灰皮支黑豆对大豆胞囊线虫3号生理小种抗性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆胞囊线虫病(Soybean Cyst Nematode, SCN)是大豆生产中的重要病害之一。从世界范围来看,大豆胞囊线虫病的为害和蔓延日趋加重。本论文系统地从防御酶系的活性、次生代谢物质的含量、膜脂过氧化作用、光合作用、物质代谢等角度研究了我国特有的抗病品种灰皮支黑豆(ZDD2315)抗大豆胞囊线虫3号生理小种的生理生化机制;并首次利用抗病品种灰皮支黑豆与辽宁省的主栽品种辽豆15配制杂交组合,通过分离群体分组分析法(Bulked Segregant Analysis, BSA)建立了F4代抗、感池,采用双向电泳技术和质谱分析技术,寻找与大豆胞囊线虫3号生理小种抗性相关的差异蛋白;同时利用新一代高通量测序技术,筛选抗病品种灰皮支黑豆和感病品种辽豆15在大豆胞囊线虫3号生理小种侵染前后差异表达的基因,揭示灰皮支黑豆抗大豆胞囊线虫3号生理小种的分子机制。主要研究结果如下:
     1.明确了抗病品种灰皮支黑豆对大豆胞囊线虫3号生理小种的抗性不具有抗侵入的作用,而具有抗发育的作用。利用冰冻切片技术研究抗、感品种灰皮支黑豆和辽豆15受大豆胞囊线虫3号生理小种侵染后根部的组织病理学反应,明确了灰皮支黑豆抗大豆胞囊线虫3号生理小种的组织结构抗性。
     2.明确了灰皮支黑豆抗大豆胞囊线虫3号生理小种的生化机制。抗病品种灰皮支黑豆和感病品种辽豆15受大豆胞囊线虫3号生理小种侵染后,根内多酚氧化酶(PPO)、过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、几丁质酶的活性均表现升高,并且在灰皮支黑豆中各种防御酶系的活性高峰出现的较早,根内的总酚、类黄酮含量也都表现增加,但在灰皮支黑豆中的含量后达到峰值。
     3.明确了灰皮支黑豆抗大豆胞囊线虫3号生理小种的生理机制。抗病品种灰皮支黑豆和感病品种辽豆15受大豆胞囊线虫3号生理小种侵染后,辽豆15的细胞膜受到了严重的伤害,根内丙二醛(MDA)的含量显著增加,电解质大量外渗,根内可溶性糖的含量与对照相比显著增加,可溶性蛋白的含量也明显增加,叶片的叶绿素含量明显降低;而灰皮支黑豆的细胞膜受损程度较轻,根内丙二醛(MDA)的含量虽有少量增加但与对照相比差异不大,电解质少量外渗,根内可溶性糖的含量低于辽豆15,可溶性蛋白的含量却高于辽豆15,叶片的叶绿素含量无明显变化。
     4.利用BSA法成功构建了灰皮支黑豆((?))和辽豆15((?))杂交后代F4抗、感池材料,通过双向电泳获得了抗、感池的2-DE图谱,在凝胶上各检测到近400个蛋白点,对差异表达的27个蛋白点进行MALDI-TOF-MS质谱鉴定,获得了这27个蛋白点的肽质量指纹图谱(PMF),通过Mascot数据库搜索比对,共鉴定出了16个蛋白点,其中仅在抗病池特异表达的蛋白点有hypothetical protein SORBIDRAFT_04g012541 (Spot No.7), predicted protein (Spot No.195), ATPase alpha subunit (Spot No.224), homeobox-like protein (Spot No.243);仅在感病池特异表达的蛋白点有unknown (Spot No.14);抗病池中表达量上调2倍以上的蛋白点有unknown (Spot No.53,71,284), hypothetical protein SORBIDRAFT_04g012541 (Spot No.116), trypsin inhibitor p20 (Spot No.117), Xylem serine proteinase 1 precursor, putative (Spot No.118), triosephosphate isomerase (Spot No.173,187), caffeoyl coenzyme A 3-O-methyltransferase 2 (Spot No.204);抗病池中表达量下调2倍以上的蛋白点有putative RNA polymerase III (Spot No.296), ATP synthase beta chain (Spot No.340).
