幼龄梭梭根系吸水对土壤水盐胁迫的响应机理及其模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,绝大多数宏观根系吸水模型,均以不同方式考虑了土壤水分对根系吸水的影响。然而,在研究旱生、盐生植物以及土地盐碱化等问题时,还需要考虑土壤盐分对根系吸水的影响。现有考虑水盐胁迫的宏观根系吸水模型,主要是在Feddes(1976)模型的基础上,经验性地考虑盐分的影响。这类模型形式简单,但动力学机制不强;由于这类模型的参数受多种因素影响,参数值往往随率定情景而变,因此局限性较大。根系吸水模型的进一步发展,需要整合更多的根系动力学函数。
     本论文的目的,是通过科学试验,在了解不同水盐胁迫对根系导水率和根系吸水影响规律的基础上,对根系吸水机理进行深入分析,然后根据水动力学原理建立水盐胁迫下的根系吸水动力学模型。该模型的参数选择及参数组合均基于水分运动的物理规律,能够比较全面地反映根系吸水的影响因素和深入揭示根系吸水的影响机理,从而比较真实地反映根系吸水过程,提高根系吸水条件下土壤水分的预报精度,并为其他根系吸水模型的研究提供借鉴。
     根系导水率是反映根系吸水能力的水力特性参数,该参数在SPAC系统水分传输研究中具有重要应用价值,它能够深入反映土壤环境因素对根系吸水的影响机理。本论文以根系导水率为切入点,通过盆栽试验研究,定量研究幼龄梭梭根系导水率对土壤水盐胁迫的响应规律,获得幼龄梭梭根系导水率对土壤水盐胁迫的动态响应模型。然后,在对根系吸水机理深入分析的基础上,以水动力学原理为依据,通过数学推导获得水、盐胁迫环境下的根系吸水动力学模型,并通过田间试验和数值模拟技术,对新建立的根系吸水动力学模型进行模拟验证。
     通过理论分析和田间试验,主要获得以下成果:
     (1)获得了梭梭根系导水率对土壤水盐胁迫的动态响应模型根系导水率是反映根系吸水能力的动力学参数,受多种环境因素影响,并通过根系内部一系列生理生化变化对环境胁迫做出响应。研究表明,土壤水分、盐分等均会引起根系解剖结构和水通道蛋白活性等变化,这些变化最终会引起根系导水率的变化。因此,根系导水率可以反映植物根系吸水不是纯粹的物理过程,而是有植物生理活动参与的复杂过程。试验结果表明,幼龄梭梭根系单位面积导水率随土壤相对有效含水量呈先增后减的抛物线规律变化;随土壤盐溶液浓度呈抛物线规律降低;随萌芽后天数呈线性规律降低;幼龄梭梭的根系总导水率随土壤相对有效含水量呈线性规律增加;随土壤盐溶液浓度呈抛物线规律降低;随萌芽后天数呈线性规律增加。水盐胁迫下根区水分运动的数值结果表明,本文获得的根系导水率对土壤水盐胁迫的动态响应模型,能够正确反映幼龄梭梭根系导水率对土壤水盐胁迫的响应规律。
     (2)获得了根茎交汇点水势的计算公式
     根茎交汇点水势(h_c)是影响根系吸水驱动力的主要因素之一。通常h_c远低于土壤水势(本论文中h_c在0.43-1.53 MPa之间变化,而土壤水势在0.16-0.34 MPa之间变化)。影响h_c的主要因素包括实际蒸腾速率、根区平均土壤水势和根系总导水率等。由于土壤水势和根系总导水率的变化一般比较缓慢,不能自由、快速地调整,因此当蒸腾速率增大时,只能通过迅速降低h_c来增大水流驱动力,从而满足植株蒸腾的需要。然而,植物木质部的生理特性决定了h_c不能无限降低。因为当木质部负压达到一定程度时(负压程度因植物种类而异),会诱导产生越来越严重的木质部栓塞,阻碍水分流动,大大削弱植株蒸腾速率,从而限制h_c进一步降低。通常植株蒸腾速率越大,则h_c越低,根系吸水的驱动力越大。
     (3)建立了土壤水盐胁迫下的根系吸水动力学模型
     该模型是在忽略根内轴向水分传输阻力的基础上,通过水分运动的物理规律来描述根系吸水过程,不仅合理考虑了土壤水、盐胁迫对根系吸水的影响,而且克服了根系吸水数值模拟模型需要繁杂的根系径向导水率、轴向导水率、根内边界条件和根内初始条件的缺点,因此使用更方便,实用性更强。由于该模型同时反映了根系吸水的动力学原理和根系导水率对环境因素的响应规律,因此,在研究根系水力再分配、根水倒流、根系夜间吸水等问题中,具有较好的应用前景。水盐胁迫下根区水分运动的数值模拟结果表明,本文建立的根系吸水动力学模型优于目前使用的F-VG模型。
Now most of root water uptake models are about the effect of soil water, however, the effects of both soil water and salinity stress should also be taken into account in the models when investigating xerophil, halophyte and soil salinization. Current models for root water uptake under soil water and salinity stress mainly considered the effect of soil salt stress empirically on the basis of Feddes (1976)model. This kind of models have simple form but less dynamic principle, thus they need further improvement to take more dynamic root functions into account.
     The aim of this paper is going deeply into the root water uptake mechanisms through scientific investigation on the basis of understanding the effect of soil water and salinity stresses on root water conductivity and root water uptake, and then deducing a root water uptake dynamic model under soil water and salinity stresses according to water dynamic principles. The parameters selection and combination of this model are all based on the physical law of water movement. These parameters can better reflect the influencing factors of root water uptake and reveal the influencing mechanisms of root water uptake, and factually reflect root water uptake process, improve the accuracy of soil moisture prediction in the root zone, and give references to the study of root water uptake model.
