proBDNF对老龄鼠认知功能的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     阿尔茨海默病(Alzheimer's disease,AD)是老年人群痴呆的主要类型,已经成为危害老年人群健康和生命的重要疾病。目前全球有AD患者约1200万人,随着人口老龄化问题的加剧,预计到2050年全球将共有AD患者4500万。AD的患者给家庭和社会带来了严重的经济负担。
     我国人口老龄化问题尤为严峻。我国已于1999年进入老龄社会,是较早进入老龄社会的发展中国家之一,也是世界上老年人口最多的国家。21世纪的中国将是一个不可逆转的老龄社会。按目前AD的发病率推算,到2050年我国将有AD患者800万-1200万。AD将成为我国的一个严峻的经济和社会负担,对AD的防治非常紧迫。
     AD海马的病理变化之一是海马神经元的缺失,研究如何防止神经元丢失以及补充缺失的神经元成为神经科学领域的研究热点。近年研究发现,哺乳动物海马齿状回颗粒层下区终生存在着神经发生的能力,但成年动物这种自发的神经发生是有限的,而且随着年龄增长逐渐下降,海马神经发生的下降与老年认知功能损害相关。因此,研究如何促进老龄海马神经元的增殖、存活及功能联系有望为AD的防治提供新的策略。
     脑源性神经营养因子(Brain-derived neurothrophic factor,BDNF)通过促进细胞的增殖、分化和存活而影响神经元的神经发生,BDNF还与活动依赖性突触可塑性有关,对改善认知功能有重要作用。BDNF由其前体物质脑源性神经营养因子前体(precursorof brain derived neurotrophic factor,proBDNF)在胞外裂解而成。最近研究表明,proBDNF是BDNF基因表达产物在胞外的主要存在形式之一,proBDNF与BDNF共同广泛存在于中枢神经系统,包括海马;未裂解的proBDNF本身可能有着与BDNF作用相反的功能;proBDNF第66个氨基酸位点发生变异后,BDNF分泌受限,海马的功能受到抑制,学习记忆能力下降;病理情况下,如AD,P75~(NTR)表达升高,proBDNF与之结合后能够促进海马长时程抑制;老年以及AD早期动物的脑内BDNFmRNA表达增加,proBDNF蛋白含量增加。这些研究结果提示,proBDNF在认知功能障碍发生、发展过程中可能有着重要作用。
     进一步认识proBDNF在老龄海马神经发生以及突触可塑性中的作用,对于AD的预防有重要意义。为此,本实验的主要内容包括:基因重组抗裂解proBDNF蛋白的表达、纯化、鉴定及生物学活性测定;探讨proBDNF对老龄鼠认知功能的影响;通过体内外实验从海马神经发生及突触可塑性变化角度探讨proBDNF对老龄鼠认知功能影响的机制。
     方法
     1.基因重组proBDNF蛋白在大肠杆菌中的表达及活性鉴定
     以大鼠点突变型基因的全长proBDNF cDNA为模板,用PCR方法扩增proBDNF的cDNA,应用基因重组技术将大鼠proBDNF cDNA克隆到质粒pET-28a中,进行限制性内切酶酶切分析和DNA测序鉴定。将重组质粒转化大肠杆菌BL21,经IPTG诱导表达后,用Ni-NTA亲和层析纯化获取蛋白,用SDS-PAGE和western blot方法鉴别,DAPI法检测重组蛋白对PC12细胞凋亡的影响。
     2.proBDNF对老龄鼠认知功能影响
     实验动物采用18月龄C57BL/6J鼠,随机分为三组:proBDNF组、抗proBDNF组和对照组,每组10只,分别采用微量渗透泵连续6天向右侧海马注射proBDNF、羊抗proBDNF或BSA,浓度均为1μg/μl,速度0.2μl/h。术后21天,采用Morris水迷宫进行航行定位实验测定老龄鼠的平均逃避潜伏期、游泳速度,并进行空间探索实验测定动物在月台所在象限时间的百分比。
     3.proBDNF对老龄鼠海马神经发生的影响
     实验动物采用18月龄C57BL/6J鼠,随机分为三组:proBDNF组,抗proBDNF组及对照组,每组10只,分别采用微量渗透泵连续6天向右侧海马注射BSA、proBDNF或羊抗proBDNF,浓度均为1μg/μl,速度0.2μl/h。动物术后当日始给予BrdU50mg/kg.体重,腹腔注射,每日2次,持续6天。分别于术后7天、28天检测海马细胞增殖情况,并利用免疫荧光三标法对Brdu阳性细胞进行鉴定;
     4.proBDNF对老龄鼠海马突触可塑性的影响
     实验动物采用18月龄C57BL/6J鼠,随机分为三组:proBDNF组,抗proBDNF组及对照组,每组5只,分别采用微量渗透泵连续6天向右侧海马注射BSA、proBDNF或羊抗proBDNF,浓度均为1μg/μl,速度0.2μl/h。术后28天使用免疫印迹分析方法检测海马synapsinⅠ和pCREB的变化。
     5.proBDNF对培养的海马神经元增殖和凋亡的影响
     采用出生24小时的雌性P75~(NTR)基因敲除鼠以及野生型鼠海马建立海马神经元原代培养,分别采用含proBDNF(10ng/ml),proBDNF(10ng/ml)+sortilin-FC(20ng/ml),或BSA(10ng/ml)的细胞培养液进行培养,采用BrdU标记法观察海马神经元增殖情况,用TUNEL法检测凋亡细胞。
     结果
     1.基因重组proBDNF蛋白在大肠杆菌中的表达及活性鉴定
     扩增出的大鼠proBDNF cDNA片段克隆进了原核表达载体,经酶切和核酸测序鉴定,得到了正确的重组质粒pET-proBDNF,并在大肠杆菌中获得了表达。纯化后的蛋白经考马氏亮蓝染色呈单一条带,用抗proBDNF的抗体进行western blot分析证明目的蛋白获得了表达。免疫组化结果提示,基因重组proBDNF蛋白能够促进PC12细胞凋亡,而亲合纯化的羊抗proBDNF抗体能够中和proBDNF的促细胞凋亡作用。
     2.proBDNF对老龄鼠认知功能影响
     Morris水迷宫测试实验结果显示,从Morris水迷宫实验第3天起,proBDNF注射组平均逃避潜伏期明显长于对照组;而抗proBDNF组平均逃避潜伏期比对照组短。各组之间游泳速度相差不显著。在空间探索实验中,proBDNF组在平台所在象限游泳时间的百分比明显比对照组小,动物入水后无目的游动,而抗proBDNF组在平台所在象限游泳时间的百分比明显比对照组增加,其运动轨迹主要集中于原平台所在位置。
     3.proBDNF对老龄鼠海马神经发生的影响
     免疫组化结果显示,术后第7天,典型的BrdU阳性细胞内有深棕黄色的颗粒,这些阳性细胞大部分位于颗粒细胞层与门区之间,即所谓的下颗粒区,往往紧密排列、成簇出现,细胞形状不规则。术后第28天,BrdU阳性细胞呈椭圆型或圆形,形态接近颗粒细胞,多数位于颗粒细胞层,也有零星细胞位于海马门区。
     术后第7天及第28天proBDNF组每张切片BrdU阳性细胞数均分别明显低于BSA对照组(p<0.01),而抗proBDNF组则明显高于BSA对照组(p<0.01)。术后第28天,proBDNF组、抗proBDNF组及对照组,各组中BrdU阳性细胞数与术后第7天同组比较均明显下降(其中proBDNF组下降最明显),分别为术后第7天的50%、38%和60%。
     免疫荧光三标法对术后第7天和第28天BrdU阳性细胞进行鉴定,结果发现proBDNF组、抗proBDNF组以及BSA组,三组中各细胞类型的百分比无显著性差异。
     4.proBDNF对老龄鼠海马突触可塑性的影响
     术后第28天免疫印迹结果显示,proBDNF组海马synapsinⅠ以及pCREB的含量分别较BSA对照组明显减少(p<0.01),而抗proBDNF组海马synapsinⅠ以及pCREB的含量则明显增加(p<0.01)。
     5.proBDNF对培养的海马神经元增殖和凋亡的影响
     对于野生型鼠培养海马神经元,与对照组比较,proBDNF组BrdU阳性细胞百分比明显降低(p<0.01)、TUNEL阳性细胞百分比明显增加(p<0.01),而proBDNF+sortilin-FC组BrdU阳性细胞百分比、TUNEL阳性细胞百分比与对照组比较无显著差异。
     P75~(NTR)基因敲除鼠培养神经元中,proBDNF组BrdU阳性细胞百分比、TUNEL阳性细胞百分比与对照组比较无显著差异。
     结论
     1.本研究成功构建了表达基因重组大鼠proBDNF的原核表达载体,基因重组大鼠proBDNF蛋白在大肠杆菌中获得了表达和纯化,所获得的基因重组蛋白具有较好的生物学活性。
     2.通过Morris水迷宫实验,证实proBDNF能够降低老龄鼠的学习记忆功能,而阻断内源性proBDNF后能改善老龄鼠的学习记忆能力。
     3.proBDNF可抑制海马细胞增殖、降低新生细胞的存活率,但对细胞分化无影响。
     4.proBDNF可降低海马synapsinⅠ和pCREB蛋白的含量,提示proBDNF可降低老龄鼠突触可塑性。
     5.proBDNF抑制体外培养的海马神经元的增殖、促进细胞凋亡,proBDNF这种作用需要P75~(NTR)及sortilin的参与。
     6.proBDNF可能通过抑制老龄鼠海马的神经发生、降低海马突触可塑性,从而降低老龄鼠的学习记忆功能。
Background
     Alzheimer'disease(AD) is the most common form of dementia in later life,and a major cause of disability and death in the elderly.Currently there are more than 12 million individuals affected with AD worldwide,and it is projected that the prevalence will nearly quadruple in the next 50 years,by which time approximately 45 million will be afflicted with the disease.It is a huge burden for the families and the society.
     China has been facing a very serious and irreversible situation of population aging during 21st century.Since 1999 China's population has become aged with the most amount of old people in the world.According to calculation based on the current prevalence data,it is estimated that there will be 8 to 12 million AD patients in China by 2050.
