate Derivatives of Cassava (Manihot esculenta Crantz) Starch. Starch/St?rke, 2005, 57: 319~324
    [185] Amol C. Kshirsagar, Rekha S. Singhal Optimization of starch oleate derivatives from native corn and hydrolyzed corn starch by response surface methodology. Carbohydrate Polymers, 2007, 69: 455~461.
    [186]赵奕玲,超声处理对淀粉性能的影响及磷酸酯淀粉的制备与应用研究,硕士学位论文,广西大学,2007
    [187] Heinze T, Talaba P, Heinze U. Starch derivatives of high degree offunctionalization.1. Effective, homogeneous synthesis of p-toluenesulfonyl (tosyl)starch with a new functionalization pattern. Carbohydrate Polymers, 2000, 42: 411~420
    [188]杨冬芝,新型功能基淀粉衍生物的制备及其对肌酐的吸附,博士学位论文,天津大学,2002
    [189] Wang Y J, Wang L F. Characterization of acetylated waxymaize starches prepared under catalysis by different alkali and alkaline-earth hydroxides. Starch/St?rke, 2002, 54: 25~30
    [190] Aburto J, Alric I, Thiebaud S. Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. Journal of Applied Polymer Science, 1999, 74: 1440~1451
    [191] Bao J, Xing J, Phillips D L ,et al. Physical properties of octenyl succinic anhydride modified rice, wheat, and potato starches. Journal of Agricultural and Food Chemistry, 2003, 51: 2283~2287
    [192] Shogren R L, Viswanathan A, Felker F, et al. Distribution of octenyl succinate groups in octenyl succinic anhydride modified waxy maize starch. Starch/Starke, 2000, 52: 196~204
    [193] Ortega-Ojeda F E, Larsson H, & Eliasson A C. Gel formation in mixtures of hydrophobically modified potato and high amylopectin potato starch. Carbohydrate Polymers, 2005, 59: 313~327
    [194] Park S, Chung M G, Yoo B. Effect of octenylsuccinylation on rheological properties of corn starch pastes. Starch/St?rke, 2004, 56: 399~406
    [195] Thomas D J, Atwell W A. Starches. Minnesota: The American Association of Cereal Chemists, Inc. 1999
    [196] Lawal O S. Succinyl and acetyl starch derivatives of a hybrid maize: physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry. CarbohydrateResearch, 2004, 339: 2673~2682
    [197] Neuman U, Wicgc B, Warwe1 S. Synthesis of Hydrophobic Starch Esters by Reaction of Starch with Various Carboxylic Acid Imidazolides. Starch/St?rke, 2002, 54: 449~453
    [198] Aburto J, Alric I, Borredon E, et al. Preparation of Long-chain Esters of Starch Using Fatty Acid Chlorides in the Absence of an Organic Solvent. Starch/St?rke, 1999, 51(4): 132~135
    [199] Aburto J, Hamaili H, Mouysset-Baziard G, et al. Free-solvent Synthesis and Properties of Higher Fatty Estersof Starch-Part 2. Starch/St?rke, 1999, 51: 302~307
    [200] Aburto J, ALric I, BorreAon E. Organic Solvent-free Transesterification of Various Starches with Lauric Acid Methyl Ester and TriacylGlycerides. Starch/St?rke, 2005, 57: 145~152
    [201] Junistia L, Sugih A K, Manurung R, et al. Synthesis of Higher Fatty Acid Starch Esters using Vinyl Laurate and Stearate as Reactants. Starch/St?rke, 2008, 60: 667~675
    [202] Junistia L, Sugih A K, Manurung R, et al. Experimental and Modeling Studies on the Synthesis and Properties of Higher Fatty Esters of Corn Starch. Starch/St?rke, 2009, 61: 69~80
    [203] Varavinit S, Chaokascm N,Shobsngob S. Studies of Flavor Encapsulation by Agents Produced from Modified Sago and Tapioca Starches. Starch/St?rke, 2001, 53: 281~287
    [204]徐爱国,张燕萍,孙忠伟,食品工业科技,2004,25(5):85~87
    [205] Shogren R, Biresaw G. Surface properties of water soluble maltodextrin, starch acetates and starch acetates/alkenylsuccinates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 298: 170~176
    [206] Ma X F, Jian R J, Chang P R. Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules, 2008, 9: 3314~3320
    [207] Werner M, Al-Higari M. Acylation of Starch with Vinyl Acetate in Water. Starch/St?rke, 2004, 56: 118~121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700