     Root hydraulic conductance is a hydraulic characteristic parameter which can reflects the ability of root water uptake. It has important significance for the research of SPAC water transfer, and can reflect the mechanisms of soil factors influencing root water uptake. This research start from root hydraulic conductance. We quantificationally investigated the response of root hydraulic conductance to soil water and salinity stresses using pot plant, and obtained the dynamic response model for root hydraulic conductance to soil water and salinity stresses. Then, based on the analysis root water uptake mechanisms, according to hydrodynamic principles, we obtained a root water uptake dynamic model under soil water and salinity stresses. Finally, the newly established root water uptake dynamic model was tested through field investigation and numerical simulation.
     The major outcomes of this study were obtained through mathematical analysis and field investigation.
     (1)The dynamic response models for root hydraulic conductance of Haloxylon ammodendron sapling to soil water and salinity stresses was obtained
     Root hydraulic conductance is a parameter which can reflect the ability of root water uptake. When the root hydraulic conductance was influenced by environmental factors, a series of physiological and biochemical changes in the roots occur as responses to environmental stress. Several factors such as soil water, salinity and nutrients lead to changes of root anatomical structure and aquaporin activity, and these changes are the intrinsic causes for the change of root hydraulic conductance. Thus the root hydraulic conductance can reflect that root water uptake is not a mere physical process but a complex process with plant physiological activity involved.The investigation showed that root hydraulic conductance per unit root surface area of Haloxylon ammodendron sapling increased at first and then decreased according to parabolic curve with relative soil water availability; decreased according to parabolic curve with soil salt concentration; decreased linearly with the days after budbreak. The entire root hydraulic conductance of a Haloxylon ammodendron sapling increased linearly with relative soil water availability; decreased according to parabolic curve with soil salt concentration; increased linearly with the days after budbreak.
     (2)The expressions of root-stem junction water potential was obtained
     Water potential at root-stem junction (h_c)is the main contributor to the driving force for root water uptake. Generally, h_c is far lower than soil water potential (h_c varies between 0.43-1.53 MPa and soil water potential varies between 0.16-0.34 MPa in this study). The main factors influencing h_c include actual transpiration rate, soil water potential in the root-zones and total root hydraulic conductivity etc. Because the soil water potential and the total root hydraulic conductance change slowly and they cannot be regulated freely and quickly, the only means to satisfy transpiration demand is to lower h_c rapidly and increase the water driving force when transpiration rate increased. However, the physiological properties of xylem can further prevent the decline of h_c. This is because when the negative pressure of the xylem reaches a certain value (the negative pressure of the xylem varied with plant species), the induced xylem embolism can block water flow in xylem conduit, and then greatly reduces transpiration rate and further prevents the decline of h_c. In general, when plant transpiration is stronger, the water potential at root-stem junction is lower, thus the driving force of root water uptake is much higher.
     (3)A dynamic model of root water uptake for Haloxylon ammodendron sapling under soil water and salinity stresses was established
     This model describes the root water uptake process using physical laws of water movement on the basis of ignoring axial water transfer resistance in root, not only correctly thought over the influences of soil water and salinity stresses on root water uptake, but also overcomed the shortcoming of root water uptake numerical simulation models which need multifarious root radial conductivity, axial conductivity, boundary condition and initial condition in root. So it is more convenient and practical for use. Due to the model reflected root water uptake dynamic principle and the response rule of root hydraulic conductivity to environmental factors, so it has prosprous future in studying root hydraulic redistribution, root reverse flow, and nocturnal root water uptake. The results of water transfer numerical simulation in root zone under water and salinity stresses showed that the newly established dynamic root water uptake model is better than F-VG model.
引文
柏新富,朱建军,蒋小满,卜庆梅,张萍. 2009.盐胁迫下三角叶滨藜根系超滤特性的分析.土壤学报,46(6): 1121-1126
    郭泉水,谭德远,刘玉军,王春玲. 2004.梭梭对干旱的适应及抗旱机理研究进展.林业科学研究, 17(6):796-803
    侯彩霞,周培之. 1997.水分胁迫下超旱生植物梭梭的结构变化.干旱区研究, 14(4): 23-25
    虎胆.吐马尔白. 1996.作物根系吸水的研究.新疆农业大学学报, 19(4):30-34
    虎胆.吐马尔白. 1999.作物根系吸水率模型的试验研究.灌溉排水, 18(4):15-19
    胡萌. 2010.干旱荒漠区两种沙生植物对水盐胁迫响应的机理与模拟. [博士学位论文].北京:中国农业大学
    胡田田,康绍忠. 2007.局部灌水方式对玉米不同根区土-根系统水分传导的影响.农业工程学报, 23(2): 11-16
    吉喜斌,康尔泗,陈仁升等. 2006.植物根系吸水模型研究进展.西北植物学报,26(5): 1079-1086
    贾志清,卢琦. 2004.梭梭.北京:中国环境科学出版社
    贾志清,卢琦,郭保贵等. 2004.沙生植物——梭梭研究进展.林业科学研究,17(1): 125-132
    康绍忠,刘晓明,熊运章. 1992.冬小麦根系吸水模式研究.西北农业大学学报,20(2):5-12
    康绍忠,张建华,梁建生. 1999.土壤水分与温度共同作用对植物根系水分传导的效应.植物生态学报, 23(3): 211-219
    雷志栋,杨诗秀,谢森传. 1988.土壤水动力学.北京:清华大学出版社
