浸泡和发芽对高粱功能特性及大分子组分的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高粱含有丰富的微量营养素,如矿物质和维生素;也含有大量的常量营养素,如碳水化合物、蛋白和脂质。高粱中抗性淀粉的存在使得高粱受到糖尿病和肥胖病人的喜爱。此外,高梁还可能是谷朊过敏患者的一种食物选择。发芽高粱表现出可以与发芽大麦相当的淀粉酶活性,因此发芽高粱能够作为原料用于加工多种工业食品。关于以高粱为原料的食品研究在发达及发展中国家都有所研究。这些研究成果主要集中于研究浸泡和发芽对高粱婴儿麦片、颗粒食品、区域性啤酒以及其他农产品工业加工品,如贮藏啤酒、面包等。
     本文首先对浸泡和发芽条件进行优化,并对发芽和浸泡对高粱颗粒的物重损失、可溶性固形物(SS)含量、冷糊黏度、淀粉酶活性、单宁及蛋白含量的影响进行研究。所研究的影响因素主要有浸泡时间、浸泡温度、发芽时间和发芽温度。经研究分析,发现发芽提高了高粱的物重损失、SS含量、淀粉酶活性和蛋白含量,同时发芽降低了高粱淀粉冷糊黏度和单宁含量;经响应面优化得出高粱浸泡发芽的最佳条件为31℃浸泡24h和30℃发芽4.5d,该条件经试验验证与预测值相符,所优化条件可取。在上述实验条件下,对发芽高粱的出粉率进行研究,发现经发芽后高粱的出粉率显著提高,这主要是因为发芽高粱表皮比较脆弱,从而使得磨粉时出粉率提高;对所得高粱粉的挥发性物质进行研究,在原高粱中共检测到16个峰,检索到14种化合物,经浸泡和发芽处理后产生了一些新的风味物质,在浸泡高粱、发芽3d高粱、发芽5d高粱中分别检测到20、23、25个峰,说明在浸泡和发芽过程中产生一些新的醛类、酮类、酯类和酸类,而且这些风味物质随着发芽时间的延长而增加,发芽后高粱呈甜甜的花香味,这主要是由于其中较高含量的乙酸乙酯、3-甲基丁醛、戊醛、2-戊酮、乙酸、2-甲基丙酯、丁酸乙酯、己醛、1-辛烯-3-醇、安息香醛。
     高粱天然含有植酸、单宁等抗营养因子,这些抗营养因子的存在降低了高粱营养成分的膳食利用率。因此,本文研究了木灰提取物浸泡法对这些抗营养因子的影响,并评价了浸泡和发芽对高粱粉营养特性的影响。结果得出,采用木灰提取物浸泡24h后单宁含量显著降低了50.2%而且降低的趋势随着随后发芽时间的延长更为显著,发芽5d后高粱中的单宁含量降低了69.3%、植酸降低了66.4%,同时高粱中的灰分、脂质、纤维和淀粉含量也有轻微降低;发芽显著提高了高粱蛋白、必需氨基酸和糖类中果糖、葡萄糖、麦芽糖的含量,高粱蛋白质的体内消化性随着发芽时间的延长显著提高,高粱淀粉呈现更利于淀粉酶作用的多孔形态。
     发芽对高粱功能特性及对蛋白酶、淀粉酶活性影响研究结果表明:发芽3d时,蛋白酶、淀粉酶活性最高;与未发芽高粱相比,发芽高粱具有较好的蛋白溶出率及蛋白溶解性(pH6时蛋白溶解度最高)、最低凝胶浓度为8%(未发芽的为18%)、较低的容重、较好的吸水(131~142%)吸油性(90~108%)、乳化性及乳化稳定性提高、起泡性及泡沫稳定性得到改善且均随着发芽时间的延长而提高。功能性评价结果进一步表明,发芽能够改善高粱粉的功能特性,这使得发芽高粱粉具有满足制备新食品的条件。
     采用超声波提取高粱淀粉,并研究以超声功率(X1)、超声时间(X2)、料液比(X3)为考察对象的响应面优化工艺,经统计方差分析得出各因子对淀粉提取率的影响显著性为:X1、X2、X3、X12、X22对淀粉提取率有显著影响,其次为X2X3交互项(p<0.05)。优化后得出最优模型及最优方程,求解后得到最佳提取条件为:超声功率600W、提取时间4min、液料比30(V/W),在此条件下淀粉提取率预测值为17.06%,经验证试验所得实测值为17.08±0.33%,两者无显著差异,模型结果可取。进一步对提取的淀粉进行了物理化学和功能特性研究。结果得出:在低于50℃时浸泡高粱淀粉和发芽高粱淀粉具有相当的溶胀度和溶解指数,然而在高于50℃时发芽高粱淀粉表现出较浸泡高粱淀粉和原淀粉低的溶胀度和较高的溶解指数;采用RVA研究淀粉糊的性质,结果表明发芽高粱淀粉具有较原高粱淀粉(454BU)低的峰值黏度(86BU);X-射线衍射表明两种淀粉衍射峰均呈典型的谷物淀粉峰A-型,相对结晶度为9.62-15.50%;DSC测得原高粱淀粉的焓变温度为78.06℃,凝胶玻璃化焓值为2.83 J/g,而发芽5d的高粱淀粉焓变温度为47.22℃,凝胶玻璃化焓值为2.06 J/g;流变测定得出所有淀粉悬液的贮存模量和损失模量随测定温度的增加逐渐增加,在70℃时达到最大,之后逐渐降低;对淀粉的表面结构进行研究,发现淀粉表面呈多孔状,这种结构可能更有利于淀粉酶酶解作用。总而言之,浸泡和发芽对高粱淀粉的物理化学和功能特性产生了较大影响。
     以蛋白提取率为指标,选取超声时间、pH、提取时间和料液比为考察因素,利用响应面优化高粱蛋白的提取率,得到相关性良好的二级模型(R2=0.967),经模型计算最优提取条件为:超声功率400W、pH8、提取时间40min、液料比20(V/W),此条件下蛋白得率预测值为5.36g/100g高粱粉,经试验得实测值为5.43g/100g高粱粉,实测值与预测值无显著差异,说明模型可取。在以上结果基础上,采用SDS-PAGE对所提蛋白进行分析,并采用茚三酮比色法测定了游离氨基酸总量以及采用DSC分析蛋白的热力学特性。SDS-PAGE结果表明经浸泡后高粱中的大分子量蛋白增加,进一步说明由于淀粉的降解使得醇溶蛋白的提取率和含量增加;经浸泡后分子量为66.2KDa条带无明显差异,但是经发芽3d时显著降低,然而继续发芽到5d该条带没有变化,分子量为43.0kDa条带颜色在浸泡后有轻微下降,经发芽后相应的转化为31.0kDa条带;氨基酸总量分析表明发芽5d后总游离氨基酸含量增为原来的四倍,这主要是由于内脂酶、蛋白酶、淀粉酶等水解酶类作用的结果;DSC表征的高粱蛋白的热力学特性结果表明,经发芽后高粱蛋白的热变性温度由原来的70.83℃升高到84.30℃,变性焓值无显著差异由3.09 J/g变为3.05 J/g。
     采用清除DPPH自由基和ABTS法对浸泡和发芽高粱的抗氧化性进行评价,结果表明浸泡和发芽显著影响高粱的抗氧化性。如前所述,高粱中含有较高含量的单宁和植酸,这些物质赋予高粱具有较高的抗氧化性。原料高粱具有最高的DPPH清除率(21.0μM Trolox/100 g),其次为浸泡高粱(18.8μM Trolox/100 g),然后为发芽3d的高粱(13.0μM Trolox/100 g),最后为发芽5d的高粱(11.2μM Trolox/100 g)。经发芽后,高粱的抗氧化性显著降低。采用ABTS法测定结果得出:原高粱的ABTS清除率为3.1μM Trolox/100 g,而浸泡高粱的为2.3μMTrolox/100 g,发芽5d的最低为1.6μuM Trolox/100 g,其次为发芽3d的。
     总结以上结果,通过选择适宜的发芽处理时间后,高粱具有用于制备特殊食品的潜在用途和价值。
Sorghums are rich sources of micronutrients such as minerals and vitamins; and macronutrients like carbohydrates, proteins and fat. Sorghum has a resistant starch, which makes it interesting for obese and diabetic people. In addition, sorghum may be an alternative food for people who are allergic to gluten. Malts sorghum display a-amylase andβ-amylase activities comparable to those of barley, making them useful for various agro-industrial foods. The feature of sorghum as a food in developing as well as in developed countries is discussed. This work makes a particular emphasis on the impact of soaking and malting on sorghum macromolecules in the use of sorghum for infants thin porridges, granulated foods, local beer, as well agro-industrial foods such as lager beer and bread.
     The work starts by optimizing steeping and germination condition and their effect on sorghum grain in term of malt loss, soluble solid (SS) yield, cold paste viscosity, amylase activity, tannin and protein content. The factors studied included time and temperature of soaking with temperature and time of germination. Germination significantly affected the increase in malt loss, SS yield, amylase activity, and protein content with a decrease in cold paste viscosity and tannin content of sorghum. Optimum conditions for sorghum were:steeping time for 24 h at 31℃and 4.5-days of germination at 30℃. Values predicted at optimum conditions by the response surface model for all responses were experimentally tested and close agreement between experimental and predicted values was observed. The flour yield was evaluated and sorghum flour was significantly enhanced by 3-days germination of the seeds. The increase in flour yield resulted from the brittle nature of the malted seeds which improved flour extraction. Volatile compounds were detected in the sorghum flour and 16 peaks were detected in raw seed with 14 volatile compounds. Soaking and germination generated some new volatiles and 20,23 and 25 peaks were identified in SSG,3DGS and 5DGS respectively. Some aldehydes, ketones, esters and acids were generated and increased during the time of germination. Malted sorghum flour was sweet and floral due to the higher content of ethyl acetate,3-methylbutanal, pentanal,2-pentanone, acetic acid,2-methylpropyl ester, butyl acetate, hexanal, 1-octen-3-ol, benzaldehyde.