     5.利用RT-PCR技术分别获得了灰皮支黑豆573bp的胰蛋白酶抑制剂基因的序列和848bp的咖啡酰辅酶A甲基转移酶(CCoAOMT)基因的序列,同时利用实时荧光定量PCR技术(Real-Time Quantitative PCR)明确了抗病品种灰皮支黑豆和感病品种辽豆15受大豆胞囊线虫3号生理小种侵染后根内胰蛋白酶抑制剂基因的变化规律:大豆胞囊线虫侵染后,胰蛋白酶抑制剂基因在灰皮支黑豆根内的相对表达量始终高于辽豆15,并且在大豆胞囊线虫侵染后25d时灰皮支黑豆根内的胰蛋白酶抑制剂基因的相对表达量达到最高值。
     6.利用新一代高通量测序技术对灰皮支黑豆和辽豆15受大豆胞囊线虫3号生理小种侵染后的基因表达谱进行分析,筛选出受大豆胞囊线虫3号生理小种胁迫诱导表达的差异基因,灰皮支黑豆受大豆胞囊线虫胁迫诱导上调表达的差异基因有389个,下调表达的差异基因有344个;辽豆15豆受大豆胞囊线虫胁迫诱导上调表达的差异基因有222个,下调表达的差异基因有691个。这些差异表达的基因涉及激素应答、转录因子、蛋白激酶、热激蛋白、防御酶系、PR蛋白等方面。
The soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most important disease of soybean in the world. This disease was widely distributed and seriously disserved in the world. The best control method was using resistant cultivars against this disease. Huipizhi Heidou (ZDD2315) is a good resistant germplasm among the resistant materials. The research was systematically conducted from the view of the activities of defense enzymes, the contents of secondary metabolites, membrane lipid peroxidation, photosynthetic capacity and material metabolism to reveal the biochemical and physiological mechanism of Huipizhi Heidou resistant to SCN race 3. The F4 separated populations from the cross between the resistant Huipizhi Heidou and the susceptible Liaodou 15 to SCN race 3 were used as test materials by Bulked Segregant Analysis (BSA). Two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were employed to separate and identify the differentially expressed proteins from soybean induced by SCN. The differentially expressed genes of the resistant Huipizhi Heidou and the susceptible Liaodou 15 infected with SCN race 3 were screened using digital gene expression (DGE) analysis. The main results were as follows:
     1. The resistant Huipizhi Heidou had no effect on the invading of SCN race 3, but had an effect on the development of SCN race 3. Histopathological response in roots of the resistant Huipizhi Heidou and the susceptible Liaodou 15 infected with SCN race 3 was studied by cryo-sectioning technique.
     2. The resistant Huipizhi Heidou and the susceptible Liaodou 15 were inoculated with eggs of SCN race 3 indoor, then the dynamic changes of defense enzymes, including polyphenol oxidase (PPO), peroxidase (POD), phenylalanine (PAL), Chitinase were studied, and the contents of total phenolics and isoflavone were also determined in order to reveal the biochemical mechanism of Huipizhi Heidou resistant to SCN race 3. The results showed that the activities of PPO, POD, PAL could be increased both in Huipizhi Heidou and Liaodou 15, and the fastigium of defensive enzyme activities presented earlier in Huipizhi Heidou, the contents of total phenolics and isoflavone could also be increased in Huipizhi Heidou.
     3. The resistant Huipizhi Heidou and the susceptible Liaodou 15 were inoculated with eggs of SCN race 3 indoor, and the contents of MDA, chlorophyll, soluble sugar and soluble protein were mensurated in order to reveal the physiological mechanism of Huipizhi Heidou resistant to SCN race 3. The results showed that the cell membrane of Liaodou 15 had seriously destroyed, the content of MDA was significantly increased, the rate of electrolyte leakage increased, the contents of soluble sugar and soluble protein were increased compared to the uninoculated, the content of chlorophyll was decreased. But the cell membrane of Huipizhi Heidou had slightly destroyed, there was a small increase on the content of MDA and the rate of electrolyte leakage, the content of soluble sugar was less than Liaodou 15, the content of soluble protein was more than Liaodou 15, the content of chlorophyll had no significantly changes.