    李兵. 2006.植物水通道蛋白生理作用的研究进展.现代农业科技,7:143-145
    李秧秧,邵明安. 2003.玉米单根木质部水势与径向水力导度的轴向变化.土壤学报,40(2): 200-204
    罗毅,于强,欧阳竹等. 2000.利用精确的田间实验资料对几个常用根系吸水模型的评价与改进.水利学报,(4):73-80
    刘川顺、沈荣开. 1993.由土壤水势估算二维根系吸水的研究.西北水资源与水工, 4(2):36-41
    刘晚苟,山仑,邓西平. 2001.根输水机理研究进展.干旱地区农业研究, 19(2):81-88
    刘晚苟,山仑,邓西平. 2003.干湿条件下土壤容重对玉米根系导水率的影响.土壤学报, 40(5):779-782
    马娉婷,齐曼.尤努斯,魏岩. 2006.水分胁迫对两种梭梭幼苗部分生理指标的影响.新疆农业大学学报, 29(2): 51-53
    曲东,周莉娜,王保莉等. 2004.硫营养对小麦苗期根系导水率的影响.干旱地区农业研究, 22(1): 40-43
    邵爱军、李会昌. 1997.野外条件下作物根系吸水模型的建立.水利学报, (2):68-72
    邵明安,杨文治,李玉山. 1987.植物根系吸收土壤水分的数学模型.土壤学报, 24(4):295-304
    沈玉芳,曲东,王保莉. 2005.磷对大麦根系导水率的调节作用研究.干旱地区农业研究, 23(1): 81-84
    王会肖. 1997.农田生态系统水分运转及水分利用有效性的实验与模拟.北京:中国科学院地理研究所
    王彦梅,张正斌,柴团耀等. 2005.植物水通道蛋白研究进展.西北农林科技大学学报(自然科学版),33(11): 106-112
    肖振华,万洪富. 1998.灌溉水质对土壤水力性质和物理性质的影响.土壤学报, 35(3): 359-366
    许迪. 1997.典型经验根系吸水函数的田间模拟检验及评价.农业工程学报, 13(3):37-42
    许皓,李彦,邹婷等. 2007.梭梭生理与个体用水策略对降水改变的响应.生态学报, 27(12): 5019-5028
    杨培岭、郝仲勇. 1999.植物根系吸水模型的发展动态.中国农业大学学报, 4(2):67-73
    杨启良,张富仓. 2009.根区不同灌溉方式对苹果幼苗水流阻力的影响.应用生态学报, 20(1):128-134
    杨文斌,包雪峰,杨茂仁等. 1996.梭梭抗旱的生理生态水分关系研究.内蒙古林业科技, 3(4): 58-63
    姚建文. 1989.作物生长条件下土壤含水量预测的数学模型.水利学报, (9):32-38
    于秋菊,林忠平,李景富. 2002.植物水孔蛋白研究进展.北京大学学报(自然科学版), 38(6): 854-854
    张国平,周伟军. 2005.植物生理生态学.杭州:浙江大学出版社
    张新春,庄炳昌,李自超. 2002.植物耐盐性研究进展.玉米科学, 10(1): 50-56
    张渝洁,全先庆,李新国. 2006.植物水通道蛋白活性的调节机制.生命的化学, 26(4): 329-331
    张志亮,张富仓,郑彩霞,杨启良. 2008.局部根区灌水和施氮对玉米导水率的影响.中国农业科学, 41(7): 2033-2039
    赵成义、黄俊梅. 1999.植物根系吸水特性研究.干旱区地理, 22(2):88-95
    左强、孙炎鑫、杨培岭. 1998.应用Microlysimeter研究作物根系吸水特性.水利学报, (6):69-76
    Aharon R, Shahak Y and Wininger S, et al. 2003. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell, 15 (2): 439-447
    Abbasia F, Feyena J, van Genuchten M T. 2004. Two-dimensional simulation of water flow and solute transport below furrows: model calibration and validation. J Hydrol, 290: 63-79
    Allen R., Pereira L A, Raes D, Smith M 1998. Crop evapotranspiration: guidelines for computing crop requirements, FAO Irrigation and Drainage Paper No. 56. Rome, Italy: FAO
    Allen M F. 2007. Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone Journal, 6(2): 291-297
    Arbogast T, Obeyesekere M, and Wheeler M. 1993. Numerical methods for the simulation of flow in root-soil systems. SIAM Journal on Numerical Analysis, 30(6): 1677-1702
    Aroca R, Amodeo G, Fernandez-Illescas S, et al. 2005. The role of Aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiology, 137(1): 341-353
    Aroca R, Porcel R, Ruiz-Lozano J M. 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Physiologist, 173(4): 808-816
    Azaizeh H, Gunse B and Steudle E. 1992. Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.)seedlings. Plant Physiol., 99: 886-894
    Azaizeh H and Steudle E. 1991. Effects of salinity on water transport of excised maize (Zea mays L.)roots. Plant Physiol., 97: 1136-1145
    Beaudette P C, Chlup M, Yee J, et al. 2007. Relationships of root conductivity and aquaporin geneexpression in Pisum sativum: diurnal patterns and the response to HgCl2 and ABA. Journal of Experimental Botany, 58(6): 1291-1300
    Bengough A G, Young I M. 1993. Root elongation of seedling peas through layered soil of different penetration resistances. Plant Soil , 149 : 129-139
    Berntson G and Bazzaz F 1996. Belowground positive and negative feedbacks on CO2 growth enhancement. Plant and Soil, 187, 119-131
    Bogeat-Triboulot M B, Martin R, Chatelet D, Cochard H. 2002. Hydraulic conductance of root and shoot measured with the transient and dynamic modes of the high-pressure flowmeter. Annals of Forest Science, 59 (4): 389-396
    Bohm W. 1979. Methods of studying root systems. Berlin, Springer Verlag, 188 p
    Bohnert H J, Nelson D E and Jensen R G. 1995. Adaptations to environmental stresses. Plant Cell, 7(7): 1099-1111
    Boursiac Y, Chen S and Luu D T, et al. 2005. Early effects of salinity on water transport in Arabidopsis roots-molecular and cellular features of aquaporin expression. Plant Physiol., 139(2): 790-805
    Bunce J. 1996. Growth at elevated carbon dioxide concentrations reduces hydraulic conductance in alfalfa and soybean. Global Change Biology, 2: 155-158
    Carvajal M, Cooke D T and Clarkson D T. 1996. Responses of wheat plants to nutrition deprivation may involve the regulation of water-channel function. Planta, 199: 372-381
    Carvajal M, Martinez V and Alcaraz F C. 1999. Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol. Plant. 105: 95-101
    Chandra S P O, Amaresh K R. 1996. Nonlinear root water uptake model. J Irrig and Drain Engi, 122(4): 198-202
    Chaudhari S K, Somawanshi R B. 2004. Unsaturated flow of different quality irrigation waters through clay, clay loam and silt loam soils and its dependence on soil and solution parameters. Agric Water Mange, 64: 69-90
    Chikushi J, Hirota O. 1998. Simulation of root development based on the dielectric breakdown model. Hydrological Sciences Journal, 43(4): 549-560
    Clarkson D T, Carvajal M and Henzler T, et al. 2000. Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J. Exp. Bot., 51(342): 61-70
    Clarkson D, Touraine T B. 1994. Morphological responses of plants to nitrate-deprivation: a role for abscisic acid?. A Whole Plant Perspective on Carbon–Nitrogen Interactions. Hague, The Netherlands: SPB Academic Publishing: 187-196
    Cochard H, Cnibriat P, Tyree M T. 1992. Use of positive pressures to establish vulnerability curves: further support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant Physiology, 100: 331-342