     Sorghum grains have naturally occurring anti-nutritional factors, such as phytic acid, tannin that decrease their dietary availability. This work determined the effect of wooden ash extract on anti-nutritional factors and also was conducted to assess the effect of soaking and malting on nutritional properties of sorghum flour. The addition of wooden ash extract during 24 h of soaking resulted in significant decrease in tannin by 50.2% and the decrease was observed to be progressive as malting time increases. Five days of malting resulted in significant decrease in tannin by 69.3% and phytic acid by 66.4% with slight decrease in ash, lipid, fiber and starch. Malting significantly improved the quantity of protein and essential amino acids and sugars analysis showed a significant increase of maltose, glucose and fructose. In vitro protein digestibility was markedly increased with the malting time increases and structural analysis of sorghum starch showed porosity on granule's surface susceptible to the amylolysis.
     Influence of grain germination on functional properties of sorghum flour was evaluated for five days and protease and amylase activities were measured. Results showed that flour obtained from the 3-days germinated sorghum grain had high protease and amylase activities. The functional properties of flours derived from the germinated sorghum seeds were studied and ungerminated seeds were used as a control. Germinated samples had a higher protein solubility compared with the control, and the highest solubility occurred at pH 6. Germination also increased the protein solubility index of sorghum flour. Germinated sorghum flour had a least gelation concentration of 8% compared with 18% for the control. The bulk densities of germinated flours were lower compared to the ungerminated one. Water and oil capacities were increased by germination from 131% and 90% to 142% and 108%, respectively after three days of germination. The emulsifying activities and stabilities of the germinated samples increased significantly. In addition, germination improved the foamability of sorghum flour from unfoam flour to a flour with foam after three days of germination; and the foaming capacity and stability increased significantly with increasing germination time. Thus, the study indicated that germination improved the functional properties of sorghum and it would be possible to design new foods using germinated sorghum.
     Ultrasonic technology was applied for starch extraction from the malted sorghum and response surface methodology (RSM) was used to optimize the effects of processing parameters on starch yields. Three independent variables were ultrasonic power (X1), extraction time (X2) and ratio of water to raw material (X3), respectively. The statistical analysis indicated that three variables and the quadratic of X1 and X2 had significant effects on the yields, and followed by the significant interaction effects between the variables of X2 and X3 (p<0.05). A mathematical model with high determination coefficient was gained and could be employed to optimize starch extraction. The optimal extraction conditions of starch were determined as follows:Ultrasonic power 600 W, extraction time 4 min, ratio of water to raw material 30:1 (v/w). Under these conditions, the experimental yield of starch was 17.08±0.33%, which was agreed closely with the predicted value 17.06%. Extracted starch from soaked and malted sorghum was studied to understand their physicochemical and functional properties. The swelling power (SP) and the water solubility index (WSI) of both starches were nearly similar at temperatures below 50℃, but at more than 50℃, the starch isolated from malted sorghum showed lower SP and high WSI than those isolated from raw and soaked sorghum. The pasting properties of starches determined by rapid visco-analyzer (RVA) showed that malted sorghum starch had a lower viscosity peak value (86 BU) than raw sorghum starch (454 BU). For both sorghum, X-ray diffractograms exhibited an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity ranged from 9.62 to 15.50%. Differential scanning calorimetry (DSC) revealed that raw sorghum starch showed an endotherm with a peak temperature (Tp) at 78.06℃and gelatinization enthalpies of 2.83 J/g whereas five-day malted sorghum starch had a Tp at 47.22℃and gelatinization enthalpies of 2.06 J/g. Storage modulus (G') and loss modulus (G") of all starch suspensions increased steeply to a maximum at 70℃and then decreased with continuous heating. The structural analysis of malted sorghum starch showed porosity on the granule's surface susceptible to the amylolysis. The results showed that physicochemical and functional properties of sorghum starches are influenced by soaking and malting methods.
     A mathematical model with high determination coefficient was gained and could be employed to optimize protein extraction of malted sorghum flour. Four independent variables were ultrasonic power, pH, extraction time and solvent/meal ratio was used. Selected response which evaluated the extraction process was protein yield and the second-order model obtained from protein yield revealed a coefficient of determination of 0.967%. The optimal extraction conditions of protein were determined as follows: Ultrasonic power, pH, and extraction time and solvent/meal ratio were 400 W,8,40 min, and 20:1 (v/w), respectively. Protein yield was primarily affected by ultrasonic power, pH and solvent/meal ratio. These conditions resulted in protein yield of 5.43 g of soluble protein from extract/100 g malted sorghum flour which was agreed closely with the predicted value 5.36%. The adequacy of the model was confirmed by extracting the protein under optimum values given by the model and the results may help in designing the process of optimal protein extraction from malted sorghum flour. Sorghum protein extracted was followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The quantitative measurement of free amino acids in the sample was made using the ninhydrin reaction and thermal properties of protein were evaluated using DSC. The SDS-PAGE results showed that levels of high-molecular-weight aggregates increased after soaking. This behavior shows the enhancement of prolamin extractability and concentration in sorghum as a result of starch degradation. The 66.2 kDa oligomer concentration remained constant when sorghum is soaked and showed a significant decrease after 3 days of germination and remain constant after 5days malting. The 43.0 kDa oligomer concentration remained constant when the sorghum is soaked thereafter decreases slightly, reaching 31.0 after 3 and 5 days of germination. It was also found that 5 day malt led to a fourfold increase in free amino acid content. These modifications are due to intrinsic lipases, proteases and amylases. Germinated sorghum protein possessed the highest differential scanning calorimetry result (peak temperature of 84.30℃, delta H = 3.05 J/g) and raw seed protein had the lowest (peak temperature 70.83℃, delta H= 3.09 J/g). Germinated sorghum proteins are potential functional food ingredients.
     To estimate the antioxidant activity of soaked and malted sorghum, the DPPH and ABTS were used. Antioxidant activity was significantly affected by sorghum soaking and germination. As studied before raw sorghum grain had high content (p<0.05) in tannin and phytic acid. These sorghums had significantly high antioxidant activity. Raw sorghum grain had the highest (P< 0.05) DPPH radical scavenging activity (21.0μM Trolox/100 g of dw), followed by soaked sorghum (18.8μM Trolox/100 g of dw), then 3-days malted sorghum (13.0μM Trolox/100 g of dw) and lastly 5-days malted sorghum (11.2μM Trolox/100 g of dw). Malted sorghum had significantly decreased antioxidant activity. Antioxidant activities of malted sorghum as measured by ABTS ranged from 3.1μM Trolox/100 g of dw for the raw sorghum grain to 2.3μM Trolox/100 g of dw for the soaked sorghum. The 5-days malted sorghum gave the lowest ABTS radical scavenging (1.6μM Trolox/100 g of dw) followed by 3-days malted sorghum grain
     These findings show that it is possible to use the sorghum macromolecules and selecting the most suitable sorghum flour properties for specific food processing.
引文
Anderson, R.A., R.R. Montgomery & L.H. Burbridge,1969. Low fat endosperm fractions from grain sorghum. Cereal Sci Today 14:367.
    Bach-Knudsen, K.F., A.W. Kirleis, B.O. Eggum & L. Munck,1985. Carbohydrates composition and nutritional quality for rats of sorghum to prepared from decorticated white and whole grain red flour. J Nutr.118:588-597.
    Benito, P. & D. Miller,1998. Iron absorption and bio-availability:an updated review. Nutr Res 18:581-603.
    Bhatia, I., S. Sing h& S. Dua,1972. Changes in carbohydrates during growth and development of Bajra (Pennisentum typhoides), Jowar(Sorghum vulgare) & kangni (Setaria italica). J Sci Food Agric 23:429-440.
    Butler, L.G.,1978. Tannins in sorghum grain:Problems, solutions, and opportunities. Proc.33rd Ann. Corn & Sorghum Ind. Res. Conf, ICRISAT, pp 190-201.
    Butler, L.G.,1981. Polyphenols and their effects on sorghum quality. In:L.W. Rooney & D.S. Murty (Ed), Proceedings of the International Symposium on Sorghum grain quality.28-31 October 1981, ICRISAT, Patacheru, India, pp294-311.
    Butler, L.G.,1990. The nature and amelioration of the anti-nutritional effects of tannins in sorghum grain. In:Proceeding International conference on sorghum nutritional quality. February 26-March 1,1996, Purdue University, Westtafayette, pp 191-205.
    Carter, E.G.A., and Carpenter, K.J.1981. Bound niacin in sorghum and its availability. Journal of Nutrition and Research,1:571-579.
    Chevassus-Agnes, S., Favier, J.C. and Joseph, A. (1976). Traditional technology and nutritive value of sorghum beer in Cameroon. Cah. Nutr.Diet.11:89-104
    Chitsika, J.M. and Mudimbu, M.W. (1992). Quality criteria for opaque beer in Zimbabwe In M.I. Gomez, L R. House, L W. Rooney & D.A V. Dendy,eds. Utilizution of sorghum and millets p.151-155 Patancheru, Inde ICRISAT
    CSIR (Council of Scientific and Industrial Research),2000. Research improve protein quality of sorghum. http://www.csir.co.za
    Daiber, K.H. and Taylor, J.R.N., (1995). Opaque beers. Sorghum and millets:chemistry and technology. Dendy, D., ed. American Association of Cereal Chemists.
    De Wet, J.M.J. & E.G. Price,1976. Plant domestication and indigenous African agriculture. In:J.R. Harlan, J.M.J. De Wet & A. Stemler (Ed.), Origins of African plant domestication, Mouton, The Hague, The Nederlands, pp453-464.
    De Wet, J.M.J.& J.P. Huckabay,1967. The origin of Sorghum bicolor. II. Distribution and domestication. Evolution 211:787-802.
    De Wet, J.M.J.& J.R. Harlan,1971. The origins and domestication of Sorghum bicolor. Econ Bot 25:128-135.
    De Wet, J.M.J., J.R. Harlan & E.G. Price,1970. Origin of variability in the spontanea complex of Sorghum bicolor. Am J Bot 57(6):704-707.
    Dogget, H.,1965a. The development of the cultivated sorghums. In:J.B. Hutchinson (Ed), Essays on crop plant evolution, London, Cambridge University express,50-69.
    Dogget, H.,1965b. Disruptive selection in crop development. Nature 206 (4981):279-280.
    Dogget, H.,1970. Sorghum. Longmans Green, London.