     4. The F4 separated populations from the cross between the resistant Huipizhi Heidou and the susceptible Liaodou 15 were used as test materials by bulked segregant analysis. Two-dimensional gel electrophoresis (2-DE) were adopted to separate the differentially expressed proteins from F4 induced by SCN. Nearly 400 protein spots were detected on the 2-DE gels. Of the 27 differentially expressed protein spots,16 protein spots were identified by MALDI-TOF-MS and 11 protein spots were not identified due to low scores. Hypothetical protein SORBIDRAFT_04g012541 (denoted as No.7), predicted protein (denoted as No. 195), ATPase alpha subunit (denoted as No.224) and homeobox-like protein (denoted as No. 243) were newly expressed in the resistant samples; whereas unknown (denoted as No.14) was newly expressed in the susceptible samples; unknown (denoted as No.53,71 and 284), hypothetical protein SORBIDRAFT_04g012541 (denoted as No.116), trypsin inhibitor p20 (denoted as No.117), Xylem serine proteinase 1 precursor, putative (denoted as No.118), triosephosphate isomerase (denoted as No.173 and 187) and caffeoyl coenzyme A 3-O-methyltransferase 2 (denoted as No.204) were up-expressed in the resistant samples; putative RNA polymerase III (denoted as No.296) and ATP synthase beta chain (denoted as No.340) were down-expressed in the resistant samples.
     5. The soybean Kunitz Trypsin Inhibitor (KTI) gene with a cDNA sequence of 573bp and CCoAOMT gene with a cDNA sequence of 848bp were obtained from Huipizhi Heidou by RT-PCR method. The expression of the KTI gene was detected in the resistant Huipizhi Heidou and the susceptible Liaodou 15 infected by SCN race 3 with the method of Real-Time Quantitative PCR, the results showed that the relative expression level of the KTI gene was higher in Huipizhi Heidou than that in Liaodou 15, and reached the top in Huipizhi Heidou at 25d after inoculating by SCN race 3.
     6. The differentially expressed genes of the resistant Huipizhi Heidou and the susceptible Liaodou 15 infected with SCN race 3 were screened using DGE analysis.389 genes were up-regulated and 344 genes were down-regulated in Huipizhi Heidou induced by SCN,222 genes were up-regulated and 691 genes were down-regulated in Liaodou 15 induced by SCN. These differentially expressed genes were involved in transcription factor, protein kinase, heat shock proteins, defense enzymes, PR proteins, hormone responses and so on.
引文
1.常玮,韩英鹏,胡海波等.2010.基于元分析与结构域注释的大豆胞囊线虫抗性基因挖掘.中国农业科学,43(23):4787-4795.
    2.陈桂平,项慧新,张文.2007.板蓝根中根腐病与可溶性蛋白关系的研究.唐山学院学报,20(4):112-114.
    3.陈建荣,郭清泉,张学文.2006.苎麻CCoAOMT基因全长cDNA克隆与序列分析.中国农业科学,39(5):1058-1063.
    4.陈品三,张东生,陈森玉.1987.大豆孢囊线虫(Heterodera glycines)7号生理小种的研究初报.中国农业科学,20:94.
    5.陈品三,齐军山,王寿华等.2001.我国人豆胞囊线虫生理分化动态的鉴定和监测研究.植物病理学报,31(4):336-341.
    6.程彦伟,李建友,姜爱良等.2010.蛋白质组学在植物科学研究中的进展.江苏农业科学,(1):17-20.
    7.戴芳澜,相望年,郑儒永.1958.中国经济植物病原目录.北京:科学出版社.
    8.董宇,段玉玺,陈立杰等.2009.应县小黑豆与大豆胞囊线虫3号生理小种的互作关系.中国农学通报,25(6):195-199.
    9.范海延,陈捷,邵美妮等.2009.白粉病菌胁迫下黄瓜R17抗病品系叶片蛋白质组分析.园艺学报,36(6):829-834.
    10.范海延,陈捷,曲波等.2009.应答白粉病菌胁迫的黄瓜S17叶片功能蛋白质组学初步分析.植物病理学报,39(6):650-652.
    11.高明杰,吴俊江,刘丽君等.2001.抗感大豆孢囊线虫病品种内源激素变化的研究.大豆通报,(3):8.
    12.高越峰,朱祯,朱玉等.1997.大豆Kunitz型胰蛋白酶抑制剂基因的克隆及其转基因烟草抗虫性初探.高技术通讯,(9):5-9.
    13.郝玉金,翟衡,王寿华.1999.山定子感染南京毛刺线虫后几种生理生化物质的变化.植物病理学报,29(1):82-85.
    14.贺福初.1999.蛋白质组(proteome)研究一后基因组时代的生力军.科学通报,(2):3-12.