    Corrêa A, Strasser R J, Martins-Lou??o M A. 2006. Are mycorrhiza always beneficial? Plant Soil, 279: 65-73
    Cruz R T, Jordan W R, Drew M C. 1992. Structural changes and associated reduction of hydraulic conductance in roots of sorghum-bicolor L following exposure to water deficit. Plant Physiology, 99(1): 203-212
    Dirkson C, Augustijn D C. 1988. Root water uptake function for non-uniform pressure and osmoticpotentials, Agr. Abstracts, 188
    Dirkson C, Kool J B, Koorevaar P, Van Genuchten M T. 1993. HYSWASOR: simulation model of hysteretic water and solute transport in the root zone. In: Russo, D., Dagan, G(.Eds.), Water Flow and Solute Transport in Soil. Berlin, Springer: 99-122
    Donna S, Richard J, Jayne Z. 1999. Plant-water relations of NaCl and calcium-treated sunflower plants. Environmental and Experimental Botany, 42: 105-111
    Doussan C, Pierret A, Garrigues E, et al. 2006. Water uptake by plant roots: II– Modelling of water transfer in the soil root-system with explicit account of flow within the root system–Comparison with experiments. Plant and Soil, 283: 99-117
    Dubrovsky J G, North G B, Nobel P S. 1998. Root growth, developmental changes in the apex, and hydraulic conductivity for Opuntia ficus-indica during drought. New Phytologist, 138(1):75-82
    Edwards N T. 1991. Root and soil respiration responses to ozone in Pinus taeda L. seedlings. New Phytologist, 118: 315-321
    Ergenio F. 1996. A parametric model for two dimensional water uptake intensity by corn roots under drip irrigation. Soil Science Society of American Journal, 60: 1039-1049
    Evett S R, Warrick A W, and Matthias A D. 1995. Wall material and capping effects on microlysimeter temperatures and evaporation. Soil Sci Soc Am, 59(2): 329-336
    Fan M S, Bai R Q, Zhao X F, et al. 2007. Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots. Journal of Integrative Plant Biology, 49(5): 598-604
    Feddes R A, Kowalik P J, Malinka K K, Zaradny H. 1976. Simulation of field water uptake by plants using a soil water dependent root extraction function. Journal of Hydrology, 31: 13-26
    Feddes R A, Raats P A C 2004. Parameterising the soil-water-plant-root system. In: Feddes RA et al. (Eds.), Unsaturated zone modelling: Progress, Challenges and Applications. Wageningen Frontis, 6: 95-14
    Fiscus E L. 1977. Determination of hydraulic and osmotic properties of soybean root systems. Plant Physio, l59: 1013-1020
    Floris J and Noordwijk M V 1984. Improved methods for the extraction of soil samples for root research. Plant Soil, 77: 369-372
    Forrest K L and Bhave M. 2007. Major intrinsic proteins (MIPs)in plants: a complex gene family with major impacts on plant phenotype. Funct. Integr. Genom., 7: 263-289
    Franke R, Schreiber L. 2007. Suberin-a biopolyester forming apoplastic plant interfaces. Current Opinion in Plant Biology, 10: 252-259
    Frensch J, Hsiao T C, Steudle E. 1996. Water and solute transport along developing maize roots. Planta, 198: 348-355
    Garcia-Franco J G, Lopez-Portillo J, Angeles G. 2007. The holoparasitic endophyte Bdallophyton americanum affects root water conductivity of the tree Bursera simaruba. Tree-structure and function, 21(2): 215-220
    Garcia-Sanchez F, Carvajal M, Sanchez-Pina M A, et al. 2000. Salinity resistance of Citrus seedlings in relation to hydraulic conductance, plasma membrane ATPase and anatomy of the roots. Journal of Plant Physiology, 156 (5-6): 724-730
    Gardner, W R. 1960. Dynamic aspects of water availability to plants. Soil Sci. 89, 63-73
    Gardner, W R. 1964. Relation of root distribution to water uptake and availability. Agron. J., 56: 41-45
    Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P and Maurel C. 2002. The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J., 30: 71-81
    Gibbs J, Turner D W, Armstrong W, et al. 1998. Response to oxygen deficiency in primary maize roots. II. Development of oxygen deficiency in the stele has limited short-term impact on radial hydraulic conductivity. Aust. J. Plant Physiol. 25: 759-763
    Gloser V, Zwieniecki M A, Orians C M, et al. 2007. Dynamic changes in root hydraulic properties in response to nitrate availability. Journal of Experimental Botany, 58(10): 2409-2415
    Gong D Z, Kang S Z, Zhang L, et al. 2006. A two-dimensional model of root water uptake for single apple trees and its verification with sap flow and soil water content measurements. Agricultural Water Management, 83: 119-129
    Grantz D A, Yang S. 1996. Effect of O3 on hydraulic architecture in Pima cotton: biomass allocation and water transport capacity of roots and shoots. Plant Physiology, 112, 1649-1657
    Grantz D A, Yang S D. 2000. Ozone impacts on allometry and root hydraulic conductance are not mediated by source limitation nor developmental age. Journal of Experimental Botany, 51(346): 919-927
    Green S R, Kirkham M B, Brent E, Clothier B E 2006. Root uptake and transpiration: From measurements and models to sustainable irrigation. Agric Water Mange, 86: 165-176
    Grote K, von Trzebiatovski P and Kaldenhoff R. 1998. RNA levels of plasma membrane aquaporins in Arabidopsis thaliana. Protoplasma, 204: 139-144
    Henzler T, Waterhouse R N, Smyth A J, et al. 1999. Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta, 210: 50-60
    Herkelrath W N, Miller E E, Gardner W R. 1977. Water uptake by plant:Ⅰ. Divided root experiment. Soil Sci Soc Am J, 41: 1033-1038
    Hillel D. 1976. A macroscopic scale model of water uptake by a non-uniform root system and salt movement in the soil profile. Soil Science, 121: 242-255