    Dogget, H.,1988. Sorghum. Longman Scientific and Technical. London.
    Doherty, C.A., J.M. Faubion & L.W. Rooney,1982. Semi-automated determination of phytate in sorghum and sorghum products. Cereal Chem 59:114-119.
    Doherty, C.A., L.W. Rooney & J.M. Faubion,1981. Phytin content of sorghum and sorghum products. In:L.W. Rooney & D.S. Murty (Ed), Proceedings of the International Symposium on Sorghum grain quality.28-31 October 1981, ICRISAT, Patacheru, India, pp328-333.
    Duffour, J.P., Melotte, L.A., and Srebrnik, S. (1992). Sorghum malts for the production of lager beer. Journal of American Society of Brewing Chemists,50,101-119.
    Earp, C.F. & L.W. Rooney,1982. Scanning electron microscopy of the pericarp and testa of several sorghum varieties. Food Microstructure 1:25.
    Fedail, S.S., S.E.M. Badi & A.R.M. Musa,1984. The effects of sorghum and wheat bran on the colonic functions of healthy Sudanese subjects. Am J Nutr 40:776-779.
    Hagerman, A.E.& L.G. Butler,1994. Assay of condensed tannins or flavonoid oligomers and related flavonoids in plants. Methods Ezymol 234:429-437.
    Hoseney, R.C.,1994. Starch. Principle of cereal science and technology. Am. Ass. Cereal. Chem, St Paul, Minnesota, USA, pp29-64.
    Jambunathan, R., U. Singh & V. Subramanian,1982. Grain quality of sorghum, pearl millet, pigeon-pea, and chick-pea. In:K.T. Achaya (Ed), Interfaces between Agriculture, Nutrition and Food Science,1984. United Nation, University press, Tokyo 150 Japan, pp78-90.
    Kimber, C. T.,2000. Origins of domestication sorghum and its early diffusion to India and China. In:C.W. Smith, R.A. Fredericksen (Ed), Sorghum Origin, History, Technology, & Production. John Wiley & Sons inc, New York.
    Kirleis, A.W.& K.D. Crosby,1981. Sorghum hardness:Comparison of methods for its evaluation. In:L.W. Rooney & D.S. Murty (Ed), Proceedings of the International Symposium on Sorghum grain quality.28-31 October 1981, ICRISAT, Patacheru, India, pp231-241.
    Lasztity, R. & L. Lasztity,1990. Phytic acid in cereal technology. In:Y. Pomeranz (Ed), Advances in cereal science and technology. Am. Ass. Cereal. Chem, St Paul, Minnesota, USA, pp33-37.
    Malleshi, N.G., Daodu, M.A. and Chandrasekhar, A. (1989). Development of weaning food formulations based on malting and roller drying of sorghum and cowpea. Int..1. J. Food Sci. Technol.,24:511-519.
    Maxson, E.D., W.B. Fryar, L.W. Rooney & M.N. Krishnaprased,1971. Milling properties of sorghum grain with different proportions of corneous to floury endosperm. Cereal Chem 48:478-490.
    Miller, F.R,1982. Genetic and environmental response characteristics of sorghum. In: L.W. House, L.K. Mughogho & J.M. Peacock (Ed), Sorghum in the eighties, Proceedings of the International Symposium on Sorghum,2-7 November 1981, ICRISAT, Patacheru, India, pp393-402.
    Mohan, D.D. & J.D. Axtell,1975. Diethyl sulfate induced high lysine mutants in sorghum. In:L.W Rooney, (Eds), Proc.9TH biennial grain sorghum research and utilization conference. Lubbock, TX, pp22-23.
    MSUcares,2001. Grain sorghum variety selection and planting. Http://msucares.com/pubs/infosheets/is 1224.htm.
    Murdock, G.P.,1959. Staple subsistence crops of Africa. Geographical Review 50:521-540.
    Murty, D.S., U. Singh, S. Suryaprakash & K.D. Nicodemus,1985. Soluble sugars in five endosperm types of sorghum. Cereal Chem 62:150-152.
    National Research Council,1996. Lost crops in Africa. Vol.Ⅰ. Grain, National academy press, Washington D.C, pp22.
    Newton, R.J., D.A. Baltuskonis, J.D. Goeschl, D.H. Meckenstock & F.R. Miller,1980. Distribution and transformation of soluble carbohydrates during germination growth of sorghum. Crop Sci 20:265-268.
    Nout, M.J.R., Hautvast, J.G.A.J., van der Haar, F., Marks, W.E.W. and Rombouts, F.M. (1988). Formulation and microbiological safety of cerealbased weaning foods. In D. Alnwick, S. Moses & O.G. Schmidt, eds. Improving young childfeeding in eastern and southern Africa, p.245-260. Nairobi, Kenya, Centre de recherche pour le developpement international.
    Oniang'O, R. and Alnwick, D.J. (1988). Weaning foods in Kenya:tradition and trends. In D. Alnwick, S. Moses & O.G. Schmidt, eds. Improving young child feeding in eastern and southern Africa p.76-80. Nairobi, Kenya, Centre de recherche pour le developpement international
    Price, M.L. and Butler, L.G., (1980). Tannins and Nutrition, Station BulletinNo 72, Purdue University Agricultural Station, USA
    Price, M.L., L.G. Butler, J.C. Rogler & W.R. Feather,1979. Overcoming the nutritionally harmful effects of tannin in sorghum grain by treatment with inexpensive chemicals. J Agric Food Chem 27(2):441-445.
    Pushpamma, P.& V. Vimala,1984. Storage and the quality of grain:village-level studies. In:K.T. Achaya (Ed), Interfaces between Agriculture, Nutrition and Food science. United Nation, University Press, Tokyo 150, Japan.
    Pushpamma, P.& S.M. Vogel,1981. Consumer acceptance sorghum and sorghum products. In:L.W. Rooney & D.S. Murty (Ed), Proceedings of the International Symposium on Sorghum grain quality.28-31 October 1981, ICRISAT, Patacheru, India, pp341-353.
    Reichert, R.D., M.A. Mwasaru & S.Z. Mukuru,1988. Characterization of colored grain sorghum lines and identification of high tannin lines with good dehulling characteristics. Cereal Chem 65:165.
    Reichert, R.D., B.O. Oomah & D.J. Schwab,1984. Milling characteristics of group I(low tannin) sorghum varieties. Can Inst Food Sci Technol J 17:147-151.
    Reichert, R.D. & C.G. Youngs,1976. Dehulling cereal grains and grain legumes for developing countries. I. Quantitative comparison between attrition- and abrasivetype mills. Cereal Chem 53:829.
    Rooney, L.W.,1978. Sorghum and pearl millet lipids. Cereal Chem 55:584-590.
    Rooney, L.W.& F.R. Miller,1981. Variation in the structure and kernel characteristics of sorghum. In:L.W. Rooney & D.S. Murty (Ed), Proceedings of the International Symposium on Sorghum grain quality.28-31 October 1981, ICRISAT, Patacheru,India, pp143-162.
    Rooney LW, Clark LE.1968. The chemistry and processing of sorghum grain. Cereal Science Today 13(7):258-261.
    Rooney, L.W. & R.L. Pflugfelder,1986. Factors affecting starch digestibility with special emphasis on sorghum and corn. J Anim Sci 63:1607-1623.
    United States Department of Agriculture/Human Nutrition Information Service (USDA/HNIS).2005. Composition of foods:cereal grains and pasta.Agriculture Handbook No.8-20. Washington, DC
    Usha, A., Spriya, G., and Chandra, T.S. (1996). Effect of fermentation on the primary nutrients of finger millet. Journal of Agricultural Food Chemist,44:2616-2618
    Snowden, J.D.,1936. The cultivated races of sorghum. Adlard & Sons. London.
    Subramanian, B., R. Jambunathan & S. Suuryaprakash,1980. Note on the soluble sugars of sorghum. Cereal Chem 57:440-441.
    Subramanian, V., D.S. Murty, R. Jambunathan & L.R. House,1982. Boiled sorghum characteristics and their relationship to starch properties. In:Kang, M.S. (Ed), Crop improvement:Challenges in the twenty-first century. The Haworth press, Binghamton, NY, pp109-159.
    Seenappa, M. (1988). Sorghum and millets in East Africa with reference to their use in weaning foods. In D. Alnwick, S. Moses & O.G. Schmidt, eds.Improring young child feeding in eastern and southern Africa p.39-54.Nairobi, Kenya, Centre de recherche pour le developpement international.
    Sweat, V.E., J.M. Faubion, L. Gonzales-Palacios,G. Berry, J.O. Akingbala & L.W.
    Rooney,1984. Gelatinization energy and temperature of sorghum and cornstarch. Trans Am Soc Agric Eng 27:1960-1963.
    Rooney, L.W., and Waniska, R.D.(2000). Sorghum food and utilization. In'Sorghum: Origin, History, Technolgy and Production', (C. Wayne Smith and R.A. Frederiksen, eds), John Wiley and Sons, New York, pp 689-729
    Taylor, J.R.N. and Robbins, D.J. (1993). Factors affecting beta-amylase activity in sorghum malt. Journal of the Institute of Brewing 99:413-416
    Taylor, J.R.N.& L. Schussler,1986. The protein composition of the different anatomical parts of sorghum grain. J Cereal Sci 4:361-365.
    Tipton, K.W, E.H. Floyd, J.G. Marshall & J.B. McDevitt,1970. Resistance of certain grain sorghum hybrids to bird damage in Louisiana. Agron J 62:211-213.
    Tomkins, A., Alnwick, D. and Haggerty, P. (1988). Fermented foods for improving child feeding in eastern and southern Africa:a review. In D. Alnwick, S. Moses & O.G. Schmidt, eds. Improving child feeding in eastern and southern Africa p.136-167. Nairobi, Kenya, Centre de recherche pour le developpement international.
    Van Loggerenberg, M.,2001, Determination of the malting and milling performance of sorghum cultivars, MSc.Agric, Dissertation, UOVS.
    Vavilov, N.I.,1951. The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica 13:1-366.
    Wall, J.A. & C.W. Blessin,1970. Composition of sorghum plant and grain. In:J.S. Wall and W.M. Ross (Ed), Sorghum production and utilization. AVI. West port, CT,pp103-110.