    15.黄秀丽,刘力行,翟羽红等.2008.不同抗性玉米自交系对玉米弯孢菌侵染应答反应差异蛋白分析. 自然科学进展,18(10):1169-1174.
    16.焦石,段玉玺,孙华等.2009.大豆根部冰冻切片最佳方法试验.湖北农业科学,48(4):806-808.
    17.金慧,栾雨时.2010.转录因子在植物抗病基因工程中的研究进展.中国生物工程杂志,30(10):94-99.
    18.李国桢,杨兆英,王守义等.1993.抗大豆孢囊线虫病育种的进展.大豆通报,(3):27-29.
    19.李靖,利容千,袁文静.1991.黄瓜感染霜霉病菌叶片中一些酶活性的变化.植物病理学报,21(4):277-283.
    20.李伟,熊谨,陈晓阳.2003.木质素代谢的生理意义及其遗传控制研究进展.西北植物学报,23(4):675-681.
    21.李小燕.2010.大豆胞囊线虫抗性相关的microRNA及表达谱研究.中国科学院研究生院博士学位论文.
    22.李莹,王志,卫保国.1987.大豆孢囊线虫4号小种新抗源的筛选和利用.大豆科学,6(4):291-298.
    23.李莹,王志,焦广音等.1991.中国大豆遗传资源对大豆孢囊线虫4号生理小种的抗性鉴定研究.中国农业科学,24(5):64-69.
    24.李莹,李原萍,张听艳等.1996.大豆品种对孢囊线虫4号生理小种抗性的遗传研究.大豆科学,15(3):191-196.
    25.林植芳,李双顺,张东林等.1988.采后荔枝果皮色素、总酚及有关酶活性的变化.植物学报,30(1):40-45.
    26.刘汉起,商绍刚,霍虹等.1985.大豆孢囊线虫(Heterodera glycines)生理小种研究初报.大豆科学,4(2):131-136.
    27.刘汉起,商绍刚,甄鸿杰等.1995.黑龙江省大豆孢囊线虫(Heterodera glycines)生理小种分布的研究.大豆科学,14(4):330-333.
    28.刘淑霞,徐梅,李海燕等.2009.几丁质酶活性与大豆对胞囊线虫抗性的关系.黑龙江八一农垦大学学报,21(3):31-34.
    29.刘维志,刘晔,陈品三.1984.东北地区部分市县大豆胞囊线虫生理小种的鉴定结果初报.沈阳农学院学报,15(2):75-78.
    30.刘维志,刘晔.1985.辽宁省地方大豆品种对大豆孢囊线虫3号生理小种的抗性鉴定.中国农业科学,(4):25-29.
    31.刘维志.1995.植物线虫学研究技术.沈阳:辽宁科学技术出版社.
    32.刘维志,洪权春,刘晔等.1996.中国小黑豆对大豆胞囊线虫3号生理小种的抗性遗传研究.沈阳农业大学学报,27(1):31-34.
    33.刘维志.2000.植物病原线虫学.北京:中国农业出版社.
    34.刘晔,刘维志.1988.大豆孢囊线虫在不同大豆品种根内的发育.辽宁农业科学,(4):16-18.
    35.卢为国,盖钧镒.2004.大豆对胞囊线虫抗性遗传与分子标记研究进展.大豆科学,23(1):59-65.
    36.卢为国,盖钧镒,李卫东.2006.大豆对胞囊线虫(Heterodera glycines Ichinohe)1号和4号生理小种抗性的遗传分析.作物学报,32(5):650-655.
    37.马俊奎,任小俊,史宏等.2006.抗大豆孢囊线虫病4号生理小种大豆新品种晋豆31号的选育及特征特性.农业科技通讯,29-30.
    38.蒙忻,刘学义,方宣钧.2003.利用大豆分子连锁图定位大豆孢囊线虫4号生理小种抗性QTL.分子植物育种,1(1):6-21.
    39.南海洋,李英慧,常汝镇等.2009.基于大豆胞囊线虫病抗性候选基因rhgl的InDel标记开发与鉴定.作物学报,35(7):1236-1243.
    40.倪志勇,吕萌,范玲.2010.棉花咖啡酰辅酶A-O-甲基转移酶基因的克隆及特征分析.西北植物学报,30(6):1083-1091.
    41.欧阳光察,薛应龙.1988.植物苯丙烷类代谢的生理意义及其调控.植物生理学通讯,(3):9-16.