    Hoarau J, Barthes L, Bousser A, et al. 1996. Effect of nitrate on water transfer across roots of nitrogen pre-starved maize seedlings. Planta, 200: 405-415
    Homaee M, Feddes R A. 1999. Water uptake under non-uniform transient salinity and water stress. In: Feyen. J., Wiyo, K.(Eds.), Modeling of Transport Processes in Soils at Various Scales in Time and Space. The Netherlands, Wageningen Press: 416-427
    Homaee M, Feddes R A, Dirkson C. 2002. Simulation of root water uptakeⅡ. Non-uniform transient water stress using different reduction functions. Agricultural Water Management, 57: 111-126
    Homaee M, Feddes R A, Dirksen C 2002. Simulation of root water uptakeⅢ. Non-uniform transient combined salinity and water stress. Agric Water Mange, 57: 127-144
    Hose E, Steudle E and Hartung W. 2000. Abscisic acid and hydraulic conductivity of maize roots: a study using cell- and root-pressure probes. Planta, 211: 874-882
    Huang B G, Nobel P S. 1994. Root hydraulic conductivity and its components, with emphasis on desert succulents. Agronomy Journal, 86: 767-774
    Hultine K R, Cable W L, Burgess S S O, et al. 2003. Hydraulic redistribution by deep roots of aChihuahuan Desert phreatophyte. Tree Physio, 23: 353-360
    Huxman K A, Smith S D, Neuman D S. 1999. Root hydraulic conductivity of Larrea tridentata and Helianthus annuus under elevated CO2. Plant, Cell & Environment, 22(3): 325-330
    Inoue M, ?im?nek J, Shiozawa S, Hopmans J W. 2006. Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration experiments. Adv Water Res, 23: 677-688
    Jacques D, ?im?nek J, Timmerman A, Feyen J. 2002. Calibration of Richards and convection-dispersion equations to field-scale water flow and solute transport under rainfall conditions. J Hydrol, 259: 15-31
    Javaux M, Schr?der T, Vanderborght J, and Vereecken H. 2008. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone Journal, 7(3): 1079-1088
    Johansson I, Karlsson M, Shukla V K, Chrispeels M J, Larsson C and Kjellbom P. 1998. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation.Plant Cell, 10: 451-459
    Johnson N C, Graham J H, Smith F A. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol, 135: 575-586
    Karmoker J L, Clarkson D T, Sakcr L R, et al. 1991. Sulphate deprivation depresses the transport of nitrogen to the xylem and the hydraulic conductivity of barley (Hordeum vulgate L.)roots. Planta, 185: 269-278
    Katsuhara M, Akiyama Y and Koshio K, et al. 2002. Functional analysis of water channels in barley roots. Plant Cell Physiol., 43(8): 885-893
    Kawasaki S, Borchert C and Deyholos M, et al. 2001. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 13(4): 889-905
    Kirch H H, Vera-Estrella R and Golldack D, et al. 2000. Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol., 123(1): 111-124
    Kolb K J, Sperry J S, Lamont B B. 1996. A method for measuring xylem hydraulic conductance and embolism in entire root and shoot systems. Journal of Experimental Botany, 47: 1805-1810
    Ktitorova I N and Skobeleva O V. 2008. Decrease in Membrane Hydraulic Conductance of Rhizodermal Cells under Nitrate Deficit Is Related to Acidification at the Root Surface. Russian Journal of Plant Physiology, 55(5): 621-628
    Kumar P, Hallgren S W, Enstone D E, Peterson C A. 2007. Root anatomy of Pinus taeda L. seasonal and environmental effects on development in seedlings. Trees, 21: 693-706
    Legates D R, McCabe G J 1999. Evaluating the use of‘goodness-of-fit’measures in hydrologic and hydroclimatic model validation. Water Resour Res, 35: 233-241
    Loepfea L, Martinez-Vilaltaa J, Pinola J et al. 2007. The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology, 247: 788-803
    Lo Gullo M A, Nardini A, Salleo S, et al. 1998. Changes in root hydraulic conductance (K-R)of Olea oleaster seedlings following drought stress and irrigation. New Phytologist, 140(1): 25-31
    Lopez F, Bousser A and Sissoeff I, et al. 2003. Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant Cell Physiol., 44(12): 1384-1395
    Lopez-Perez L, Fernandez-Garcia N, Olmos E, et al. 2007. The phi thickening in roots of broccoli plants: An acclimation mechanism to salinity?. International Journal of Plant Sciences, 168(8): 1141-1149
    Lu Z and Neumann P M. 1999. Water stress inhibits hydraulic conductance and leaf growth in riceseedlings but not the transport via mercury-sensitive water channels in the root. Plant Physiol., 120(1): 143-151
    Maas E V, Hoffman G J. 1977. Crop salt tolerance-current assessment. J Irrig Drain, 103: 115-134
    Martinez-Ballesta M C, Aparicio F, Pallas V, et al. 2003. Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis. Journal of Plant Physiology, 160 (6): 689-697
    Martinez-Ballesta M D, Bastias E, Zhu C F, et al. 2008. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake. Physiologia Plantarum, 132(4): 479-490
    Martre P, North G B, Nobel P S. 2001. Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting. Plant Physiology, 126(1): 352-362
    Materechera S A , Dexter A R , Alston A M. 1991. Penetration of very strong soils by seedling roots of different plant species. Plant Soil , 135 : 31-41
    Maurel C. 1997. Aquporins and water permeability of plant membranes. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 399-420
    McElrone A J, Bichler J, Pockman W T, et al. 2007. Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves. Plant Cell and Environment, 30(11): 1411-1421
    Meinzer F C, Brooks J R, Bucci S, et al. 2004. Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physio, 24: 919-928