    Waniska, R.D. & L.W. Rooney,2002. Structure and chemistry of the sorghumcaryopsis. In:Smith, C.W. & R.A. Fredericksen (Ed), Sorghum origin, history,technology, and production. John Wiley & Sons Inc. New York, pp45-53.
    Waniska, R.D., J.H. Poe & R. Bandyopadhhyay,1989. Effects of growth conditionson grain molding and phenols in sorghum caryopsis. J Cereal Sci 10:217-225.
    Warsi, A.S.& B.C. Wright,1973. Effects of rates and methods of nitrogen application on the quality of sorghum grain. Indian J Agric Sci 43:722-726.
    Weaver, C.A., B.R. Hamaker & J.D. Axtell,1998. Discovery of grain sorghumgermplasm with high uncooked and cooked in vitro protein digestibilities. Cereal Chem 75:665-670.
    Academic Press,1, pp.149-150; 1955 19 AACC. Approved Methods of the American Association of Cereal Chemists. St Paul, Minnesota:AACC (1991)
    Allen, W.G. and J. E. Spradlin,1974. Amylases and their properties. The Bakers Digest,49,14-16,20,22,57.
    Badau, M.H., I. Nkama, I.A. Jideani,2005. Phytic acid content and hydrochloric acid extractability of minerals in pearl millet as affected by germination time and cultivar. Food Chem.,92,425-435.
    Bernfeld, P.,1987. Amylases, α and β. In:Colowick, S. P. and N.O. Kaplan, (Eds), Methods in Enzymology. New York:
    Bewley, J.D. and M. Black,1985. Seeds:Physiology of Development and Germination. London:Plenum Press
    Cai, W. R., X.H. Gu and J. Tang,2008. Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta. Carbohyd. Polym.,71:403-410.
    Capanzana, M.V. and N.G. Malleshi,1989. Studies on malting of rice. Asean Food J., 4,111-115
    Chandrika, L.P. and S. Fereidoon,2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem.,93:47-56.
    Dalby, A. and C.Y. Tsai,1976. Lysine and tryptophan increases during germination of cereal grains. Cereal Chem.,53,222-226
    Elkhalifa, A. O., B. Schiffler, R. Bernhardt,2005. Effect of fermentation on thefunctional properties of sorghum flour. Food Chem.,92,1-5.
    Finney, P. L.,1983. Effect of germination on cereal and legume nutrient changes and food and feed value:A comprehensive review. In:NOZZOLILLO, C., LEAN, P. J. AND LOEUS, F. A. (Eds), Recent Advances in Phytochemistry. New York: Plenum Press,17, pp.229-305.
    Floros, J.D. and M. S. Chinnan,1988. Computer graphics assisted optimization for product and process development. Food Techn.,42,71-78
    Henika, R.G.,1982. Use of response surface methodology in sensory evaluation. Food Techn.,36(11),96-101
    Henika, R.G.,1972. Simple and effective system for use with response surface methodology. Cereal Sci. Today,17,309-334
    Hu, R.1999. Food Product Design. A Computer-Aided Statistical Approach; Technomic Publishing Co.:Lancaster; p 225
    Irakoze P.C., Z. Haihua, L. Qin, K. Zhou, Z. Huiming,2010. Optimization of Ultrasonic Extraction of Polysaccharides from Chinese Malted Sorghum Using Response Surface Methodology. Pakistan J. of Nutrition 9:336-342.
    Jambunathan, R. and E.T. Mertz,1973. Relationship between tannin levels, rat growth and distribution of proteins in sorghum. J. of Agri. and Food Chem.,22,1156-1159.
    Jingjun L., C. Zhengxing, G. Xiao, L. Jing, Z. Mingdi, X. Baocai,2010.Optimization of germination conditions to enhance hydroxyl radical inhibition by water-soluble protein from stress millet. Food Chem.121,387-392.
    Lee, G.D., J.O. Kim and J.H. Kwon,2005. Optimum conditions for the extraction of effective substances from the stem of Opuntia fiscus-indica. Food Sci. and Biotechn.,14:190-195.
    Limami, A.M., C. Rouillon, G. Glevarec, A. Gallais, B. Hirel,2002. Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase. Plant Physiol.130:1860-1870.
    Liyana-Pathirana, C.M. and F. Shahidi,2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem.,93:47-56.
    Li, Q. H., and C. L. Fu,2005. Application of response surface methodology forextraction optimization of germinant pumpkin seeds protein. Food Chem.,92: 701-706.
    Lorenz, K.,1980. Cereal sprouts:Composition, nutritive value, food application. CRC Critical Review in Food Sci. and Nutrition,13,353-385.
    Malleshi, N.G., M. A. Daodu and A. Chandrasekhar,1989. Development of weaning food formulation based on malting and roller drying of sorghum and cowpea. International J. of Food Sci. and Techn.,24,511-519.
    Malleshi, N. G. and H. S. R. Desikachar,1986. Influence of malting conditions on quality of finger millet malt. J. of the Institute of Brewing,92,81-83.
    Malleshi, N. G. and H. S. R. Desikachar,1986. Nutritive value of malted millet flour. Qualitas Plant Food Human Nutrition,36,191-196.
    Malleshi, N.G., R.S.N. Raghavendra, S. Sreedharamurthy and H. S. R. Desikachar, 1986. Development of weaning foods based on some traditional technologies. J. of Food Sci. and Techn.,23,315-318.
    Marero, L. M., E. M. Payumo, E.C. Librando, W.N. Lainez, M.D. Gopez and Homma, D.1988. Technology of weaning food formulations prepared from germinated cereals and legumes. J. of Food Sci.,53,1391-1395,1455.
    Milic, B.L., S. Srdjan, and V. Nada,1972. Leucern tannins:2. Isolation of tannins from leucern, their nature and influence on the digestive enzymes in vitro. J. Sci. Food Agri.,23,1157-1161.
    Mizubuti, I. Y., O. B. Junior, L. W. O Souza, R. S. S. F. Silva, and E. I. Ida,2000. Response surface methodology for extraction optimization of pigeon pea protein. Food Chem.,70:259-265.
    Moure, A., M. Rua, J. Sinerio and H. Dominguez,2002. Aqueous extraction and membrane isolation of protein from defatted Guevina avellana. J. of Food Sci.,67: 688-696.
    Morrall, P., H. K. Boyd and J. R.N. Taylor,1986. Effect of germination time, temperature and moisture on malting of sorghum. J. of the Institute of Brewing, 92,439-445.
    Mosha, A.C. and U. Svanberg,1983. Preparation of weaning foods with high nutrient density using flour of germinated cereals. Food and Nutrition Bulletin,5,10-14.
    Novellie, L.1962. Kaffircorn malting and brewing studies XI. Effect of malting conditions on the diastatic power of kaffircorn malt. J. of the Sci. of Food and Agri.,13,115-120.
    Obatolu, V.A.,2002. Nutrient and sensory qualities of extruded malted or unmalted millet/soybean mixture. Food Chem.76,129-133.
    Obizoba, I.C.1988. Nutritive value of malted, dry or wet-milled sorghum and corn. Cereal Chem.,65,447-449.
    Pal, A., Wagle, D. S. and Sheorain, U. S.1976. Effect of germination temperature on amylolytic and proteolytic activities of bajra and barley during germination. J. of Food Sci. and Techn.,13,253-254.
    Price, M. L., S.V. Scoyoc, and L. G. Butler,1978. A critical evaluation of the Vanillin reactions as an assay for tannin sorghum grain. J. of Agri. and Food Chem.,26, 1214-1219.
    Qiao, D.L., C.L. Kea, B. Hua, J.G. Luo, H. Ye, Y. Sun,2009. Antioxidant activities of polysaccharides from Hyriopsis cumingii. Carbohyd. Polym.,78:199-204.
    Quanhang, L. and F. Caili,2005. Application of response surface methodology for extraction of germinant pumpkin seeds protein. Food Chem.,92:701-706.
    Raschke, A. M., J. Taylor and J. R.N. Taylor,1995. Use of falling number and rapid visco analyser instruments to estimate sorghum malt diastatic power. J. of Cereal Sci.,21,97-102.
    Reddy, L.V., Ching, T. M. and Metzger, R. J.1984. Alpha amylase activity in wheat kernels, matured and germinated under different temperature conditions. Cereal Chem.,61,228-231.
    SAS Institute Inc. Statistical Analysis System Release 603.NC, U.S.A.:SAS Institute Inc. (1988).
    Selvaraj, A., K. Leelavathi, P. Haridas Rao and S.R. Shurpalekar,1986. On improving the bread making quality of flour from field sprouted wheat. J. of Food Sci. and Techn.,23,21-29.
    Tsai, C.Y., Dalby, A. And Jones, R. A.1975. Lysine and tryptophan increase during germination of maize seed. Cereal Chem.,52,356-360.
    Wahed, M. A., D. Mahalanabis, M. Begum, M. Rahman and M. S. Islam,1994. Energy-dense weaning foods liquefied by germinated-wheat amylase:Effect on viscosity, osmolality, macronutrients and bacterial growth. Food and Nutrition Bulletin,15,257-261.
    Waniska, R.D.,2000. Technical and institutional options for sorghum grain mold management:proceeding of an International consultation. Chandrashekar A Bandyopadhyay R Hall A. J. Eds ICRISAT Patancheru India. pp.72-106.
    Abida, P., Iftikhar, I.N., Rehana, S. and Abid, H.2008. Comparative Germination of Barley Seeds (Hordeum Vulgare) Soaked in Alkaline Media and Effects on Starch and Soluble Proteins. Journal Applied Science Environment,12,5-9
    Achremowicz, B. and Wojcik, W.2000. Amylolytic enzymes and the other o-glicosidic hydrolases (in Polish). Univ. Agric. Press, Lublin, Poland.
    AOAC, Official Methods of Analysis (11th ed.).1984. Association of Official Analytical Chemists, Arlington, VA.
    AOAC, Official Methods of Analysis of AOAC INTERNATIONAL (17th Ed). (2000)
    AOAC INTERNATIONAL, Gaithersburg, MD, USA, Official Method,982.14. (Modified)
    Banda-Nyirenda, D.B.C. and Vohra, P.1990. Nutritional improvement of tannin-containing sorghums(Sorghum bicolor) by sodium bicarbonate. Cereal Chemistry, 67,533-537.