    42.孙果忠,朱振东,武小菲等.2008.大豆疫霉菌、水杨酸和创伤诱导的拟南芥蛋白质谱的比较研究.中国农业科学,41(4):1030-1039.
    43.王连铮,赵荣娟,王岚等.2002.大豆抗孢囊线虫4号生理小种新品种的选育研究.中国农业科学,35(5):476-481.
    44.王树峰,李卫东,刘世涛等.2004.应县小黑豆对大豆胞囊线虫(SCN)1号生理小种的抗性遗传分析.河南农业科学,(5):29-31.
    45.王雪,段玉玺,陈立杰等.2008.大豆根系分泌物中氨基酸组分与抗大豆胞囊线虫的相关性研究.沈阳农业大学学报,39(6):677-681.
    46.王雪.2009.大豆抗胞囊线虫机制及与抗性相关的差异蛋白质组学研究.沈阳农业大学博士学位论文.
    47.王衍桐,彭德良,陈受宜.2000.灰布支黑豆对大豆孢囊线虫(Heterodera glycines)14号小种的抗性遗传.遗传学报,27(2):146-150.
    48.王志,李莹.1990.大豆抗孢囊线虫4号小种的遗传和转育.山西农业科学,(6):4-6.
    49.魏利.2010.大豆胞囊线虫(SCN)抗性候选基因表达特征的研究.南昌大学硕士学位论文.
    50.吴海燕,远方,陈立杰等.2001.大豆胞囊线虫病与大豆抗胞囊线虫机制的研究.大豆科学,20(4):285-289.
    51.吴海燕.2003.大豆与大豆胞囊线虫相互关系研究.沈阳农业大学博士学位论文.
    52.吴海燕,段玉玺,李秀伙等.2007.SCN侵染对不同大豆品种根系氨基酸/低分子肽类分泌物的影响.植物病理学报,37(6):616-622.
    53.吴和礼,姚振纯,李秀兰等.1982.大豆孢囊线虫病的抗源筛选研究.中国农业科学,(6):19-24.
    54.吴和礼,姚振纯,李秀兰等.1989.大豆抗孢囊线虫(Heterodera glycines Ichinohe)新种质材料的选育.大豆科学,8(3):227-232.
    55.吴慧平,解宜林,杨荣铮.1998.水稻潜根线虫接虫期、接虫量对水稻叶绿素含量及相关生化指标的影响.安徽农业科学,26(3):256-258.
    56.谢佩松,徐中根,韦存虚.2009.冰冻切片技术在植物显微结构和组织化学中的应用.生物学杂志,26(3):72-74.
    57.许艳丽,李兆林.2001.美国、阿根廷和巴西大豆重要病害发生与防治现状.中国油料作物学报,23(1):74-79.
    58.薛应龙.1985.植物生理学实验手册.上海:上海科学技术出版社.
    59.闫洁,陈守才.2008.橡胶树死皮病黄色体差异表达蛋白的初步分析.北方园艺,(7):58-62.
    60.颜清上.1995.中国黑豆抗源对大豆孢囊线虫4号生理小种抗病机制的研究.中国农业科学院博十学位论文.
    61.颜清上,陈品三,王连铮.1996.中国小黑豆抗源对大豆孢囊线虫4号生理小种抗性机制的研究(I)抗源品种对大豆孢囊线虫侵染和发育的影响.植物病理学报,26(4):317-323.
    62.颜清上,陈品三,王连铮.1997.中国小黑豆抗源对大豆孢囊线虫4号生理小种抗性机制的研究(II)抗感品种根部合胞体超微结构的比较.植物病理学报,27(1):37-41.
    63.颜清上,王连铮.1997.中国小黑豆抗源对大豆孢囊线虫4号生理小种抗性机制的研究(III)抑制线虫发育的组织病理学证据.大豆科学,16(1):34-37.
    64.颜清上,陈品三,王连铮.1997.大豆根渗出物对大豆孢囊线虫4号生理小种卵孵化的影响.植物病理学报,27(3):269-274.
    65.颜清上,王连铮,陈品三.1997.中国小黑豆抗源对大豆孢囊线虫4号生理小种抗病的生化反应.作物学报,23(5):529-537.
    66.杨岱伦.1984.大豆孢囊线虫的生物学研究.辽宁农业科学,(5):23-26.