     Alzheimer's disease is associated with the loss of neurons in areas of the brain that are vital to memory and other mental abilities,like the hippocampus.In elderly humans, imaging studies have shown hippocampal atrophy.It is of great importance and interest to develop effective approaches which are able to prevent the incidence of neuron loss. Neurogenesis in adult mammals occurs in several regions,including the forebrain subventricular zone(SVZ) and the dentate gyrus of the hippocampal formation. Hippocampal neurogenesis occurs throughout the adulthood and is important for learning and memory,but it declines with age.Reduced neurogenesis in the aged hippocampus has been shown to be associated with cognitive deficits.Neurogenesis maybe a potential therapeutic strategy for AD.
     Brain-derived neurothrophic factor(BDNF) can promote the proliferation, differentiation and survival of neuron.BDNF can enhance the activity-dependent synaptic plasticity.It is recently confirmed that the precursor of BDNF(proBDNF) is the main expressing product of BDNFmRNA outside the cell.proBDNF distributes widely in the adult animal,especially in the central nervous system.The uncleaved precursor may play a different role from that of mature BDNF.It has been shown that a single amino acid mutation(Val66Met) in the proregion of BDNF affects the sorting of the molecule into the nerve terminals,retards activity-dependent secretion and reduces learning functions of the hippocampus.Under pathological conditions,such as aging and early stage of AD,the proBDNF and P75~(NTR) expression are upregulated.All of these indicate that proBDNF is not merely precursor of BDNF and may have important roles in the development of cognition impairment.
     It is important for the prevention of AD to study the roles of proBDNF in hippocampal neurogenesis and synaptic plasticity.Thus in the present study,there are main contents including expression,purification of cleave -resistant recombinant proBDNF protein,and study on its functional characterization.Effects of proBDNF on the cognition function in aged mice were observed.By in vivo and in vitro study,we evaluated the effects of proBDNF on hippocampal neurogenesis and synaptic plasticity,and investigated the mechanism of the effects of proBDNF on cognition function.
     Method
     1.Expression,purification of recombinant proBDNF protein in E.coli.and its functional characterization
     The cDNA fragment from proBDNF was obtained by standard PCR method with a full-length rat mutated proBDNF cDNA as template,and was inserted into plasmid pET-28a by means of gene rearrangement.The recombinant plasmid pET-proBDNF was identified by restriction endonuclease analysis and DNA sequencing.The cloned pET-proBDNF plasmid was transformed into E.coli host strain,BL21.Following induction by IPTG,the recombinant protein was expressed and then purified by Ni-NAT affinity chromatography under denaturing conditions.The interest protein was viewed by SDS-PAGE,further characterized by western blot.The apoptosis of PC12 cells was evaluated by DAPI assay.
     2.Effects of proBDNF on cognition function in aged mice
     Thirty aged C57BL/6J mice(18months old)were randomly divided in to three groups: proBDNF group,anti-proBDNF group,or bovine serum albumin(BSA) group(n=10).A Alzet osmotic minipump was connected to right hippocampus of the mouse.Pumps were filled with proBDNF(1μg/μl),sheep antibody to proBDNF(1μg/μl),or BSA(1μg/μl), respectively.Mice received the injection for 6 days at the speed of 0.2μl/h.21days after surgery,the animals were subjected for Morris Water Maze to test mean escape latency, swimming speed and percentage of time spent in the target quardrant.
     3.Effects of proBDNF on hippocampal neurogenesis in aged mice.
     Thirty 18-month-old C57BL/6J mice were used in this experiment.Animals received proBDNF,sheep antibody to proBDNF or BSA as described previously in step 2.BrdU(50 mg/kg,i.p.) was injected twice per day for 6 days immediately after surgery.7days and 28 days postsurgery,immunohistochemistry was processed to examine the BrdU positive cells, and immunofluoresent triple labeling was processed to examine the phenotype of the newly generated cells.
     4.Effects of proBDNF on hippocampal synaptic plasticity in aged mice.
     Fifteen 18-month-old C57BL/6J mice were used in this experiment.Animals received proBDNF,sheep antibody to proBDNF or BSA as described previously in step 2.28 days postsurgery,western blot were used to observe changes of the synaptic plasticity marker-pCREB and synapsin I.
     5.Effects of proBDNF on the proliferation and apoptosis of cultured hippocampal neuron.
     The primary hippocampal cell cultures were prepared from 1-day-old female P75~(NTR) knocked out mice and their wild-type littermates.Cells were co-cultured with cleaved resistant proBDNF,proBDNF+sortilin-FC,or BSA,respectively.Proliferation was tested by immunohistochemstry on BrdU,and apoptosis of hippocampal neuron was detected by TUNEL assay.