    Melchior W , Steudle E. 1993. Water transport in onion (A llium cepa L.)roots. Changes of axial hydraulic conductivities during root development. Plant Physiology, 101: 1305-1315
    Melkonian J, Yu L X, Setter T L. 2004. Chilling responses of maize (Zea mays L.)seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance. Journal of Experimental Botany, 55(403): 1751-1760
    Minhas P S, Singh Y P, Chhabba D S, Sharma V K. 1999. Changes in hydraulic conductivity of soils varying in calcite content under cycles of irrigation with saline-sodic and simulated rain water. Irrig Sci, 18: 199-203
    Miyamoto N, Steudle E, Hirasawa T, Lafitte R. 2001. Hydraulic conductivity of rice roots. J Exp Bot, 52(362): 1835-1846
    Molina R, Massicotte H B, Trappe J M. 1992. Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. Mycorrhizal functioning—an integrative plant-fungal process. New York, USA, Chapman and Hall, 357-423
    Molz F J. 1976. Water transport in the Soil-root system: transient analysis. Water Resour Res, 12: 805-807
    Molz F J. 1981 Models of water transport in the soil-plant system, a review. Water Resources Research, 17(5): 1245-1260
    Molz F J, Remson I. 1970. Extracting term models of soil moisture use of transpiring plants. Water Resour Res, 6: 1346-1356
    Munns R and Passioura J B. 1984. Hydraulic resistance of plants. III. Effects of NaCl in Barley and Lupin. Aust. J. Plant Physiol. 11: 351-359
    Murai-Hatano M, Kuwagata T, Sakurai J, et al. 2008. Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins. Plant and Cell Physiology, 49(9):1294-1305
    Maurel C, Reizer J, Schroeder J I and Chrispeels M J. 1993. The vacuolar membrane proteinγ-TIP creates water specific channels in Xenopus oocytes. EMBO J., 12: 2241-2247
    Morillon R and Catterou M. 2001. Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta, 212(2): 199-204
    Mualem Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12(3): 513-522
    Nardini A, Lo-Gullo M A, Salleo S. 1998. Seasonal changes of root hydraulic conductance (KRL)in four forest trees: an ecological interpretation. Plant Ecology, 139: 81-90
    Navarro A, Banon S, Olmos E, et al. 2007. Effects of sodium chloride on water potential components,hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Science, 172:473-480
    Nimah M N, Hanks R J. 1973. Model for estimating soil water, plant, and atmospheric interrelations. I. Description and sensitivity. Soil Sci Soc Am Proc, 37: 522-527
    Nobel P S, Cui M. 1992. Hydraulic conductances of the soil, the root-soil area gap, and the root: changes for desert succulents in drying soil. J Exp. Bot., 43: 319-326
    Norby R J. 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant and Soil, 165: 9-20
    North G B, Baker E A. 2007. Water uptake by older roots: evidence from desert succulents. Hortscience, 42(5): 1103-1106
    North G B, Ewers F W, Nobel P S. 1992. Main root lateral root junctions of 2 desert succulents: changes in axial and radial components of hydraulic conductivity during drying. American Journal of Botany, 79(9):1039-1050
    North G B, Huang B, Nobel P S. 1993. Changes in structure and hydraulic conductivity for root junctions of desert succulents as soil-water status varies. Botanica Acta, 106(2):126-135
    North G B, Martre P, Nobel P S. 2004. Aquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave deserti in wet, dry, and rewetted soil. Plant Cell and Environment, 27(2): 219-228
    North G B, Nobel P S. 1992. Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus-acanthodes and Opuntia-ficus-indica[J]. New Phytologist, 120(1): 9-19
    North G B, Nobel P S. 1994. Changes in root hydraulic conductivity for 2 tropical epiphytic cacti as soil-moisture varies. American Journal of Botany, 81(1): 46-53
    North G B, Nobel P S. 1995. Hydraulic conductivity of concentric root tissues of agave deserti engelm under wet and drying conditions. New Phytologist, 130(1):47-57
    North G B and Nobel P S. 1996. Radial hydraulic conductivity of individual root tissues of Opuntia ficus-indica(L.)miller as soil moisture varies. Annals of Botany, 77: 133-142
    North G B, Nobel P S. 1997. Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths. Plant and Soil, 191: 249-258
    North G B, Nobel P S. 1998. Water uptake and structural plasticity along roots of a desert succulent during prolonged drought. Plant Cell and Environment, 21(7):705-731
    North G B, Nobel P S. 2000. Heterogeneity in water availability alters cellular development and hydraulicconductivity along roots of a desert succulent. Annals of Botany, 85: 247-255
    Radin J W and Mathews M A. 1989. Water transport properties of cortical cells in roots of nitrogen and phosphorus deficient cotton seedlings. Plant Physiol. 89: 264-268
    Rowse C W, Stone D A, Gerwit Z A. 1987. Simulation of the water distribution in soil, 2, the model for cropped soil and its comparison with experiment. Plant Soil, 49: 534-550
    Perumalla C J , Peterson C A. 1986. Deposition of Casparian bands and suberin lamellae in the exodermis and endoderm is of young corn and onion roots. Canadian Journal of Botany, 64: 1873-1878
    Peterson C A, Murrmann M, Steudle E. 1993. Location of major barriers to water and ion movement in young roots of Zea mays L. Planta, 189: 127-136
    Philip, J R. 1957. The physical principles of soil water movement during the irrigation cycle. In: Proceedings of the Third Congress on International Comm. Irrigation Drainage. R.7, Question. 8:125-8:154.