    67.杨少旭,段玉玺,陈立杰等.2008.大豆胰蛋白酶抑制剂与大豆抗大豆胞囊线虫的关系.大豆科学,27(3):487-490.
    68.于晶贤.1998.哈尔滨小黑豆在大豆抗孢囊线虫育种中的利用.农业系统科学与综合研究,14(4):319-320.
    69.袁翠平,沈波,董英山.2009.中国大豆抗(耐)胞囊线虫病品种及其系谱分析.大豆科学,28(6):1049-1053.
    70.余叔文,汤章城.1998.植物生理与分子生物学(第二版).北京:科学出版社.
    71.曾亚,丁新华,沈祥陵等.2008.水稻抗病基因介导的抗白叶枯病反应中蛋白质表达谱的比较分析.中国水稻科学,22(3):234-242.
    72.翟衡,郝玉金,王寿华.1999.苹果砧木对南京毛刺线虫的抗性机制初探.植物保护学报,26(3):208-212.
    73.张东升.1995.抗性大豆品种对大豆胞囊线虫侵入和发育的影响.植物病理学报,25(4):278.
    74.张军,杨庆凯,王守义等.2002.大豆抗SCN3过程中总酚含量动态分析.大豆科学,21(1):71-74.
    75.张仁双,牛颖英,包力光等.1985.大豆孢囊线虫病抗源品种鉴定筛选研究.大豆科学,4(2):137-140.
    76.周博如,李永镐,刘太国等.2000.不同抗性的大豆品种接种大豆细菌性疫病菌后可溶性蛋白、总糖含量变化的研究.大豆科学,19(2):111-114.
    77.朱广廉.1990.植物生理学实验.北京:北京大学出版社.
    78.朱友林,吴健胜,王金生.2000.水稻对白叶枯病菌抗性相关蛋白的双向电泳分析.中国农业科学,33(4):91-93.
    79. Acedo J. A., V. H. Dropkin and V. D. Luedders.1984. Journal of Nematology,16(1):48-57.
    80. Afzal A J, Natarajan A, Saini N, et al.2009. The Nematode Resistance Allele at the rhgl Locus Alters the Proteome and Primary Metabolism of Soybean Roots. Plant Physiology Preview, (151):1264-1280.
    81. Anand S. C., K. M. Gallo.1984. Identification of additional soybean germplasm with resistance to race 3 of the soybean cyst nematode. Plant Disease Report. (68):593-595.
    82. Anand S. C., K. M. Gallo, I. A. Baker, E. E. Hartwig.1988. Soybean plant introductions with resistance to race 4 o r race 5 of soybean cyst nematode. Crop Sci. (28):563-564.
    83. Anand S. C.1991. Advances in cyst nematode resistance in soybean cultivars in Proc. of the 21th Soybean Seed Research Confrence.57-63.
    84. Arora S K.1983. Chemistry and Biochemistry of Legumes. London Edward Arnold,217-227.
    85. Boutin S, Ansari H, Concibido V C, et al.1992. RFLP analysis of cyst nematode resistance in soybeans. Soybean Genetic Newsletter, (19):123-127.
    86. Brenner S, Johnson M, Bridgham J, Corcoran K,et al.2001. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead array. Nature Biotechnol, (18):630-634.
    87. Cai D. G., Kleine M., Kifle S., et al.1997. Positional cloning of a gene for nematode resistance in sugar beet. Science, (275):832-834.
    88. Caldwell B E, Brim C A, Ross J P.1960. Inheritance resistance of soybean to the Heterodera glycines. Agron J,52:633-636.
    89. Campbell N, Warner A L, Lightfoot D A, et al.2009. Duplication of a chromosomal region from linkage group A2 involved in cyst nematode resistance in soybean. Molecular and General Genetics.
    90. Campo S, Carrascal M, Coca M, et al.2004.The defense response of germinating maize embryos against fungal infection:A proteomics approach. Proteomics,4(2):383-396.
    91. Chen Z Y, Brown R L, Damann K E, Cleveland T E.2002. Identification of unique or elevated levels of kernel proteins in aflatoxin resistant maize genotypes through proteome analysis. Phytopathology,92 (10):1084-1094.
    92. Chen Z Y, Robert L B, Cleveland T E.2004. Evidence for an association in corn between stress tolerance and resistance to Aspergillus flavus in fection and aflatoxin contamination. African Journal of Biotechnology,3 (12):693-699.