     Results
     1.Expression,purification of recombinant proBDNF protein in E.coli.and its functional characterization
     The rat proBDNF cDNA was amplified and cloned into prokaryotic expression vector. The restriction endonuclease analysis and DNA sequencing proved that the plasmid pET-proBDNF was obtained.The recombinant protein was expressed in E.coli system. After Coomassie brilliant blue staining,the recombinant protein showed an exclusive band; western blot analysis with anti-proBDNF antibody supported that the expressed protein was recombinant proBDNF.The recombinant rat proBDNF protein could enhance the apoptosis of PC12 cells.Affinity purified antibody to proBDNF could neutralize the effect of proBDNF
     2.Effects of proBDNF on cognition function in aged mice
     Compared with BSA control group,proBDNF group had longer mean escape latency (p<0.05),while the mean escape latency in antiproBDNF group was shorter(p<0.05).When it comes to swimming speed,there had no difference between each group.Compared with control group,mice in proBDNF group spent less time in the target quadrant,while mice in anti-proBDNF group spent more time in the target quadrant(p<0.05).
     3.Effects of proBDNF on hippocampal neurogenesis in aged mice.
     7days and 28days postsurgery,proBDNF group had less BrdU positive cells in dentate gyrus(p<0.01),while antiproBDNF had more BrdU positive cells(p<0.01),compared with control group,respectively.After 28days postsurgery,the BrdU positive cells decreased in all the groups,but proBDNF decreased the most dramatically.Immunofluoresent triple labeling showed that there had not difference of phenotype of BrdU positive cells between each group.
     4.Effects of proBDNF on hippocampal synaptic plasticity in aged mice.
     28days postsurgery,western blot showed that synapsin I and P-CREB in hippocampus were lower in proBDNF group than that of control group(p<0.01).But anti-proBDNF group had more synapsin I and pCREB,compared with control group(p<0.01)
     5.Effects of proBDNF on the proliferation and apoptosis of cultured hippocampal neuron.
     The number of BrdU positive cells in wild type mice decreased significantly in proBDNF group(p<0.01,compared with control group),but there had no difference between proBDNF+sortilin-Fc group and contral group.In P75~(NTR) knockout mice,the BrdU positive cells in proBDNF group was the same as the control group.
     On the contrary,the number of TUNEL positive cells in wild type mice increased significantly in proBDNF group(p<0.01,compared with control group),while there had no difference between proBDNF+sortilin-Fc group and control group.In P75~(NTR) knockout mice,both the control group and proBDNF group had the same percentage of TUNEL positive cell.
     Conclusions
     1.The prokaryotic expression vector for rat proBDNF is successfully constructed.The recombinant rat proBDNF protein can be expressed and purified in E.coli.and has a good biological activity.
     2.proBDNF can suppress the learning and memory ability of aged mice.It indicates that proBDNF plays a different role from that of mature BDNF.
     3.proBDNF suppressed the proliferation and survival of hippocampal neuron in dentate gyrus in aged mice.
     4.proBDNF downregulated the expression of pCREB and synapsin I protein in hippocampus of aged mice.
     5.proBDNF can inhibit the proliferation of neurons in dentate gyrus and initiate cell death.Interaction of proBDNF with both receptors of sortilin and P75~(NTR) on the cell surface is required for these effects.
     6.proBDNF can suppress the learning and memory ability of aged mice by inhibiting the hippocampal neurogenesis and downregulating the expression of pCREB and synapsin I protein in hippocampus.
引文
1.Rice,D.P.,Fillit,H.M.,Max,W.,Knopman,D.S.,Lloyd,J.R.& Duttagupta,S.Prevalence,costs,and treatment of Alzheimer's disease and related dementia:a managed care perspective.Am J Manag Care 2001;7(8):809-818.
    2.全国老龄工作委员会.中国人口老龄化发展趋势预测研究报告.2006.
    3.Bizon JL,Lee HJ,Gallagher M.Neurogenesis in a rat model of age-related cognitive decline.Aging Cell,2004;3(4):227-234.
    4.Small GW.The role of neuroimaging in the diagnosis of vascular dementia.Acta Neurol Scand Suppl.2002;178:10-14.
    5.Andreas Arvidsson,Tove Collin,Deniz Kirik,et al.Neuronal replacement from endogenous precursors in the adult brain after stroke.Nature 2002;8(9):963-970.
    6.Bondolfi L,Ermini F,Long JM,et al.Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice.Neurobiol Aging 2004;25:333-340.
    7.Drapeau E,Mayo W,Aurousseau C,et al:Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis.Proc Natl Acad Sci USA 2003,100:14385-14390.
    8.Helen Scharfmana,Jeffrey Goodmana,Adam Macleoda,et al.Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats.Experimental Neurology 2005;192:348-356.
    9.Binder DK,Scharfman HE.Brain-derived neurotrophic factor.Growth Factors.2004;22(3):123-131.
    10.Yamada K,Nabeshima T.Brain-derived neurotrophic factor/TrkB signaling in memory processes.J Pharmacol Sci.2003;91(4):267-270.
    11.Xin-Fu Zhou,Xing-Yun Song,Jin-Hua Zhong,et al.Distribution and localization of pro-brain derived neurotrophic factor-like immunoreactivity in the peripheral and central nervous system of the adult rat.J.Neurochem 2004;91:704-715.
    12.Durany N,Michel T,Kurt J,et al.Brain-derived neurotrophic factor and neurotrophin-3levels in Alzheimer's disease brains.Int J Dev Neurosci.2000;18(8):807-813.
    13.Bai Lu,Petti T.Pang,Newton H.Woo.The Yin and Yang of neurotrophin action. Nature REV. 2005;6:603-614.
    14. Egan, M.F, Kojima, M., Callicott, J.H. Goldberg, T.E, Kolachana, B.S, Bertolino, A. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell2003; 112, 257-269.
    15. Newton H Woo, Henry KTeng, Chia-Jen Siao, Cristina Chiaruttini, Petti T Pang, Teresa A Milner et al. Activation of P75~(NTR) by proBDNF facilitates hippocampal long-term depression. Nat Neurosci2005;8(8): 1069-1077.
    16. Henry K. Teng, Kenneth K. Teng, Ramee Lee, Saundrene Wright, Seema Tevar, Ramiro D. Almeida et al. ProBDNF Induces Neuronal Apoptosis via Activation of a Receptor Complex of P75~(NTR) and Sortilin. J Neurosci 2005; 25(22): 5455-5463.
    17. Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev.2001;Neurosci,24, 677-736.
    18. Mendell LM, Arvanian VL. Diversity of neurotrophin action in the postnatal spinal cord. Brain Res Brain Res Rev, 2002; 40:230 -239.
    19. Barde.Purificaiton of a new neurotrophic factor from mammalian brain.EMBO J,1982;l:549.
    20. von Bart held C S , J ohnson J E. Target-derived BDNF ( brain-derived neurotrophic factor is essential for the survival of developing neurons in the isthmo-optic nucleus. J Comp Neurol ,2001;433 :550-564.
    21. Balkowiec A , Katz D M. Activity-dependent release of endogenous brain2derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J Neurosci,2000; 20 :7417-7423.
    22. Murer M G , Yan Q , Raisman V R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol,2001; 63:71 - 124.
    23. Roux P P , Bar ker P A. Neurot rop hin signaling through the p75 neurotrophin receptor. Prog Neurobiol ,2002,67:203-233.
    24. Patapoutian A , Reichardt L F. Trk receptors : mediators of neurotrophin action . Curr Opin Neurobiol ,2001; 11 :272 - 280.
    25. Seidah, N. G, Benjannet, S., Pareek, S., Chretien, M. & Murphy, R. A. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett. 1996;379:247-250.