    Beecher, G.R.2003. Overview of dietary flavonoids:nomenclature, occurrence and intake. Journal Nutrition,133,3248S-3254S.
    Benito, P. and Miller, D.1998. Iron absorption and bio-availability:an updated review. Nutrition Research,18,581-603.
    Beta, T., Rooney, L. W., Marovatsanga, L. T. and Taylor, J. R. N.2000. Effect of Chemical Treatments on Polyphenols and Malt Quality in Sorghum. Journal of Cereal Science,31,295-302.
    Butler, L.G.1978. Tannins in sorghum grain:Problems, solutions, and opportunities. Proc.33rd Ann. Corn and Sorghum Ind. Res. Conf, ICRISAT, pp190-201.
    Correia,I., Nunes,A., Barros,A.and Delgadillo, I.2010. Comparison of the effects induced by different processing methods on sorghum proteins. Journal of Cereal Science,51,146-151
    Dalvi, R.1974. Biochemical and physiological studies on phyto-toxicity of selected pesticides and allergens during seed germination of some food crops. Ph.D. dissertation, Utah State Univ., Logan, Utah.
    Drich, B.C. and Pran, V.1987. Nutritional evaluation of some varieties of sorghum Bicolour (L) Moench. Cereal Chemistry,64,413-417.
    Elmaki, H.B, Babiker, E.E., El Tinay, A.H.,1999. Changes in chemical composition, grain malting, starch and tannin contents and protein digestibility during germination of sorghum cultivars. Food Chemistry,64,331-336
    Elmoneim, O. E., Schiffler, B. and Bernhardt, R.2005. Effect of fermentation on the functional properties of sorghum flour. Food Chemistry,92,1-5
    Fannon, J.E., Hauber, R. J., and Bemiller J.N.1992. Surface pores of starch granules. Cereal Chemistry,69,284-288.
    Febles, A., Hardisson, and Rodriguez-Alvarez, C.2002. Phytic acid level in wheat flours, Journal of Cereal Science,36,19-23.
    Fortuna, I., Juszczak, L. and Palasinki, M.1999. Changes in granule porosity on modification of starch, Zywnosc Tech Jakosc,5,124-130.
    Friedman, M., Brandon, D.L., Bates, A.H. and Hymowitz T.1991.Comparison of soybeans cultivar and an isoline lacking the kunitz trypsin inhibitor:composition, nutritional value and effects of heating. Journal Agriculture Food Chemistry,39, 327-335.
    Garcia, W.J., Blessin, C. W. and Inglett, G. E.1972. Mineral constituents in corn and wheat germ by atomic absorption spectroscopy. Cereal Chemistry,49,158-167.
    Gilani, G.S., Cockell, K.A., Sepehr, E.2005. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. Journal of AOAC International,88,967-87.
    Jambunathan, R. and Mertz, E.T.1973. Relationship between tannin levels, rat growth and distribution of proteins in sorghum. Journal of Agriculture and Food Chemistry,22,1156-1159.
    Jim,O. and Dorothy, O.2002. Plant-based nutrition. Spring 2002. http://www.plantbased.org/PLANT_BASED_NUTRITION_2002-02.doc. Retrieved.2007-11-14.
    Kyarisiima, C.C., Okot, M.W. and Svihus, B.2005. Use of wood ash extract and germination to improve the feeding value of Ugandan Sekedo sorghum (Sorghum bicolor) for broiler chicks. Animal Feed Science and Technology,120,67-77.
    Mahgoub, S.E. and El-Hag, S.A.1998. Effect of milling, soaking, malting, heat treatment and fermentation on phytate level of four Sudanese sorghum cultivars. Food Chemistry,61,77-80.
    Matsubara, T., Ammar, Y. B., Anindyawati, T., Yamamoto, S., Ito, K., Izuka, M. and Minamiura, N.2004. Degradation of raw starch granules by a-amylase purified from culture of Aspergillus awamori KT-11. Journal Biochemistry Molecular Biology,37,422-428.
    Milic, B.L., Srdjan, S. and Nada, V.1972. Leucern tannins:2. Isolation of tannins from leucern, their nature and influence on the digestive enzymes in vitro. Journal Science Food Agriculture,23,1157-1161.
    Newton, R.J., Baltuskonis, D.A., Goeschl, J.D., Meckenstock, D.H. and Miller, F.R.1980. Distribution and transformation of soluble carbohydrates during germination growth of sorghum. Crop Science,20,265-268.
    Nirmala, M., Subbarao, M. V. S. S. T., and Muralikrishna, G.2000. Carbohydrates and their degrading enzymes from native and malted finger millet (Ragi, Eleusine coracana, Indaf-15). Food Chemistry,69,175-180.
    Nzigamasabo, A. and Nimpagaritse, A.2009.Traditional fermented foods and beverages in Burundi. Food Research International, 42,588-594.
    Obizoba, I.C.1988. Nutritive value of malted, dry or wet-milled sorghum and corn. Cereal Chemistry,65,447-449
    Onyeka, U. and Dibia, I.2002. Malted weaning food made from maize, soybean,groundnut and banana. Journal of the Science of Food and Agriculture, 82,513-516.
    Price, M.L., Socoyoc, S.V. and Butler, L.G.1978. A critical evaluation of vanillin reaction as an assay for tannin in sorghum grain. Journal of Agriculture Food Chemistry,26,1214-1218.
    Ravindran, G.1991. Studies on millets:Proximate composition, mineral composition, and phytate and oxolate contents. Food Chemistry,39,99-107.
    Rooney, L.W. and Pflugfelder R.L.1986. Factors affecting starch digestibility with special emphasis on sorghum and corn. Journal Animal Science,63,1607-1623.
    Rosenfeld, P., Grey, M. and Suffet, M.2002. Controlling odors using high carbon wood ash. Journal of Composting & Organics Recycling. March 2002, Page 42
    Saunder, R. M., Connon, M. A., Booth, A. N., Bicko, E. M. and Kohler, G. O.1973. Measurement of digestibility of alfalfa protein concentrate by in vivo and in vitro methods. Journal Nutrition,103,530-535.
    Shelton, M., Couch, J.R., Hole, F., Joher, J.F., Leighton, R.E, Lyman, C.M. and Briggs, J.K.1951. Grain Sorghum by-Product feeds farm animal,Texas, Agric.-Exp. Sta. Bull.,743.
    Tausaky, H. H. and Shorr, E.1953. A micro colorimetric method for the determination of inorganic phosphorus. Journal Biology Chemistry,202,675-685.
    TAYLOR, J.R.N.,1983. Effect of malting on the protein and free amino nitrogen composition of sorghum. Journal of the Science of Food and Agriculture,34,885-892.
    Taylor, J. R. N. and Dewar, J.2001. Development in sorghum food technologies. Advanced in Food and Nutrition Research,43,217-264.
    Traore, T., Mouquet, C., Icard-Verniere, C., Traore, A.S., Treche, S.,2004. Changes in nutrient composition, phytate and cyanide contents and a-amylase activity during cereal malting in small production units in Ouagadougou (Burkina Faso). Food Chemistry,88,105-114.
    Tsai, C.Y., Dalby, A. and Jones, R. A.1975. Lysine and tryptophan increase during germination of maize seed. Cereal Chemistry,52,356-360
    Waniska, R.D. and Rooney, L.W.2002. Structure and chemistry of the Sorghum caryopsis. In:Smith, C.W. and R.A. Fredericksen (Ed), Sorghum origin, history, technology, and production. John Wiley and Sons Inc. New York, pp45-53.
    Wu, Y.V. and Wall, J.S.1980. Lysine content of protein increased by germination of normal and high-lysine sorghum. Journal Agriculture. Food Chemistry,28,455-458.
    Anderson, R.A., R.R. Montgomery & L.H. Burbridge,1969. Low fat endosperm fractions from grain sorghum. Cereal Sci Today 14:367.
    Achinewhu, S. C. (1983). Protein and food potential of African oil bean (Pentaclethra macrophylla) and velvet bean (Mucunauries). Journal of Food Science,47,1736-1742.
    Akubor, P. I.,& Chukwu, J. K. (1999). Proximate composition and selected functional properties of fermented and unfermented African oil bean (Pentaclethra macrophylla) seed flour. Plant Foods for Human Nutrition,54,227-238.
    Akubor, P. I.,& Obiegbuna, J. E. (1999). Certain chemical and functional properties ofungerminated and germinated millet flour. Journal of Food Science and Technology,36,241-243.
    Arisen, A. O. (1982). Enzymatic modification of sorghum endosperm during seedling growth and malting. Journal of the Science of Food and Agriculture,33,754-759.
    Belitz, H. D.,& Grosch, W. (1999). Food chemistry (2nd ed.). Berlin:Springer.
    Bernfeld, P. (1955). Enzymes of carbohydrate metabolism:Amylases alpha and beta. In S. P. Colowish& N.O. Kaplain (Eds.). Methods in enzymology (Vol.1, pp. 146-158). New York:Academic Press.
    Bhise, V. J., Chavan, J. K.,& Kadam, S. S. (1988). Effect of malting on proximatecomposition and in vitro protein and starch digestibilities of grain sorghum.Journal of Food Science and Technology,25,327-329.
    Bors, W.; Michel, C.; Stettmaier, K. Structure-activity relationships governing antioxidant capacities of plant polyphenols. Methods Enzymol.2001,335,166-181.
    Bureng, P. L., Badi, S. E. N. M. & Monawar, L. Y. (1987). Hullu-murr production (pp.10-11). Food Research Centre, Khartoum, Sudan.
    Butler, L. G. Antinutritional effects of condensed and hydrolyzable tannins. In Plant Polyphenols:Synthesis, Properties, and Significance; Hemingway, R. W.; Laks, P. E. Eds.; Plenum Press:New York,1992; pp 693-698.
    Buttery, R. G., Turnbaugh, J. G. & Ling, L. C. (1988). Contribution of Volatiles to rice aroma. J. Agric. Food. Chem.,36,10061009.
    Briones, B. and Aguilera, J.M. (2005). Image analysis of changes in surface color of chocolate. Food Res. Int.38,87-94.