    93. Chivasa S, Simon W J, Yu X L, Yalpani N, Slabas A R.2005. Pathogen elicitor induced changes in the maize extracellular matrix proteome. Proteomics,5 (18):4894-4904.
    94. Clark A. J., Perry R. N.1977. Hatching of cyst nematodes. Nematologica, (23):350-368.
    95. Concibido V C, Denny R L, Boutin S R, et al.1994. DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Crop Science, (34):240-246.
    96. Concibido V. C., Diers B. W., Arelli P. R.2004. A decade of QTL mapping for cyst nematode resistance in soybean.Crop Science, (44):1121-1131.
    97. Endo B. Y.1965. Phytopathology, (55):375-381.
    98. Gayed S. K. and N. Rosa 1975. Phytopathology, (65):1049-1053.
    99. Giebel J.1974. Biochemical mechanisms of plant resistance to nematodes. Journal of Nematology,6(4): 175-184.
    100. Golden A. M., J. M. Epps.1970. Terminology and identify of infraspecific forms of the soybean cyst nematode (Heterodera glycines). Plant Diseases Report, (54):544-546.
    101. Halbrandt J. M., S. A. Lewis and E. R. Stupe.1992. Journal of Nematology,24(1):84-91.
    102. Hauge B. M., Wang M. L., Parsons J. D., et al. inventors; Monsanto Company, assignee. Nucleic acid molecules and other molecules associated with soybean cyst nematode resistance. U. S. Patent Application Publication,2001, No.20030005491.
    103. Hirosato K, Kiyoshi I, Setsuko K.2001. A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics,1(9):1162-1171.
    104. Inagaki H.1979. Race status of five Japanese populations of Heterodera glycines. Japanese Journal of Nematology, (9):1-4.
    105. Iqbal M J, Ahsan R, AfzalA J, et al.2009. Multigeneic QTL:the laccase encoded within the soybean Rfs2/rhgl locus inferred to underlie part of the dual resistance to cyst nematode and sudden death syndrome. Plant Genomics. Current Issues in Molecular Biology, (11):11-19.
    106. Ishihara H., Jamai A., Bensmail I, et al.2003. Candidate gene approach:cloning disease resistance genes to the soybean cyst nematode resistance. Plant & Animal Genomes IX Conference, San Diego, CA,93.
    107. Ithal N., Recknor J., Nettleton D., et al.2007. Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode in fection of soybean. Molecular Plant-Microbe Interactions, 20 (3):293-305.
    108. Jamai A, Liu S M, Liu X H, et al.2007. Molecular and functional analys is of the Rhg4 locus conferring resistance to the soybean cyst nematode. Plant & Animal Genom es XIV Conference, San Diego, CA,781.
    109. Jung C., Cai D. G., Kleine M.1998. Engeneering nematode resistance in crop species. Trends in Plant Science, (3):266-271.
    110. Kim, Y. H., R. D. Riggs, K. S. Kim.1987. Journal of Nematology,19(2):177-187.
    111. Kim D. G., R. D. Riggs, R. T. Robbins et al.1997. Distribution of racesof Heterodera glycines in the central United States. Journal of Nematology,29(2):173-179.
    112. Kim S T, Cho K S, Yu S. et al.2003. Proteomics, (3):2368-2378.
    113. Klink V. P., Overall C. C., Alkharouf N. W., et al.2007. A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) in fection. Planta, (226):1423-1447.
    114. Koller A., Washburn M.P., Lange B.M., Andon N.L., Deciu C., Haynes P.A., Hays L., Schieltz D., Ulaszek R.,Wei J.,Wolters D., Yates J.R..2002. Proteomic survey of metabolic pathways in rice, Proc. Natl. Acad. Sci.,99:11969-11974.
    115. Li Y H, Zhang C, Gao Z S, et al.2009. Development of SNP markers and haplotype analysis of the candidate gene for rhgl, which confers resistance to soybean cyst nematode in soybean. Molecular Breeding, (24):63-76.
    116. Liu Y., Liu W. Z., Duan Y. X..1993. Effects of Castorbean and other nonhost crops on controlling Heterodera glycines.6th International Congress of Plant Pathology. Montreal, Canada 202.
    117. LU Wei-guo, GAI Jun-yi, LI Wei-dong.2006. Sampling Survey and Identification of Races of Soybean Cyst Nematode(Heterodera glycines Ichinohe) in Huang-Huai Valleys. Agricultural Sciences in China,5(8):615-621.