    26. Fahnestock M, Michalski B, Xu B et al. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimers disease. Mol Cell Neurosci, 2001,210 -220.
    27. Mowla SJ Farhadi HF, Pareek S et al. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem, 2001 ,276:12660 - 12666.
    28. Mowla, S. J. et al. Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci. 1999; 19, 2069-2080.
    29. Peng, S., Wuu, J., Mufson, E. J. Fahnestock, M. Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J. Neuropathol.Exp. Neurol. 2004; 63: 641-649.
    30. Harrington, A. W. et al. Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc. Natl Acad. Sci. USA.2004; 101:6226-6230.
    31. Srinivasan, B., Roque, C. H., Hempstead, B. L.,et al. Microglia-derived pronerve growth factor promotes Photoreceptor cell death via p75 neurotrophin receptor. J.Biol.Chem. 2004;279:41839-41845.
    32. Shiyong Peng, Joanne Wuu,Elliott J,et al. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer's disease. Journal of Neurochemistry, 2005; 93: 1412-1421.
    33. C. Laske, E. Stransky, T. Leyhel. Stage-dependent BDNF serum concentrations in Alzheimer's disease.J Neural Transm, 2005; 12:394-398.
    34. Mowla SJ, Pareek S, Farhadi HF et al. Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J Neurosci, 1999, 19:2069 -2080.
    35. 王慧, 罗学港, 鞠躬. proBDNF在初级感觉神经元内的顺行和逆行输送. 神经解剖学杂志, 2005;21(1): 17-21.
    36. Henry K.Teng, Kenneth K.Teng, Ramee Lee, et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of P75~(NTR) and sortilin.J. Neurosci.2005; 25: 5455-5463.
    37. Scaccianoce S, Del Bianco P, Caricasole A, et al. Relationship between learning, stress and hippocampal brain - derived neurotrophic factor[J].Neuroscience, 2003, 121(4): 825.].
    38. Dragunow M, Hughes P, Mason- Parker SE, et al. TrKB expression in dentate granule cells is associated with a late phase of long- term potentiation. Brain Res Mol, 1997; 46(1-2): 274—280.
    39. Capsoni S, Margotti E, Stefanini B, Cattaneo A. The effects of knocking out of P75~(NTR) on the neurodegenerative phenotype in AD11 anti-NGF mice. 2005 Sorrento, Italy, p 102.
    40. Naumann T, Casademunt E, Hollerbach E, Hofmann J, Dechant G, Frotscher M, Barde YA. Complete deletion of the neurotrophin receptor P75~(NTR) leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J Neurosci 2002; 22(7): 2409-2418.
    41. Fyhn M,Hafting T,Treves,etn al. Hippocampal remapping and grid realignment in entorhinal cortex.Nature,2007;446(7132) 190-4.
    42. Forstl H,Kurz A. Clinical features oof Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci,1999;249(6):288-90.
    43. Rosch H, Schweigreiter R, Bonhoeffer T, et al. The neurotrophin receptor P75~(NTR) modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proc. Natl Acad. Sci. USA, 2005; 102: 7362-7367.
    44. Massey, P. V. et al. Differential roles of NR2A and NR2Bcontaining NMDA receptors in cortical long-term potentiation and long-term depression. J. Neurosci. 2004; 24, 7821-7828.
    45. Liu, L. et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science,2004;304, 1021-1024.
    46. Kempermann G,Kuhn HG,Gage FH. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci USA, 1997; 94(19): 10409-10414.
    47. Gould E ,Vail N ,Wagers M, et al . Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA ,2001; 98(19):10910-10917.
    48. Eriksson PS , Perfilieva E , Bjork-Eriksson T ,et al. Neurogenesis in the adult human hippocampus.Nat Med, 1998,4(11): 1313-1317.
    49.Lledo PM,Alonso M,Grubb MS.Adult neurogenesis and functional plasticity in neuronal circuits.Nat Rev Neurosci 2006;7:179-93.
    50.Hastings,N.B.,Gould,E..Rapid extension of axons into the CA3 region by adult-generated granule cells.J.Comp.Neurol,1999;413:146-154.
    51.Markakis,E.A.,Gage,F.H.Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles.J.Comp.Neurol,1999;406:449-460.
    52.Gould E,Beylin A,Tanapat P,et al Learning enhances adult neurogenesis in the hippocampal formation.Nat Neurosci,1999;2(3):260-265.
    53.van Praag H,Schinder AF,Christie BR,et al.Functional neurogenesis in the adult hippocampus.Nature,2002;415(6875):1030-1034.
    54.Kempermann G,Gage FH.Genetic determinants of adult hippocampal neurogenesis correlate with acquisition,but not probe trial performance,in the water maze task.Eur J Neurosci 2002;16:129-136.
    55.MeshiD,DrewMR,SaxeM,et al.Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment.Nat Neurosci 2006;9:729-731.
    56.Bruel-Jungerman E,Laroche S,Rampon C.New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment.Eur J Neurosci 2005;21:513-521.
    57.Nilsson,M.,Perfilieva,E.,Johansson,U.,Orwar,O.,Eriksson,P.S.,1999.Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory.J.Neurobiol.39,569-578.
    58.Shors TJ,Townsend DA,Zhao M,et al.Neurogenesis may relate to some but not all types of hippocampal-dependent learning.Hippocampus,2002,12(5):578-584.
    59.Shors TJ,Miesegaes G,Beylin A,et al.Neurogenesis in the adult is involved in the formation of trace memories.Nature,2001,410(6826):372-376.
    60.胡坚莉,张立平,杨允,等.氯化锂促进不同年龄成年小鼠齿状回细胞增殖与神经发生.解剖学报,2004;35(5):479-483
    61.Bizon JL,Gallagher M.Production of new cells in the rat dentate gyrus over the lifespan:relation to cognitive decline.Eur J Neurosci 2003;18:215-219.
    62.Prickaerts J,Koopmans G,Blokland A,Scheepens A(2004) Neurobiol Learn Mem 81:1-11.
    63. 胡越, 蒋莉. 神经干细胞与内源性神经再生的研究进展. 重庆医学, 2005;34(2 ):220-222.
    64. Rakic P. Adult neurogenesis in mammals : an identity crisis. J Neurosci , 2002; 22(3):614-618.
    65. Cameron HA, Mckay RD et al. Adult neurogenesis p roduces a large pool of new granule cells in the dentate gyrus. J Comp Neurol, 2001; 435: 406 - 417
    66. Katoh-Semba, R.,Asano,T.,Ueda, H.,et al. Riluzole enhances expression of brainderived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J, 2002; 16:1328- 1330.
    67. Lee, J, Duan, W, Mattson, M.P. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J. Neurochem,, 2002 ;82:1367-1375.
    68. Pencea, V., Bingaman, K.D., Wiegand, S.J., Luskin, M.B..Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 2001; 21: 6706-6717.
    69. Palmer TD , Willhoite AR , Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol ,2000; 425 (4): 479-494.
    70. Hilfiker S, Pieribone VA, Czernik AJ, et al. Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci. 1999;354(1381):269-79.
    71. Li WE, Nagy JI. Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: evidence for junction regulation by neuronal-glial interactions. Neuroscience. 2000;97(1):113-23.
    72. Calhoun ME, Kurth D, Phinney AL, et al. Hippocampal neuron and synaptophysin-positive bouton number in aging C57BL/6 mice.Neurobiol Aging. 1998;19(6):599-606.
    73. Lippa CF. Synaptophysin immunoreactivity in Pick's disease: comparison with Alzheimer's disease and dementia with Lewy bodies. Am J Alzheimers Dis Other Demen. 2004;19(6):341-4.