    Poni S, Tagliavini M , Neri D, et al. 1992. Influence of root pruning and water stress on growth and physiological factors of potted apple, grape, peach and pear trees. Sci Hort ic, 52: 223- 226
    Prasad R. 1988. A linear root water uptake model.Journal of Hydrology, 99: 297-306
    Preston G M, Carroll T P, Guggino W B and Agre P. 1992. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 17(256): 385-387
    Qi C H, Chen M, Song J, et al. 2008. Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under salinity. Plant Science, 7961: 1-6
    Qiu Q S, Wang Z Z, Zhang N and Cai Q G, et al. 2000. Aquaporins in the plasma membrane of leaf callus protoplasts of Acnitia deliciosa var. deliciosa cv. Aust. J. Plant Physiol., 27: 71-75
    Quintero J M, Fournier J M and Benlloch M. 1999. Water transport in sunflower root systems: effects of ABA, Ca2+ status and HgCl2. J. Exp. Bot., 50: 1607-1612
    Raats P A C. 1975. Distributions of salts in the root zone. Journal of Hyd rology, 27: 237-248
    Reinbott T M and Blevins D G. 1999. Phosphorus nutritional effects on root hydraulic conductance, xylem water flow and flux of magnesium and calcium in squash plants. Plant and Soil, 209: 263-273
    Reinhardt D H, Rost T L. 1995. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environmental and Experimental Botany, 35: 563-574
    Rieger M. 1995. Offsetting effects of reduced root hydraulic conductivity and osmotic adjustment following drought. Tree Physiology, 15: 379-385
    Sayer M A S, Brissette J C, and Barnett J P. 2005. Root growth and hydraulic conductivity of southern pine seedlings in response to soil temperature and water availability after planting. New Forests, 30: 253-272
    Scholz F G, Bucci S J, Goldstein G, et al. 2002. Hydraulic redistribution of soil water by neotropical savanna trees. Tree Physio, 22: 603-612
    Schwinning S, Ehleringer J R. 2001. Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. Journal of Ecology, 89: 464-480
    Siefritz F, Biela A and Eckert M, et al. 2001. The tobacco plasma membrane aquaporin NTAQP1. J. Exp. Bot., 52: 1953-1957
    Siefritz F, Tyree M T and Lovisolo C, et al. 2002. PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell, 14: 869-876
    Siemens J A and Zwiazek J J. 2008. Root hydraulic properties and growth of balsam poplar (Populus balsamifera)mycorrhizal with Hebeloma crustuliniforme and Wilcoxina mikolae var. mikolae. Mycorrhiza, 18: 393-401
    Silva C, Martinez V, Carvajal M. 2008. Osmotic versus toxic effects of NaCl on pepper plants. Biologia Plantarum, 52 (1): 72-79
    (?)im(?)nek J, van Genuchten M T and ?ejna M. 2006. The HYDRUS software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 1.0, Technical Manual, PC Progress, Prague, Czech Republic
    Skaggs T H, van Genuchten M T, Shouse P J, Poss J A. 2006. Macroscopic approaches to root water uptake as a function of water and salinity stress. Agric Water Mange, 86: 140-149
    Smart L B, Moskal W A and Cameron K D, et al. 2001. MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol., 42: 686-693
    Sperry J S, Tyree M T. 1988. Mechanism of water stress-induced xylem embolism. Plant Physiology, 88: 581-587
    Steudle E. 1992. The biophysics of plant water: compartmentation, coupling with metabolic processes, and water flow in plant roots. Water and Life: Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels. Berlin: Springer-Verlag:173-204
    Steudle E. 1993. Pressure probe techniques: basic principles and application to studies of water and solute relations at the cell, tissue, and organ level. In: Smith JAC, Griffith H (eds)Water deficits: plant responses from cell to community. Oxford: Bios Scientific Publishers:5-36
    Steudle E. 1994. Water transport across roots. Plant Soil, 167: 79-90
    Steudle E. 2000. Water uptake by plant roots: an integration view. Plant Soil, 226: 45-56
    Steudle E. 2000. Water uptake by roots: effects of water deficit. J Exp Bot, 51: 1531-1542
    Steudle E, Jeschke W D. 1983. Water transport in barley roots[J]. Planta, 158: 237-248
    Steudle E, Murrmann M , Peterson C A. 1993. Transport of water and solutes across maize roots modified by puncturing the endodermis. Further evidence for the composite transport model of the root. Plant Physiology, 103: 335-349
    Steudle E, Peterson C A. 1998. How does water get through roots?. J Exp Bot, 49: 775-788
    Suga S, Komatsu S and Maeshima M. 2002. Aquaporin isoforms responsive to salt and water stresses and phytohormones in Radish seedlings. Plant Cell Physiol., 43: 1229-1237
    Sun H L, Wu C, Xu W J, et al. 2006. Variations of root hydraulic conductance of Fraxinus mandshurica seedlings in different concentrations of NHNO3 solution. Frontiers of Forestry in China, 1: 298-304