    Chandrasekhara, M. R.,& Swaminathan, M. (1953). Enzymes of ragi (Eleusinecoracana) and ragi malt II Protease. Journal of Scientific and Industrial Research,12B,481-484.
    Coffman, G. W., & Garcia, V. V. (1977). Functional properties and amino acid content of a protein isolate from mung-bean flour. Journal of Food Technology,12,473-484.
    Correia, I., Nunes, A., Barros, A. S., & Delgadillo, I. (2008). Protein profile and malt activity during sorghum germination. Journal of the Science of Food and Agriculture,88,2598-2605.
    De Ancos, B., Cano, M.P., Hernandez, A., and Moreal, M. (1999). Effect of microwave heating on pigments composition and color. J. Sci. Food Agric.79, 663-670.
    Desikachar, H.S.R.,1981. Pearling and milling studies on sorghum. In:L.W.
    Rooney & D.S. Murty (Ed), Proceedings of the International Symposium on Sorghum grain quality.28-31 October 1981, ICRISAT, Patacheru, India, pp 194-199.
    Desikachar, H. S. R. (1980). Development of weaning foods with high calorie density and low hot-paste viscosity using traditional technologies. Food Nutrition Bulletin, 2,21-23.
    Dirar, H. A. (1993). Indigenous fermented foods of the Sudan. Wallingford, UK: CABInternational.
    Duncan, B. D. (1955). Multiple range and multiple F tests. Biometrics,11,1-42.
    Dziedzoave, N.T., Ellis, W.O., Oldham, J.H. And Oduro,Ⅰ. (2000). Optimizing agbelima production:Varietal and fermentation effect on product quality. Food Res. Int.33,867-873.
    Elkhalifa, A. O. (1998). Effect of cooking on the digestibility of sorghum kafirins and its improvement. Ph.D. thesis, Faculty of Agriculture, University of Khartoum, Sudan.
    Elkhalifa, A. O., Chandrashekar, A., & El Tinay, A. H. (1999). Effect of preincubation ofsorghum with enzymes on the digestibility of sorghum gruel. Food Chemistry,66,339-343.
    Elkhalifa, A. O., Schiffler, B.,& Bernhardt, R. (2005). Effect of fermentation on the functional properties of sorghum flour. Food Chemistry,92,1-5.
    Eskin, N.A.M., Grossman, S. And Pinsky, A.1977. The biochemistry of lipoxygenase in relation to food quality. Crit. Rev. Food Sci. Tech.9,1-40.
    Evans, D. J., & Taylor, J. R. N. (1990). Extraction and assay of proteolytical activities in sorghum malt. Journal of the Institute of Brewing,96,201-207.
    Ferretti, A., Flanagan, V. P. & Ruth, J. M. (1970). Nonenzymatic Browning in a Lactose-Casein Model System. J. Agric. Food Chem.,18,13-18.
    Gamel, T. H., Linssen, J. P., Mesallam, A. S., Damir, A. A., & Shekib, L. A. (2006). Seed treatment affect functional and antinutritional properties of amaranth flours.Journal of the Science of Food and Agriculture,86,1095-1102.
    Garg, G. K.,& Virupaksha, T. K. (1970). Acid protease from germinated sorghum. Purification and characterization of the enzyme. European Journal ofBiochemistry, 17,4-12.
    Ghavidel, R. A.,& Prakash, J. (2006). Effect of germination and dehulling on functional properties of legume flours. Journal of the Science of Food and Agriculture,86,1189-1195.
    Haegenmaier, R. (1972). Water binding of some purified oil seed proteins. Journal of Food Science,37,965-966.
    Hodge, J. E., Mills, P.O. & Fischer, B. E. (1972). Compounds of Browned Flavour Derived from Sugar-Amine Reactions. Cereal Sci., Today,17,3440.
    Huang, T. Z., Bruechert, L. H., Rosen, R. T., Hartmann, T. G. & Ho, C. T. (1987). Volatile components of fresh and stored extruded triticals products. J. Agric. Food Chem.,35,985-987.
    Hulse, J.H., E.M. Laing & O.E. Pearson,1980. Sorghum and millets:Their composition and nutritive value. New York, Academic Press, USA.
    Kinsella, J. E. (1976). Functional properties of protein in foods, a survey. CRC Critical Review Food Science and Nutrition,7,219-280.
    Lewis, M. J. & Williams, A. A. (1980). Potential artifacts from using porous polymers for collecting aroma components. J. Sci. Food Agric.,31,1017-1026
    Lin, M. J. Y., Humbert, E. S.,& Sosulski, F. W. (1974). Certain functional properties of sunflower meal products. Journal of Food Science,39,368-370.
    Lowry, O. H., Rosenbrough, N. J., Fair, A. L.,& Randall, R. J. (1951). Protein measurement with the Folin-phenol reagent. Journal of Biological Chemistry,193, 265-275.
    Lu, Y.; Foo, L. Y. Antioxidant activities of polyphenols from sage (SalVia officinalis). Food Chem.2001,75,197-202.
    Maga, J. A. (1982). Pyrazines in Foods:An update. CRC. Crit. Rev. Food Sci. Nutri., 16,1-115.
    Malleshi, N. G., Daodu, M. A., & Chandrashekhar, A. (1989). Development of weaning food formulations based on malting and roller drying of sorghum and cowpea. International Journal of Food Science and Technology,24,511-519.
    Narayana, K.,& Narsinga Rao, M. S. (1982). Functional properties of raw and heat processed winged bean (Psophocarpus tetragonolobus) flour. Journal of Food Science,47,534-538.
    Nir, I., Fieldmann, Y., Aserin, A.,& Garte, N. (1994). Surface properties andemulsification behavior of denatured soy proteins. Journal of Food Science,44, 1235-1240.
    Nout, M. J. R.,& Ngoddy, P. O. (1997). Technological aspects of preparing affordable fermented complementary foods. Food Control,8,279-287.
    Ocheme, O. B.,& Chinma, C. E. (2008). Effects of soaking and germination on some physiochemical properties of millet flour for porride production. Journal of Food Technology,6,185-188.
    Oduro, I., Ellis, W.O., Dziedzoave, N.T. And Yeboah, N. (2000). Quality of Gari from selected processing zones in Ghana. Food Control 11,297-303.
    Okafor, N.& Aniche, G. N. (1980). Brewing a lager beer fromNigerian Sorghum. Brew.& Dist. Znt.,32,32-33.
    Okon EU, Etuk BR (1992) The evaluation of milling performance as a modification index. Nig Food J 10:70-76.
    Padmashree, T. S., Vijayalakshmi, L., & Puttaraj, S. (1987). Effect of traditional processing on the functional properties of Cowpea (Vigna unguiculata) flour. Journal of Food Science and Technology,24,221-225.
    Palmer GH, EtokAkpan OU, Igyor MA (1989) Sorghum as brewing material. MIRCEN J Appl Microbiol Biotechnol 5:265-275.
    Pelembe, L. A. M., Dewarand, J.& Taylor, J. R. N. (2003). Food products from malted pearl millet. In Proceeding of the workshop on the proteins of sorghum and millets:Enhancing nutritional and functional properties for Africa, Pretoria, South Africa.
    Perez Sira, E.,& Amaiz, M. L. (2004). A laboratory scale method for isolation of starch from pigmented sorghum. Journal of Food Engineering,64,515-519.
    Pfannhauser, W. (1993). Volatiles formed during extrusion cooking of cereals. Flav. and Frag.,8,109-113.
    Pons, I., Garrault, C., Jaubert, J. & Morel, J. (1991). Analysis of aromatic caramel. Food Chem.,39,311-320.
    Prakash, V., & Narasinga Rao, M. S. (1986). Physicochemical properties of ilseed proteins. CRC Critical Review Biochemistry,20,265-363.
    Rosario, R. R., & Flores, D. M. (1981). Functional properties of four types of mung bean flours. Journal of Food Science and Agriculture,32,175-180.
    Snedecor, G. W.,& Cochran, W. G. (1987). Statistical methods (7th ed.). Ames, IA: The Iowa State University Press, pp.221-222.
    Sosulski, F. W., Humbert, F. S., Bui, K., & Jones, J. D. (1976). Functional properties of rapeseed flours, concentrates and isolates. Journal of Food Science,46,1349-1353.
    Subba Rao, B. H.,& Srinivasan, K. S. (1988). Enzymatic modification of groundnut flour (by papain/protease) and its effect on functional properties. LWT-Food Science and Technology,21,126-130.
    Taylor, J. R. N., Noveille, L., & Liebenberg, N. W. (1985). Protein body degradation in the starchy endosperm of germinating sorghum. Journal of Experimental Biology,36,1287-1295.
    Uzochukwu, S. V. A., Balogh, E., Tucknot,O. G., Lewis, M. J. & Ngoddy, P.O. (1994). Volatile constituents of palm wine and palm sap. J. Sci. Food Agric.,64,405-411.
    Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med.1999,26 (9/10),1231-1237
    Rice-Evans, C. Screening of phenolics and flavonoids for antioxidant activity. In Antioxidant Food Supplements in Human Health; Packer, L.; Hiramatsu, M.; Yoshikawa, T. Eds.; Academic Press:New York,1999; pp 239-253.
    Rizzi, G. P. (1972). A Mechanistic Study of Alkylpyrazine Formation in Model Systems. J. Agric. Food Chem.,20,1081-1085.
    Shepherd, A.D., A.H. Woodhead & J.F. Okorio,1970. Sorghum processing. In:Annual Report 1970-71. East African Industrial Research Organization, Nairobi, Kenya, pp2-4.
    Skinner, R. (1976). Tropical lager brewing with Sorghum Malt. Brew & Dist. Znt.,7, 10-12.
    Vogel, S.& M. Graham,1979. Sorghum and millet, food production and use:Report of a workshop held in Nairobi, Kenya 4-7 July 1978. IDRC-123e. Ottawa, Ontario, Canada:IDRC.64.
    Wang, J. C., & Kinsella, J. E. (1976). Functional properties of novel proteins:Alfalfa lead proteins. Journal of Food Science,41,286-290.
    Wu, V. Y.,& Inglett, E. (1974). Denaturation of plant proteins related to functionality and food application:A review. Journal of Food Science,39,218-225.