    74. Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer's disease.Neuron. 2004;44(1): 181-93.
    75. Garcia CC, Blair HJ, Seager M, et al. Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy.J Med Genet. 2004;41(3): 183-186.
    76. Vaynman S, Ying Z, Gomez-Pinilla F. Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience,2003;122(3):647-657.
    77. Jovanovic JN, Czernik AJ, Fienberg AA,et al. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci.2000;3(4):323-329.
    78. Antonietta Casu M, Pisu C,Sanna A,et al. Effect of 9-tetrahydrocannabinol on phosphorylated CREB in rat cerebellum: An immunohistochemical study.Brain Res,2005,1048:41-47.
    79. Byung-hwan Y, Hyeon S,Seok Hyeon K,et al. Phosphorylation of ERK and CREB in cultured hippocampal neurons after haloperidol and risperidone administration.Psych Clin Neurosci,2004,58:262-267.
    80. Gao C,Chen LW,Tao YM,et al. Colocalization of phosphorylated CREB with calcium/calmodulin-dependent protein kinase IV in hippocampal neuron induced by ohmfentanyl stereoisomers. Brain Res, 2004,1024:25-33.
    81. TanakaK. Alteration of second messengers during acute cerebral ichemia adenylate cyclase,cyclic AMP-dependent proteinkinase, and cyclic AMP response element binding protein.Prog Neurobiol,2001;65(2): 173-207.
    82. Walton M, Woodgate AM, Muravlev A,et al. CREB phosphorylation prmotes nerve cell survival.J Neurochem,1999,73(5): 1836-1842.
    83. Hara T,Hamada J,Yano S,etal. CREB is requird for acqusition of ischemic tolerance in gerbil hippocampal CA1 region.Neurothen, 2003,86:805.
    84. Dash PK,Moore AN,Dixon CE. Spatial memory deficits increased phosphorylation of the transcription factor CREB and induction of the AP-1 complex following experiment brain injury.Neurosci.2005,15:2030.
    85. Walton MR, Dragunow I. Is CREB a key to neuronal survival?Trends Neurosci. 2000;23(2):48-53.
    86. Barbara Monti, Chiara Berteotti, Antonio Contestabile.Dysregulation of Memory-Related Proteins in the Hippocampus of Aged Rats and Their Relation With Cognitive Impairment. HIPPOCAMPUS,2005;15:1041-1049.
    87. Pittenger C,Huang YY, Paletzki RF,etal.Reversible inhibitio of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory.Neuron,2002;34(3):447-462.
    88. Bourchouldadze R, Frenguelli B,Blendy J,et al. Deficent long-term memory in mice with a targeted mutation of the camp-resposive element-binding protein. Cell, 1994, 79(1):59-68.
    89. Jin-Hee Han, Steven A. Kushner, Adelaide P. Yiu, Christy J. Cole, Anna Matynia, et al. Neuronal Competition and Selection During Memory Formation. Science,2007, 316(5823):457-460.
    90. Shoshanna Vaynman, Zhe Ying , Fernando Gomez-Pinilla. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 2004;20:2580-2590.
    91. Schlief ML,West T,Craig AM,et al.Role of the monkes coppertransporting ATPase in NMDA receptor-mediated neuronal toxicity. Proc Natl Acad Sci USA, 2006, 103: 14919-14924.
    92. Barbara L.Hempstead. Dissecting the diversse actions of pro-and mature neurotrophins. current alzheimer research, 2006;3:19-24.
    93. Frade, J. M.,Rodriguez-Tebar,A., Barde,YA. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature, 1996; 383: 166-168.
    94. Beattie, M. S. et al. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron, 2002;36:375-386.
    95. Lee, R., Kermani, P., Teng, K. K. Hempstead, B. L. Regulation of cell survival by secreted proneurotrophins. Science, 2001; 294: 1945-1948.
    96. Nykjaer A, Lee R, Teng K K, et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature, 2004, 427(6977): 843-848.
    97. Lingg M S, Burke T L, Williams B B, et al. Neurotrophin receptor interacting factor (NRIF) is an essential mediator of apoptotic signaling by the p75 neurotrophin receptor. J Biol Chem, 2005, 280(14): 13801-13808.
    98. Nykjaer A, Willnow T E, Petersen C M. P75~(NTR) - live or let die. Curr Opin Neurobiol, 2005, 15(1): 49-57.
    1.Lewin,G.R.,Barde,Y.A.Physiology of the neurotrophins.Annu.Rev.Neurosci.1996;19:289-317.
    2.Huang,E.J.,Reichardt,L.F.Neurotrophins:roles in neuronal development and function.Annu.Rev.2001;Neurosci,24,677-736.
    3.Dechant,G.,Barde,Y.A.The neurotrophin receptor P75~(NTR):novel functions and implications for diseases of the nervous system.Nature Neurosci.2002;5:1131-1136.
    4.A.Hennigan,R.M.O'Callaghan,A.M.Kelly.Neurotrophins and their receptors:roles in plasticity,neurodegeneration and neuroprotection.Biochemical Society Transactions.2007,35(2):424-4727.
    5.Kaplan,D.R.,Miller,F.D.Neurotrophin signal transduction in the nervous system.Curr.Opin.Neurobiol.2000;10:381-391.
    6.Chao,M.V.Neurotrophins and their receptors:a convergence point for many signalling pathways.Nature Rev.Neurosci.2003;4:299-309.
    7.Seidah,N.G.,Benjannet,S.,Pareek,S.,Chretien,M.Murphy,R.A.Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases.FEBS Lett.1996;379:247-250.
    8.Lee,R.,Kermani,P.,Teng,K.K.Hempstead,B.L.Regulation of cell survival by secreted proneurotrophins.Science,2001;294:1945-1948.
    9.Henry K.Teng,Kenneth K.Teng,Ramee Lee,et al.ProBDNF induces neuronal apoptosis via activation of a receptor complex of P75~(NTR) and sortilin.J.Neurosci.2005;25:5455-5463.
    10.Chen,Z.-Y.et al.Variant brain-derived neurotrophic factor(BDNF)(Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons.J.Neurosci.2004;24:4401-4411.
    11. Lou, H. et al. Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase E. Neuron 2005; 45: 245-255 .
    12. Mowla, S. J. et al. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J. Biol. Chem. 2001; 276: 12660-12666 .
    13. Mowla, S. J. et al. Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci. 1999; 19, 2069-2080.
    14. Chao, M. V., Bothwell, M. Neurotrophins: to cleave or not to cleave. Neuron 2002; 33: 9-12.
    15. Ibanez, C. F. Jekyll-Hyde. Neurotrophins: the story of proNGF. Trends Neurosci. 2002; 25: 284-286.
    16. Xin-Fu Zhou, Xing-Yun Song, Jin-Hua Zhong, et al. Distribution and localization of pro-brainderived neurotrophic factor-like immunoreactivity in the peripheral and central nervous system of the adult rat.J. Neurochem. 2004; 91: 704-715.
    17. Mowla, S. J. et al. Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci. 1999; 19, 2069-2080.
    18. Peng, S., Wuu, J., Mufson, E. J. Fahnestock, M. Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J. Neuropathol.Exp. Neurol. 2004; 63: 641-649.
    19. Pedraza, C. E. et al. Pro-NGF isolated from the human brain affected by Alzheimer's disease induces neuronal apoptosis mediated by P75~(NTR). Am.J.Pathol. 2005; 166:533-543.