    118. Mahmood T, Jan A, Kakishima M, et al.2006. Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics,6 (22):6053-6065.
    119. Matson A L, Williams L F.1965. Evidence of a fourth gene for resistance to the soybean cyst nematode. Crop Sci, (5):477.
    120. McLean M. D., Hoover G. J., Bancroft B., et al.2007. Identification of the full-length Hs1pro-1 coding sequen ce and preliminary evaluat ion of soybean cyst nematode resistance in soybean transformed with Hs1pro-1 cDNA. Canadian Journal of Botany, (85):437-441.
    121. Meksem K, Jamai A, Ruben E, et al.2005. QTLs for resistance to soybean cyst nematode:An Xa21 like gene family that requires possible dimerization for signal transduction. Plant & Animal Genomes ⅩⅢ Conference, San Diego, CA, W310.
    122. Peng J H, Black L L.1976. Increased proteinase inhibitor activity in response to infection of resistant tomato plants by Phytophthora inf estans. Phytopathology,66 (8):958-963.
    123. Qiu B. X., D. A. Sleper, A. P. Rao-Arellil.1997. Genetic and molecular characterization of resistance to Heterodera glycines race isolates 1,3,and 5 in Peking. Euphytica, (96):225-231.
    124. Riggs R. D., K. S. Kim, I.Gipson 1973, Phytopathology, (63):76-84.
    125. Riggs R. D., D. P. Schmitt.1988. Complete characterization of the racescheme for Heterodera glycines. Journal of Nematology,20 (3):392-395.
    126. Roby D, Toppan A, Esquerre-Tugaye M-T.1987. Cell surfaces in plant microorganism interaction Ⅷ increases proteinase inhibitors activity in melon plants in response to infection by Colletot richum lagenari um or to treatment with an elicitor fraction from this fungus. Physiol Mol Plant Physiol,30 (3):453-460.
    127. Ross, J. P., C. A. Brim.1957. Resistance of soybeans to the soybean cyst nematode as determined by a Double-row method. Plant Disease Report. (41):923-924.
    128. Ross J. P..1958. Phytopathology, (48):578-579.
    129. Ruben E, Jamai A, Afzal J, et al.2006. Genomic analysis of the rhg1 locus:candidate genes that underlie soybean resistance to the cyst nematode. Molecular Genetics and Genomics, (276):503-516.
    130. Schmitt D. P., R. D. Riggs.1991. Journal of Nematology.23(1):1-6.
    131.Tefft P. M., Bone L. W.1985. Plant induced hatching of eggs of the soybean cyst nematode Heterodera glycines. Journal of Nematology, (17):275-279.
    132.Thurau T., Kifle S., Jung C, et al.2003. The promoter of the nematode resistance gene Hslpro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet(Beta vulgaris L.) and Arabidopsis thaliana. Plant Molecular Biology, (52):643-660.
    133. T L.Niblack, P R Arelli, G R Noel, et al.2002. A revised classification scheme for genetically diverse populations of Heterodera glycines. Journal of Nematology,34(4):279-288.
    134. Unlu M., Morgan M.E., Minden J.S..1997. Difference gel electrophoresis:a single gel method of detecting changes in protein extracts. Electrophoresis,18(11):2071-2077.
    135. Ventelon-Debout M, at al.2004. Pmteomics, (4):216-225.
    136. Wang Y, Yang L, Xu H, et al.2005. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics,5(17):4496-4503.
    137. Williams T. D.1972. Cyst nematodes:Biology of Heterodera and Globodera from Plant Nematode. London, HMSO.156-170.
    138. WOUT B, JOHN R, MARIE B.2003. Lignin biosynthesis. Annu. Rev. Plant Biol.,54(1):519-546.
    139. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T.2009. miRecords:an integrated resource for microRNA-target interactions. Nucleic Acids Res, (37):105-110.
    140. Yuan C. P., Zhou G. A., Li Y. H., et al.2008. Cloning and sequence diversity analysis of GmH slpro-1 in Chinese domesticated and wild soybeans. Molecular Breeding, (22):593-602.
    141. Yue Pin, David A. Sleper, A. P. Rao-Arellil.2000. Genetic analysis of resistance to soybean cyst nematode in PI438489B. Euphytica, (116):181-186.
    142. Zhou W, Eudes F, Laroche A.2006. Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics,6 (16):4599-4609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700