    Yasumatsu, K., Sawada, K., Moritaka, S., Misaki, M., Toda, J., Wada, T., et al. (1972). Whipping and emulsifying properties of soy bean products. Journal of Agriculture and Biological Chemistry,36,719-725.
    Yen, G. C.; Chen, H. Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem.1995,43,27-32.
    Abdul, K.; Zahid, A. C.; Muhamad, A.M. Shahzad, M. A.B.1999. Evaluation of Sorghum (Sorghum bicolor) Water Extract for Weed Control in Soybean. Int. J. Agri.Biol.,1:23-26
    Aluko, R. E., and McIntosh, T.2001. Polypeptide profile and functional properties of defatted meals and protein isolates of canola seeds. J. of the Sci. of Food and Agric.,81:391-396.
    Aluko, R. E., McIntosh, T., and Katepa-Mupondwa, F.2005. Comparative study of the polypeptide profiles and functional properties of Sinapis alba and Brassica juncea seed meals and protein concentrates. J. of the Sci. of Food and Agric.,85:1931-1937.
    AOAC.1997. Official methods of analysis of the association of official analytical chemists. Virginia, USA:AOAC Inc.
    Bas, D., and Boyaci, I. H.2007. Modelling and optimization I:usability of response surface methodology. J. of Food Engineering,78:836-845.
    Belton PS and Taylor JRN, Sorghum and millets:protein sources for Africa. Trends Food Sci Technol 15:94-98 (2004).
    Bilgi, B., and Celik, S.2004. Solubility and emulsifying properties of barley protein concentrate. European Food Research Technol.,218:437-441.
    Chavan, U. D., McKenzie, D. B., and Shadidi, F.2001. Functional properties of protein isolates from beach pea (Lathyrus maritimus L.). Food Chem.,74:177-187.
    Chove, B. E., Grandison, A. S., and Lewis, M. J.2001. Emulsifying properties of soy protein isolate fractions obtained by isoelectric precipitation. J. of the Sci. of Food and Agric.,81:759-763.
    Da Silva LS, Taylor JRN.2005. Physical, mechanical, and barrier properties of kafirin films from red and white sorghum milling fractions. Cereal Chem.,82:9-14.
    Dewar, J., Taylor, J.R.N and Berjak, P.1997. Effect of germination conditions, with optimised steeping, on sorghum malt quality-with particular reference to free amino nitrogen. J. of the Institute of Brewing,103:171-175.
    Dewar, J., Orovan, E. and Taylor, J.R.N.1997. Effect of alkaline steeping on water uptake and malt quality in sorghum. J. of the Institute of Brewing,103:283-285.
    Elkhalifa, A. O., Schiffler, B., & Bernhardt, R. (2005). Effect of fermentation on the functional properties of sorghum flour. Food Chemistry,92,1-5.
    Ghavidel, R. A., & Prakash, J. (2006). Effect of germination and dehulling on functional properties of legume flours. Journal of the Science of Food and Agriculture,86,1189-1195.
    Ju, Z.Y.; Hettiarachchy, N.S.; Rath, N. Extraction, denaturation and hydrophobic properties of rice flour proteins. J. Food Sci.2001,66,229-232.
    Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature.1970,227,680-685.
    Liadakis, G. N., Tzia, C., Oreopoulou, V., and Thomopoulos, C. D.1995. Proteinisolation from tomato seed meal extraction optimization. J. of FoodSci.,60: 477-482.
    Liadakis, G. N., Tzia, C., Oreopoulou, V., and Thomopoulos, C. D.1998. Isolation oftomato seed meal proteins with salt solutions. J. of Food Sci.,63:450-453.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randal, R. J.1951. Protein analysis with Folin-phenol reagent. J. of Biol. Chem.,193:265-275.
    Lqari, H., Pedroche, V. J., and Millan, F.2002. Lupinus angustifolius protein isolates:chemical composition, functional properties and protein characterization. Food Chem.,76:349-356.
    Mizubuti, I. Y., Junior, O. B., Souza, L. W. O., Silva, R. S. S. F., and Ida, E. I. 2000.Response surface methodology for extraction optimization of pigeon pea protein. Food Chem.,70:259-265.
    Moure, A., Rua, M., Sinerio, J., and Dominguez, H.2002. Aqueous extraction and membrane isolation of protein from defatted Guevina avellana. J. of FoodSci.,67: 688-696.
    Muhammad, J.; Zahid, A. and Abdul, K.,2005. Increasing the Efficiency of Sorghum Water Extract (Sorgaab) by Mixing with Lower Doses of Isoproturon to Control Weeds in Wheat. Int. J. Agri. Biol.,7:712-718
    Musigakun P, Thongngam M.2007. Characteristics and functional properties of sorghum protein (kafirin). Kasetsart J. Nat. Sci.41:313-318.
    Mwasaru, M. A., Muhammed, K., Bakar, J., and Man, Y. B. C.2000. Influence of altered solvent environment on the functionality of pigeonpea (Cajanus cajan) and cowpea (Vigna unguiculata) protein isolates. Food Chem.,71:157-165.
    Nakai, S., Li-Chen, E. C. Y., and Dou, J.2006. Experimental design and response surface methodology. In S. Sablani, A. Datta, M. S. Rahman,& A. Mujumdar (Eds.), Handbook of food and bioprocess modeling techniques, Vol.1 (pp.293-323). Boca Raton:CRC Press.
    Okolo, B.N. and Ezeogu, L.I.1996a. Enhancement of amylolytic potential of sorghum malts by alkaline steep treatment. J. of the Institute of Brewing,102:79-85.
    Okolo, B.N. and Ezeogu, L.I.1996b. Promoting sorghum reserve protein mobilisation by steeping in alkaline liquor. J. of the Institute of Brewing,102:277-284.
    Oomah, B. D., Mazza, G., and Cui, W.1994. Optimization of protein extraction fromflaxseed meal. Food Res. Int.,27:355-361.
    Plummer DT, An Introduction to Practical Biochemistry. McGraw-Hill, London (1978).
    Quanhang, L., and Caili, F.2005. Application of response surface methodology for extraction of germinant pumpkin seeds protein. Food Chem.,92:701-706.
    Randhawa, M.A. Cheema, Z.A. and Muhammad, A.,2002. Allelopathic effect of sorghum water extract on the germination and seedling growth of trianthema portulacastrum, Int. J. Agri. Biol.,4:383-384
    Rustom, I. Y. S., Lopez-Leiva, M. H., and Nair, B. M.1991. Optimization of extraction of peanut proteins with water by response surface methodology. J. of Food Sci.,56:1660-1663.
    Saloedo-Chavez, B., Osuna-Castro, J. A., Guevara-Lara, F., Dominguez-Dominguez, J.,& Paredes-Lopez, O.2002. Optimization of the isoelectric precipitation method to obtain protein isolates from amaranth (Amaranthus cruentus) seeds.J. of Agric. and Food Chem.,50:6515-6520.
    Sefa-Dedeh, S., and Stanley, D.1979. Cowpea proteins 1. Use of response surface methodology in predicting cowpea (Vigna unguiculata) protein extractability.J. of Agric. and Food Chem.,27:1238-1243.
    Taylor JRN, Effect of malting on the protein and free amino nitrogen composition of sorghum. J Sci Food Agric 34:885-892 (1983).
    Taylor JRN, Novellie L, Liebenberg NvdW.1984. Sorghum protein body composition and ultrastructure. Cereal Chem.,61:69-73.
    Wani, A. A., Sogi, D. S., Grover, L., and Saxena, D. C.2006. Effect of temperature, alkali concentration, extraction time and meal/solvent ratio on the extraction of watermelon seed proteins-a response surface approach. Biosystems Engineering,94:67-73.
    Waniska RD, Rooney LW.2000. Sorghum food and industrial utilization. In:Smith, CW, Frederiksen RA, editors. Sorghum:Origin, history, technology, and production. Canada:John Wiley & Sons, Inc. p 689-729.
    Wang, M.; Hettiarachchy, N.S.; Qi, M.; Burks, W.; Siebenmorgen, T.J. Preparation and functional properties of rice bran protein isolate. J. Agric. Food Chem.1999, 47,411-416.
    Wang, Y.D. and Fields, M.L.1978. Germination of corn and sorghum in the home to improve nutritive value. J. of Food Sci.,43:1113-1115.
    Arocas, A.; Sanz, T.; Fiszman, S.M. Influence of corn starch type in the rheological properties of a white sauce after heating and freezing. Food Hydrocoll.2009,23, 901-907.
    Atkinson, G.L., and A.N. Donev,1992. Optimum Experimental Design. Oxford:Clarendon Press.
    Bao, J. The functionality of rice starch. In Starch in Food. Structure, Function and Application; Eliasson, A.C., Ed.; Woodhead Publishing:Cambridge, UK,2004; pp. 258-289.
    Benmoussa, M.; Suhendra, B.; Aboubacar, A.; Hamaker, B.R. Distinctive sorghum starch granule morphologies appear to improve raw starch digestibility. Starch (Starke) 2006,58,92-99.
    Beta, T.; Coke, H.; Rooney, L.; Taylor, J.R.N. Starch properties as affected by sorghum grain chemistry. J. Sci. Food Agric.2000.81,245-251.
    Box, G.E.P., and D.W. Behnken,1960. Some new three level designs for the study of quantitative variables. Technometrics,2:455-475.
    Bryjak, J. Enzymatic production of maltodextrins and syrup solids from starch. Part Ⅰ. Enzymes. Biotechnology 1999,1,180-200.
    Cacace, J.E. and G. Mazza,2003. Optimization of extraction of anthocyanins from black currants with aqueous ethanol. J. of Food Sci.,68:240-248.
    Cai, W. R., X.H. Gu and J. Tang,2008. Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta. Carbohyd. Polym.,71:403-410.
    Chakraborty, M.; Matkovic, K.; Grier, D.G.; Jarabek, E.L.; Berzonsky, W.A.; McMallen, M.S. Physico-chemical and functional properties of tetraploid and hexaploid waxy wheat starch. Starch (Starke) 2004,56,339-347.
    Chandrika, L.P. and S. Fereidoon,2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem.,93:47-56.
    Choi, W.K.; Shin, M. Properties of Korean amaranth starch compared to waxy millet and waxy sorghum starches. Starch (Starke) 2004,56,469-477.