    Tazawa M, Asai K and Iwasaki N. 1996. Characteristics of Hg- and Zn-sensitive water channels in the plasma membrane of Chara cells. Bot. Acta, 109: 388-396
    Tournaire-Roux C, Sutka M, Javot H, et al. 2003. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature, 425 (6956): 393-397
    Tsuda M, Tyree M T. 2000. Plant hydraulic conductance measured by the high pressure flow meter in crop plants. J Exp Bot, 51 (345): 823-828
    Tyree M T. 2003. Hydraulic properties of roots. Ecological Studies, 168: 125-150
    Tyree M T, Patifio S, Bennink J, Alexander J. 1995. Dynamic measurement of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot, 46: 83-94
    Tyree M T, Yang S, Cruiziat P, Sinclair B. 1994. Novel methods of measuring hydraulic conductivity of tree root systems and interpretation using AMAIZED. Plant Physiol, 104: 189-199
    Tyreman S D, Bohnert H J and Maurel C, et al. 1999. Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J. Exp. Bot. 50: 1055-1071
    Van Dam J C, Huygen J, Wesseling J G, Feddes R A, Kabat P, Van Walsum P V, Groenendijk P, Van Diepen C A. 1997. Theory of SWAP, Version 2.0, Simulation of water flow, solute transport and plant growth in the soil-water-atmosphere-plant environment. Report no. 71, Department of Water Resources, CA, USA
    Vandeleur R, Niemietz C, Tilbrook J, et al. 2005. Roles of aquaporins in root responses to irrigation. Plant and Soil, 274:141-161
    van den Honert T. 1948. Water transport as a catenary process. Faraday Soc. Discuss. 3: 146-153
    van Genuchten M T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44: 892-898
    van Genuchten, M T. 1987. A numerical model for water and solute movement in and below the root zone. Res Rep 121. USDA-ARS, U.S. Salinity Lab., Riverside, CA, USA
    Van Genuchten M T, Hoffman G J. 1984. Analysis of crop production. In: Shainberg I, Shalhevet J (Eds.), Soil salinity under irrigation. New York, Springer, 258-271
    Vartapetian B B and Jackson M B. Plant adaptations to anaerobic stress. Ann. Bot. 79:2-20
    Veselova S V, Farhutdinov R G, Veselov S Y, et al. 2005. The effect of root cooling on hormone content, leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.). Journal of Plant Physiology, 162(1): 21-26
    Wan X, Steudle E and Hartung W. 2004. Gating of water channels (aquaporins)in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. J. Exp. Bot., 55 (396): 411-412
    Wan X C, Zwiazek J J, Lieffers V J, et al. 2001. Hydraulic conductance in aspen (Populus tremuloides)seedlings exposed to low root temperatures. Tree Physiology, 21(10): 691-696
    Wei J, Zhang X M, Shan L S, Yan H L and Liang S M. 2007. Seedling growth dynamic of Haloxylon ammodendron and its adaptation strategy to habitat condition in hinterland of desert. Science in China Series D: Earth Sciences, 50: 107-114
    Whisler F D, Klute A, Millington R J. 1968. Analysis of steady state evapotranspiration from a soil column. Soil Science Society of American Journal, 32: 167-174
    Woltering E J. 1990. Interorgan translocation of 1-aminocyclopropane-1-carboxylic acid and ethylene coordinates senescence in emasculated Cymbidium flowers. Plant Physiol., 92(3): 837-845
    Wu L, McGechanb M B, McRobertsc N, et al. 2007. SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling-Model description. Ecological Modelling, 200: 343-359
    Yamaguchi-Shinozaki K, Koizumi M and Urao S, et al. 1992. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequenceanalysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol., 33: 217-224
    Zelazny E, Borst J W and Muylaert M, et al. 2007. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. PNAS, 104: 12359-12364
    Zhang W H and Tyerman S D. 1991. Effect of low O2 concentration and azide on hydraulic conductivity and osmotic volume of cortical cells of wheat roots. Aust. J. Plant Phys., 18: 603-613
    Zhao C X, Shao H B, Chu L Y. 2008. Aquaporin structure–function relationships: Water flow through plant living cells. Colloids and Surfaces B: Biointerfaces, 62(2): 163-172
    Zhou Q Y, Kang S Z, Zhang L, et al. 2007. Comparison of APRI and Hydrus-2D models to simulate soil water dynamics in a vineyard under alternate partial root zone drip irrigation. Plant Soil, 291: 211-223
    Zhou M, Sharik T L. 1997. Ectomycorhizal associations of northern red oak (Quercus rubra)seedlings along and environmental gradient. Can J Res, 27: 1705-1713
    Zimmermann H M , Stedule E. 1998. Apoplastic transport across young maize roots: effect of the exodermis.Planta, 206: 7-19
    Zur B, Jones J W, Boote K J, Hammond L C. 1982. Total resistance to water ?ow in field soybeans: II. Limiting soil moisture. Agron J, 74: 99-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700