    20. Beattie, M. S. et al. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron, 2002;36:375-386.
    21. Harrington, A. W. et al. Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc. Natl Acad. Sci. USA,2004; 101:6226-6230.
    22. Srinivasan, B., Roque, C. H., Hempstead, B. L.,et al. Microglia-derived pronerve growth factor promotes Photoreceptor cell death via p75 neurotrophin receptor. J.Biol.Chem. 2004;279:41839-41845.
    23. Shiyong Peng, Joanne Wuu,Elliott J. Mufson,Margaret Fahnestock. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer's disease. Journal of Neurochemistry, 2005; 93: 1412-1421.
    24. Nuria Durany,Tanya Michel,Jellinger Kurt,et al. Brain-derived neurotrophic factor and neurotrophin-3 levels in Alzheimer's disease brains. Int. J. Devl Neuroscience, 2005;18: 807-813.
    25. C. Laske, E. Stransky, T. Leyhel. Stage-dependent BDNF serum concentrations in Alzheimer's disease.J Neural Transm, 2005; 12:394-398.
    26. Bai Lu, Petti T. Pang , Newton H. Woo. The yin AND yang of neurotrophin action.Nature rev.2005;6: 603-614.
    27. Suter, U., Heymach, J. V. Jr , Shooter, E. M. Two conserved domains in the NGF propeptide are necessary and sufficient for the biosynthesis of correctly processed and biologically active NGF. EMBO J. 1991; 10:2395-2400.
    28. Rattenholl, A. et al. Pro-sequence assisted folding and disulfide bond formation of human nerve growth factor.J. Mol. Biol. 2001 ;305: 523-533.
    29. Lu, B. BDNF and activity-dependent synaptic modulation. Learn. Mem. 2003; 10:86-98.
    30. Egan, M. F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 2003; 112: 257-269.
    31. Lu, B. Pro-region of neurotrophins: role in synaptic modulation. Neuron 2003; 39: 735-738.
    32. Hariri, A. R. et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci. 2003;23, 6690-6694.
    33. Cool, D. R., Fenger, M., Snell, C. R., Loh, Y. P. Identification of the sorting signal motif within proopiomelanocortin for the regulated secretory pathway. J. Biol.Chem.1995;270,8723-8729.
    34. Chen, Z. Y. et al. Sortilin controls intracellular sorting of BDNF to the regulated secretory pathway. J. Neurosci. 2005; 25: 6156-6166.
    35. Seidah, N. G. et al. Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem. J. 1996;314:951-960.
    36. Seidah, N. G. et al. Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem. J. 1996; 314:951-960.
    37. Hwang,J.J.,Park, M.H, Choi,S.Y., Koh, J.Y. Activation of the Trk signaling pathway by extracellular zinc: role of metalloproteinases. J. Biol. Chem. 2005;280:11995-12001.
    38. Pang, P.T. et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science,2004;306: 487-491 .
    39. Plow, E. F., Herren, T., Redlitz, A.,et al. The cell biology of the plasminogen system. FASEB J. 1995;9:939-945.
    40. Tsirka, S. E., Rogove, A. D., Bugge, T. H., Degen, J. L., Strickland, S. An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J. Neurosci. 1997; 17:543-552.
    41. Gualandris, A., Jones, T. E., Strickland, S. & Tsirka, S. E. Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J. Neurosci. 1996; 16:2220-2225.
    42. Frade, J. M.,Rodriguez-Tebar,A., Barde,Y.A. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature, 1996; 383: 166-168.
    43. Nykjaer, A. et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature,2004 ;427: 843-848.
    44. Nykjaer, A. et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature,2004,427, 843-848.
    45. Peterson, D. A., Dickinson-Anson, H. A., Leppert, J. T.,et al. Central neuronal loss and behavioral impairment in mice lacking neurotrophin receptor p75. J.Comp.Neurol. 1999;404:1-20.
    46. Wright, J. W., Alt, J. A., Turner, G. D.,Krueger, J. M. Differences in spatial learning comparing transgenic p75 knockout, New Zealand Black, C57BL/6, and Swiss Webster mice. Behav. Brain Res. 2004; 153:453-458.
    47. Newton H Woo, Henry K Teng, Chia-Jen Siao. Activation of P75~(NTR) by proBDNF facilitates hippocampal long-term depression. Nature, Neurosci. 2005; 8: 1067-1075.
    48. Rosch, H., Schweigreiter, R., Bonhoeffer, T., Barde, Y. A. & Korte, M. The neurotrophin receptor P75~(NTR) modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proc. Natl Acad. Sci. 2005; 102:7362-7367.
    49. Massey, P. V. et al. Differential roles of NR2A and NR2Bcontaining NMDA receptors in cortical long-term potentiation and long-term depression. J. Neurosci. 2004;24:7821-7828.
    50. Liu, L. et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science,2004;304:1021-1024.
    51. Zagrebelsky, M., Bonhoeffer, T. Korte, M. Role of TrkB and p75 neurotrophin receptors in modulating structural plasticity in the rodent hippocampus. IBRO Abstr.(2003).
    1.Altman J,Das GD.Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats.J Comp Neurol,1965;124:319-335.
    2.Altman J.Autoradiographic and histological studies of postnatal neurogenesis.Ⅳ.Cell proliferation and migration in the anterior forebrain,with special reference to persisting neurogenesis in the olfactory bulb.J Comp Neurol,1969;137(4):433-457.
    3.Kaplan MS.Neurogenesis in the 3-month-old rat visual cortex.J Comp Neurol.1981;195(2):323-338.
    4.Reynolds BA,Weiss S.Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.. Science,1992 ;255(5052): 1707-1710.
    5. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci,1997;17(7):2492-2498.
    6. Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA,1998;95(6):3168-3171.
    7. Eriksson PS, Perfilieva E, Bjork-Eriksson T,et al. Neurogenesis in the adult human hippocampus.Nat Med,1998;4(11):1313-1317.
    8. Carleton A , Petreanu L T ,Lansford R , et al . Becoming a new neuron in the adult olfactory bulb. Nat Neurosci,2003;6(5):507-518.
    9. Winner B , Cooper-Kuhn CM , Aigner R , et al . Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb.Eur J Neurosci , 2002;16(9):1681-1689.
    10. Bedard A , Parent A. Evidence of newly generated neurons in the human olfactory bulb. Brain Res Dev Brain Res ,2004; 151(122): 159 -168.
    11. Sanai N , Tramontin AD ,Quinones-Hinojosa A ,et al .Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature ,2004;427 (6976):740-744.
    12. Merkle FT , Tramontin AD , Garcia-Verdugo JM. Radial glia give rise to adult neural stem cells in the subvent ricular zone. Proc Natl Acad Sci USA ,2004; 101(50) : 17528-17532.
    13. Ng KL, Li JD, Cheng MY, Leslie FM, et al. Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science,2005; 308(5730): 1923-1927.
    14. Kempermann G, Wiskott L , Gage FH. Functional significance of adult neurogenesis. Curr Opin Neurobiol,2004; 14(2): 186-191.
    15. Markakis EA , Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol ,1999;406(4):449-460.
    16. Song HJ , Stevens CF , Gage FH. Neural stem cells from adult hippocampus develope essential properties of functional CNS neurons .Nat Neurosci,2002;5(5):438-445.
    17. Shors TJ , Miesegaes G, Beylin A , et al . Neurogenesis in the adult is involved in the formation of trace memories.Nature ,2001;410(6826):372-376.
    18. Lledo PM,Saghatelyan A. Integrating new neurons into the adult olfactory bulb:joining the network,life-death decisions,and the effects of sensory experience. Trends Neurosci,2005;28(5):248-254.