    Cousidine, D.M. Foods and Food Production Encyclopedia; John Wiley Inc.:New York, NY, USA,1982.
    Elmoneim, O.E.; Burkhard, S.; Rita, B. Selected physicochemical properties of starch isolated from fermented sorghum flour. Starch (Starke) 2004,56,582-585.
    Fannon, J.E.; Hauber, R.J.; Bemiller, J.N. Surface pores of starch granules. Cereal Chem. 1992,69,284-288.
    Ferreira, S.L.C., R.E. Bruns, H.S.Ferreira, G.D.Matos, J. M. David, and G. C. Brand, 2007. Box-Behnken design:An alternative for the optimization of analytical methods. Analytica Chimica Acta,597:179-186.
    Forabosco, A., G. Bruno, L. Sparapano, G. Liut, D. Marino, and F. Delben, 2006.Pullulans produced by strains of Cryphonectria parasitica-Ⅰ. Production and characterisation of the exopolysaccharides. Carbohyd. Polym.,63:535-544.
    Fitzgerald, M.A.; Martin, M.; Ward, R.M.; Park, W.D.; Shead, H.J. Viscosity of rice flour. A rheological and biological study. J. Agric. Food Chem.2003,51,2295-2299.
    Gaffa, T.; Yoshimoto, Y.; Hanashiro, I.; Honda, O.; Kawasaki, S.; Takeda, Y. Physicochemical properties and molecular structure of starches from millet (Pennisetum typhoides) and sorghum (Sorghum bicolor L. Moench) cultivars in Nigeria. Cereal Chem.2004,81,255-260.
    Ge, Y., Y. Ni, H. Yan, Y. Chen and T. Cai,2002. Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ using response surface methodology. J. of Food Sci.,67:239-243.
    Giovanni, M.1983. Response surface methodology and product optimization. Food Technol.,45:3741.
    Hemwimon, S., P. Pavasant, and A. Shotipruk,2007. Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Sep. and Purif. Technol.,5444:5540.
    Hofmann, R., T. Kappler and C. Posten,2006. Pilot-scale press electrofiltration of biopolymers. Sep. and Purif. Technol.,51:303-309.
    Hromadkova, Z., and Ebringerova, A.2003. Ultrasonic extraction of plant materials Investigation of hemicellulose release from buckwheat hulls. Ultrason. Sonochem., 10:127-133.
    Hromadkova, Z., A. Ebringerova and P. Valachovic,1999. Comparison of classical and ultrasound-assisted extraction of polysaccharides from Salvia officinalis L.Ultrason. Sonochem.,5163:168.
    Kaur, L.; Singh, J.; Singh, H.; McCarthy, O.J. Starch-cassia gum interactions:a microstructure-Rheology study. Food Chem.2008,111,1-10.
    Lacerda, L.G.; Carvalho Filho, M.A.S; Demiate, I.M.; Bannach, G.; Ionashiro M.; Schnitzler, E. Thermal behavior of corn starch granules under action of fungal alpha-amylase. J. Thermal. Anal. Calorim.2008,93,445-449.
    Lauro, M.; Ring, S.G.; Built, V.J.; Poutanen, K. Gelation of waxy barley starch hydrolysates. J. Cereal Sci.1997,26,347-354.
    Lee, G.D., J.O. Kim and J.H. Kwon,2005. Optimum conditions for the extraction of effective substances from the stem of Opuntia fiscus-indica. Food Sci. and Biotechnol.,14:190-195.
    Li, J.W., S.D. Ding and X. L Ding,2007. Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. Jinsixiaozao. J. of Food Eng., 80:176-183.
    Li, Q. H., and C. L. Fu,2005. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chem.,92:701-706.
    Liyana-Pathirana, C. M. and F. Shahidi,2005a. Antioxidant activity of commercial soft and hard wheat (Triticum aestivium L.) as affected by gastric pH conditions.J. of Agri. and Food Chem.,53:2433-2440.
    Liyana-Pathirana, C.M. and F. Shahidi,2005b. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem.,93:47-56.
    Matalanis, A.M.; Campanella, O.H.; Hamaker, B.R. Storage retrogradation behavior of sorghum, maize and rice starch pastes related to amylopectin fine structure. J. Cereal Sci. 2009,50,74-81.
    Matsubara, T.; Ammar, Y. B.; Anindyawati, T.; Yamamoto, S.; Ito, K.; Izuka, M.; Minamiura, N. Degradation of raw starch granules by alpha-amylase purified from culture of Aspergillus awamori KT-11. J. Biochem. Mol. Biol.2004,37,422-428.
    Mendez-Montealvo, G.; Garcia-Suarez, F.J.; Paredes-Lopez, O.; Bello-Perez, L.A. Effect of nixtamalization on morphological and rheological characteristics of maize starch. J. Cereal Sci.2008,48,420-425.
    Mutisya, J., C. Sun,, S. Rosenquist, Y. Baguma, C. Jansson,2009. Diurnal oscillation of SBE expression in sorghum endosperm. J. of Plant Physiol.166:428-434.
    Mutisya, J.; Sun, C.; Rosenquist, S.; Baguma, Y.; Jansson, C. Diurnal oscillation of SBE expression in sorghum endosperm. J. Plant Physiol.2009,166,428-434.
    Nadia, B.; Naima, B.; Boubekeur, N.; Claude, D.; Mohamed, M.; Barbara, R.; Marianne, S. Physicochemical and functional properties of starches from sorghum cultivated in the Sahara of Algeria. Carbohydr. Polym.2009,78,475-480.
    Qiao, D.L., C.L. Kea, B. Hua, J.G. Luo, H. Ye, Y. Sun,2009. Antioxidantactivities of polysaccharides from Hyriopsis cumingii. Carbohyd. Polym.,78:199-204.
    Ravikumar, K., S. Ramalingam, S.Krishnan and K. Balu,2006. Application ofresponse surface methodology to optimize the process variables for reactive redand acid brown dye removal using a novel absorbent. Dyes and Pigments,70:18-26.
    Rodrigues, S., G.A.S. Pinto and F.A.N. Fernandes,2008. Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrason. Sonochem.,15:95-100.
    Schepetkin, I.A. and M.T. Quinn,2006. Botanical polysaccharide:Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol.,6:317-333.
    Sang, Y.; Bean, S.; Seib, P.A.; Pedersen, J.; Shi, Y.C. Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem.2008,56, 6680-6685.
    Singh, N.; Inouchi, N.; Nishinari, K. Morphological, structural, thermal, and rheological characteristics of starches separated from apples of different cultivars. J. Agric. Food Chem.2005,53,10193-10199.
    Singh, N.; Sandhu, K.S. Some properties of corn starches II:Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem. 2001,101,1499-1507.
    Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003,81,219-231.
    Subrahmanyam, S.N.; Hoseney, R.C. Shear thinning properties of sorghum starch. Cereal
    Olayinka, O.O.; Adebowale, K.O.; Olu-Owolabi, B.I. Effect of heat-moisture treatment on physicochemical properties of white sorghum starch. Food Hydrocoll.2008,22, 225-230.
    Svegmark, K.; Hermansson, A. M.Microstructure and rheological properties of composites of potato starch granules and amylose:A comparison of observed and predicted structure. Food Struct.1993,12,181-193.
    Taylor, J.R.N.; Schober, T.J.; Bean, S.R. Novel and non-food uses for sorghum and millets. J. Cereal Sci.2006,44,252-271.
    Tang, H.; Mitsunaga, T.; Kawamura, Y. Relationship between functionality and structure in barley starches. Carbohydr. Polym.2004,57,145-152.
    Tester, R.F.; Morrison, W.R. Swelling and gelatinization of cereal starches. Effect of amylopectin, amylose and lipids. Cereal Chem.1990,67,551-557.
    Tharanathan, R.N.; Mahadevamma, S. Grain legumes-a boon to human nutrition. Trends Food Sci. Technol.2003,14,507-518.
    Traore, T.; Mouquet, C.; Icard-Verniere, C.; Traore, A.S.; Treche, S. Changes in nutrient composition, phytate and cyanide contents and alpha-amylase activity during cereal malting in small production units in Ouagadougou (Burkina Faso). Food Chem. 2004,88,105-124.
    Tsochatzidis, N.A., P. Guiraud, A.M. Wilhelm and H. Delmas,2001. Determinationof velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique. Chem. Eng. Sci.,56:1831-1840.
    Velickovic, D.T., D.M. Milenovic, M.S. Ristic and V.B. Veljkovic,2006. Kinetics of ultrasonic extraction of extractive substances from garden (Salvia officinalis L.)and glutinous (Salvia glutinosa L.) sage. Ultrason. Sonochem.,13:150-156.
    Vinatoru, M., M.Toma, O. Radu, P.I.Filip, D.Lazurca and T.J.Mason,1997. The use of ultrasound for the extraction of bioactive principles from plant materials.Ultrason. Sonochem.,4:135-139.
    Wang, Y.J., Z. Cheng, J.W. Mao, M.G. Fan and X.Q.Wu,2009. Optimization of ultrasonic-assisted extraction process of Poria cocos polysaccharides by response surface methodology. Carbohyd. Polym.,77:713-717.
    Yang, B., M.M. Zhao, J. Shi, N. Yang and Y.M. Jiang,2008a. Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chem.,106:685-690.
    Yang, B., Y.M. Jiang, R. Wang, M.M. Zhao and J. Sun,2009. Ultra-high pressure treatment effects on polysaccharides and lignins of longan fruit pericarp. Food Chem.,112:428-431.
    Yang, C.X., N. He, X.P. Ling, M.L. Ye, C.X. Zhang and W.Y. Shao,2008b. The isolation and characterization of polysaccharides from longan pulp. Sep. and Purif. Technol.,63:226-230.
    You S.; Izydorczyk, M.S. Comparison of the physicochemical properties of barley starches after partial amylolysis and acid/alcohol hydrolysis. Carbohydr. Polym. 2007,69,489-502.
    You, S.; Izydorczyk, M.S. Molecular characteristics of barley starches with variable amylose content. Carbohydr. Polym.2002,49,33-42.
    Zhang, X.; Wang, D.; Tuinstra, M.R.; Bean, S.; Seib, P.A.; Sun, X.S. Ethanol and lactic acid production as affected by sorghum genotype and location. Ind. Crop. Prod. 2003,18,45-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700