    19. Mechawar N,Saghatelyan A,Grailhe R,et al. Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb.Proc Natl Acad Sci USA,2004, 101(26): 9822-9826.
    20. Emsley JG, Mitchell BD, Kempermann G, Macklis JD. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol. 2005;75(5):321-341.
    21. Nottebohm F. Neruonal replacement in adult brain. Brain Res Bull,2002;57(6):737-49.
    22. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age2related decrease of neuronal p rogenitor proliferation. J Neurosci, 1996; 16(6) : 2027-2033.
    23. Carlen M, Cassidy RM,Brismar H,et al.Functional integration of adult-born neurons .Curr Biol,2002;12(7):606-608.
    24. Doetsch F,Hen R. Young and excitable: the function of new neurons in the adult mammalian brain.Curr Opin Neurobiol,2002;15(1): 121-128.
    25. Belluzzi O, Benedusi M,Ackman J,et al.Electrophysiological differentiation of new neurons in the olfactory bulb. J Neurosci,2003;23(32): 10411-10418.
    26. Lledo PM,Saghatelyan A. Integrating new neurons into the adult olfactory bulb:joining the network,life-death decisions, and the effects of sensory experience. Trends Neurosci,2005,28(5):248-254.
    27. Wang DD,Krueger DD,Bordey A .GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABA receptor activation.J Physiol,2003; 550(pt3): 785-800.
    28. Carleton A,Petreanu LT,Lansford R,et al. Becoming a new neuron in the adult olfactory bulb. Nat Neurosci,2003;6(5):507-518.
    29. Magavi, S.S., Mitchell, B.D, Szentirmai, O., Chen, J., Carter, B.S., Macklis, J.D. Experience modifies both the population response and survival of adult-born olfactory neurons, J Neurosci, 2006;26(41): 10508 -10513.
    30. Kempemann G ,Wiskott L,Gage FH. Functional significance of adult neurogenesis.Curr Opin Neurobiol,2004; 14(2): 186-191.
    31. Becker S. A computational principle for hippocampal learning and neurogenesis. Hippocampus, 2005,15(6):722-728.
    32. Chambers RA, Potenza MN, Hoffman RE,et al. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology, 2004,29(4):747-758.
    33. Wang DD,Krueger DD,Bordey A. GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J Physiol, 2003; 550(pt3): 785-800.
    34. Meltzer LA,Yabaluri R,Deisseroth K,A role for circuit homeostasis in adult neurogenesis. Trends Neurosci,2005;28(12):653-660.
    35. Limoli CL, Giedzinski E, Rola R, et al. Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiat Res, 2004 ; 161(1): 17-27.
    36. Snyder JS, Hong NS, McDonald RJ,et al . A role for adult neurogenesis in spatial longt-term memory[J].Neuroscience,2005;130(4):843-852.
    37. Rola R,Raber J,Rizk A,et al. Radiation-induced impairment of hippocampal neurogensis is associated with cognitive deficits in young mice.Exp Neurol, 2004; 188(2):316-330.
    38. Bondolfi L, Ermini F, Long JM, et al. Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging 2004;25: 333-340.
    39. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 1996; 16: 2027-2033.
    40. Bondolfi L, Ermini F, Long JM, Ingram DK, and Jucker M. Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging,2004;25: 333-340.
    41. Lichtenwalner RJ, Forbes ME, Bennett SA, Lynch CD,Sonntag WE, and Riddle DR. Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience,2001;107: 603-613.
    42. Montaron MF, Petry KG, Rodriguez JJ, Marinelli M, Aurousseau C, Rougon G, Le Moal M, and Abrous DN. Adrenalectomy increases neurogenesis but not PSA-NCAM expression in aged dentate gyrus. Eur J Neurosci,1999;11: 1479-1485.
    43. Nacher J, Alonso-Llosa G, Rosell DR, and McEwen BS. NMDA receptor antagonist treatment increases the production of new neurons in the aged rat hippocampus. Neurobiol Aging, 2003; 24: 273-284.
    44. Djoher Nora Abrous, Muriel Koehl, Michel Le Moal. Adult neurogenesis: from precursors to network and physiology. Physiol Rev. 2005;85: 523-569.
    45. Rosenzweig MR. Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Physiol Psychol 1962;55: 429-437.
    46. Rosenzweig MR. Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Physiol Psychol, 1962; 55: 429-437.
    47. Rosenzweig MR,Bennett EL. Psychobiology of plasticity:effects of training and experience on brain and behaviour. Behav Brain Res, 1996; 78: 57-65.
    48. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature, 1997;386(6624):493-495.
    49. Young D, Lawlor PA, Leone P, et al. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med,1999;5: 448-453,.
    50. Rossi C, Angelucci A, Costantin L, et al. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur. J. Neurosci,2006;24: 1850-1856.
    51. Zigova T, Pencea V, Wiegand SJ, Luskin MB. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 1,998; 11:234-245.
    52. Ahmed S, Reynolds BA, Weiss S. BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci,1995;15: 5765-5778.
    53. Goldman SA, Kirschenbaum B, Harrison-Restelli C, Thaler HT. Neuronal precursors of the adult rat subependymal zone persist into senescence, with no decline in spatial extent or response to BDNF. J Neurobiol,1997;32: 554-566.
    54. Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates,in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem, 2002; 82: 1367-1375.
    55. Katoh-Semba R, Asano T, Ueda H, et al. Riluzole enhances expression of brainderived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J ,2002; 16: 1328-1330.
    56. Chiara Rossi , Andrea Angelucci Laura Costantin, Chiara Braschi, et al. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur. J. Neurosci. 2006; 24:1850-1856.
    57. Helen Scharfman, Jeffrey Goodmana , Adam Macleoda, et al. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol,2005;192: 348-356.
    58. Tao X et al. Ca~(2+) influx regulated BDNF transcription by a CREB family transcription factor dependent mechanism. J Neuron, 1998;20(4):709-726
    59. Craig CG, Tropepe V, Morshead CM, et al. In vivo growth factor expansion of endogeneous subependymal neural precursor cell populations in the adult mouse. J Neurosci ,1996; 16: 2649-2658.
    60. Kuhn HG, Winkler J, Kempermann G, Thal LJ, and Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci, 1997;17: 5820-5829.
    61. Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci USA, 1998;95(10):5672-5677.
    62. Yoshimura S, Takagi Y, Harada J, et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA,2001;98: 5874-5879.
    63. Aberg MA ,Aberg ND , Eviksson PS, et al. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci ,2000 ,20: 2896-2903.
    64. Lichtenwalner RJ, Forbes ME, Bennett SA, et al. Intracerebroventricular infusion of insulin-like growth factor-1 ameliorates the age-related decline in hipocampal neurogenesis. Neuroscience, 2001: 107(4):603-613.
    65. Liou Y. Sun, Andrzej Bartke. Adult neurogenesis in the hippocampus of long-lived mice during aging. J Gerontol A Biol Sci Med Sci. 2007,62(2): 117-125.
    66. Bernabeu R, Sharp FR. NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J Cereb Blood Flow Metab, 2000,20:1669-1680.
    67. Seri B, Garcia-Verdugo JM, McEwen BS, et al. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci, 2001, 21: 7153-7160.
    68. McKay R. Stem cells in the central nervous system. Science, 1997,276:66-71.
    69. Van PH, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 1999,2:266-270.
    70. Emsleya JG, Hagga T. Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice, experimental neurology.2003,183: 298-310.
    71. Nakashima K,Yanagisawa M ,Arakawa H ,et al. Synergistic signaling in fetal brain by STAT3-Smadl complex bridged by p300. Science ,1999 ,284 :479-482.
    72. Sun Y,Nadal-Vicens M ,Misono S ,et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell ,2001 ,104 :365-376.
    73. Nacher J ,Rosell DR ,Alonso L G,et al. NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells,PSA2NCAM2 immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci, 2001 ,13:512-520.
    74. Kornblum HI, Loughlin SE, Leslie FM. Effects of morphine on DNA synthesis in neonatal rat brain. Brain Res,1987;428(1):45-52
    75. Kurt F. Hauser, Abdulghani A.Houdi, et al. Mu- and delta- opiods receptor antagonists decrease proliferation and increase neurogenesis in cultures of rat adult hippocampal progenitors. Eur J Neurosci, 2003; 17(pp): 1159-1172.
    76. AJ. Eisch, Michel Barrot, Christina A et al. Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acsd Sci, 2000;97 (13): 7579-7584.
    77. Philippe Taupin. Neurogenesis and Alzheimer's Disease. Drug Target Insights, 2006; 1:1-4.
    78. Jin K, Peel AL, Mao XO, Xie L, et al. Increased hippocampal neurogenesis in Alzheimer's disease. Proc Natl Acad Sci USA.2004; 101(1): 343-347.
    79. Jin K. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw,Ind) mice. Proc Natl Acad Sci USA, 2004, 101:13363-13367.
    80. Lopez-Toledano MA, Shelanski ML. Neurogenic effect of beta-amyloid peptide in the development of neural stem cells[J]. J Neurosci, 2004;24: 5439-5444.
    81. Becker M,Lavie V, Solomon B. Stimulation of endogenous neurogenesis by anti-EFRH immunization in a transgenic mouse model of Alzheimer's disease. Proc Natl Acad Sci USA.2007; 104(5): 1691-1696.
    82. Wang QH,Xu RX,Nagao S, et al .Transplantation of cholinergic neuralstem cells in a mouse model of Alzheimer's disease .Chin Med J , 2005; 118(6):508-511.
    83. Qu T, Brannen C, Kim H, et al. Human neural stem cells improve cognitive function of aged brain. Neuroreport, 2001; 12(6): 1127-1132.
    84. Svendsen CN,Caldwell MA,Shen J,et al.Long term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's Disease. Exp Neurol,1997;148(1): 135-146.
    85. Fallon J. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci USA, 2000;97: 14686-14691.
    86. Fallon J, Reid S, Kinyamu R, Opole I, Opole R, Baratta J,et al. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci USA ,2001;98(14):8157.
    87. Zhao M. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA, 2003; 100: 7925-7930
    88.Baker SA,Baker KA,Hagg,T.Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone.Eur J Neurosci,2004;20:575-579.
    89.Curtis MA,Penny EB,Pearson J,Dragunov M,Connor B,Faull RL.The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normaland Huntington's disease human brain.Neuroscience,2005;132:777-788.
    90.Curtis M.A.Increased cell proliferation and neurogenesis in theadult human Huntington's disease brain[J].Proc Natl Acad Sci USA,2003;100:9023-9027.
    91.Jin K,LaFevre-Berndt M,Sun Y,et al.FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington's disease.Proc Natl Acad Sci USA,2005;102:18189-18194.
    92.Lazic SE,Grote HE,Blakemore C,Hannan AJ,van Dellen A,Phillips W,Barker RA.Neurogenesis in the R6/1 transgenic mouse model of Huntington's disease:effects of environmental enrichment.Eur J Neurosci,2006;23:1829-1838.
    93.Lazic SE,Grote HE,Armstrong RJ,Blakemore C,Hannan AJ,van Dellen A,Barker RA.Decreased hippocampal cell proliferation in R6/1 Huntington's mice.Neuroreport,2004;15:811-813.
    94.Li Y,Chopp M.Temporal profile of nestin expression after focal cerebral ischemia in adult rat.Brain Res,1999;838(1-2):1-10.
    95.Jin K,Minam IM,Lan J Q,et al.Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat.Proc NatlAcad Sci USA,2001,98(8):4710-4715.
    96.Parent JM,Vexlaer ZS,Gong C,Derugin N,Ferriero DM.Rat forebrain neurogenesis and striatal neuron replacement after focal stroke.Ann Neurol,2002;52:802-813.
    97.Yamashita T,Ninomiya M,Acosta PH,et al.Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum.J Neurosci,2006;26:6627-6636.
    98.谭新杰,胡长林,蔡文琴,杨忠.成年大鼠局灶性脑梗死后齿状回神经元前体细胞的发生研究.第三军医大学学报,2006;28(15):1575-1577.
    99.Nakatomi H,Kuriu T,Okabe S,Yamamoto S,Hatano O,Kawahara N,Tamura A, Kirino T, Nakafuku M. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 2002; 110:429-441
    100. Dempsey RJ, Sailor KA, Bowen KK, et al. Stroke-induced p rogenitor cell p roliferation in adult spontaneously hypertensive rat brain: effect of exogenous IGF-1 and GDNF. J Neurochem, 2003;87 (3) : 586 - 597.
    101. Raghavendra-Rao VL,Bowen KK,Dhodda VK,et al.Gene exp ression analysis of spontaneously hypertensive rat cerebral cortex following transient focal cerebral ischemia. J Neurochem,2002;83 (5) : 1072-1086.
    102. Chen XH, Iwata A, Nonaka M, Browne KD, Smith DH. Neurogenesis and glial proliferation persist for at least one year in the subventricular zone followingbrain trauma in rats. J Neurotrauma,2003; 20:623-631.
    103. Emery, D.L., Fulp, C.T., Saatman, K.E., Schutz, C, Neugebauer, E., McIntosh,T.K.,. Newly born granule cells in the dentate gyrus rapidly extend axons into the hippocampal CA3 region following experimental brain injury. J. Neurotrauma,2005; 22:978-988.
    104. Dong Sun, Melissa J. McGinn, Zhengwen Zhou, H. Ben Harvey,M. Ross Bullock, Raymond J. Colello. Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Experimental Neurology, 2007;204:264-272.
    105. Yoshimura S, Takagi Y, Harada J, et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA,2001;98(10):5874-5879.
    106. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol, 2000;425:479-494.
    107. Parent JM, Elliott RC, Pleasure SJ, Nicholas MB, Lowenstein DH. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol, 2006;59:81-91.
    108. Fahrner A, Kann G, Flubacher A, Heinrich C, Freiman TM, Zentner J, Frotscher M, Haas CA. Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients. Exp Neurol, 2007;203:320-333
    109. Duman RS, Malberg J, Nakagawa S, et al. Neuronal plasticity and survival in mood disorders.Biol Psychiatry,2000;48(8):732-739.
    110.Heine VM,Maslam S,Zareno J,et al.Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible.Eur J Neurosci,2004;9(1):131-144.
    111.Kodamam,Fujioka T,Duman RS.Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat.Biol Psychiatry,2004;56(8):570-580.
    112.Hitoshi S,Maruta N,Higashi M,Kumar A,Kato N,Ikenaka K.Antidepressant drugs reverse the loss of adult neural stem cells following chronic stress.J Neurosci Res.2007;26:6627-6636.
    113.李云峰,刘艳芹,张有志等.抗抑郁剂对慢性应激小鼠海马神经元再生的影响.中国药理学通报,2004,20(4):385-388.
    114.Malberg JE,Eisch,A J,Nestler EJ,et al.Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus.J Neurosci,2000;20(24):9104-9110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700