家蚕抗核型多角体病毒相关蛋白及雌雄差异蛋白质组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕是一种重要的经济昆虫,桑蚕业无论在古代还是现代,在中国农业中都占有重要地位。引起蚕病的毒病主要有核型多角体病毒(Nuclear polyhedrosis virus, NPV)、质型多角体病毒和浓核病毒。其中NPV引起的脓病每年给桑蚕业造成的损失巨大。不仅如此,食物中的病毒也对食品安全造成严重威胁。作为NPV的天然宿主,家蚕与病毒的相互作用关系一直是众多研究者关心的问题。在自然界中,有少数家蚕品系具有天然的抗病毒能力。尽管已经有多种蛋白或基因被报道有抵抗NPV的作用,但到今天为止,科学界还未确定哪种蛋白或基因决定了家蚕的抗NPV性状,更不清楚家蚕抗NPV的详细机制。另外,在雌雄家蚕之间有一些差异性状,如雄蚕比雌蚕更健壮、不同龄期雄蚕与雌蚕的生长速率不一样等,这其中的机制至今还不很清楚。如果能了解宿主抵抗病毒的机制,将会大大推动蚕业生产给,降低病毒给食品安全性带来的风险。
     本研究用蛋白质组学技术鉴定家蚕中的抗病毒相关蛋白。用抗病毒品系NB、感病毒品系306和它们的杂交F1代来组配成正交组和反交组,比较各品系家蚕间的差异蛋白,希望能找出与抗病毒或感病毒相关的蛋白。另外,还用二维电泳技术分离雄蚕与雌蚕中肠的总蛋白,希望能找到与不同性别家蚕性状差异相关的蛋白,为家蚕育种和蚕业生产提供理论基础。研究的主要结果如下:
     1.对抗性亲本NB、感性亲本306及F1代经口接种病毒后,死亡率的分析显示,F1代与NB抗性亲本都没有出现家蚕个体死亡,对病毒表现出同样的抵抗能力,而感性亲本306全部感染病毒死亡。表明家蚕抗病毒性状的遗传方式是显性遗传。
     2.将各品系家蚕中肠的总蛋白提取出来后,用二维电泳分离总蛋白白并比较各品系家蚕的蛋白表达谱。发现在正交组(NB(?),306(?),NBx306)中,有七个蛋白只在抗性品系中表达,包括pc21g12150, protein o-fucosyltransferase 2, protein LST8 homolog, caspase-1, hemolymph protein, serine protease, glucose phosphate dehydrogenase。有三个蛋白只在感性品系中表达,包括heat shock protein 90, phosphodiesterase subunit alpha和adenosine kinase。在反交组(306(?),NB(?),306xNB)中,有六个蛋白只在抗性品系中表达,包括caspase-1, carboxylesterase, serine protease, hypothetical protein, antennal binding protein,还有一个未成功鉴定的蛋白。有两个蛋白只在感性品系中表达,包括arginine kinase和wall-associated receptor kinase-like 4。将正交组和反交组的结果结合起来看,发现有两个蛋白:半胱天冬酶-1(caspase-1)和丝氨酸蛋白酶(serine protease)无论在正交组还是反交组中,都只在抗性品系中表达,在感性品系中不表达。
     3.将正交组和反交组中所有的抗性或感性品系特异表达蛋白做基因聚类分析和KEGG pathway分析,然后统计这些差异蛋白主要参与的生物途径和分子功能。对各个差异蛋白的功能进行分析,发现半胱天冬酶-1、丝氨酸蛋白酶和羧酸酯酶有可能参与家蚕的抗病毒过程,而热休克蛋白90可能是导致家蚕对NPV病毒敏感的因素。
     4.半胱天冬酶-1、丝氨酸蛋白酶在抗性亲本NB、F1代(正交组和反交组)中都检测到表达,而在感性亲本306中检测不到表达,表明它们可能在家蚕的抗病毒过程中发挥关键作用。因此,用Western blot对它们在抗性和感性品系中的差异表达进行验证。实验结果再次显示这两个蛋白只有抗性品系中能检测到表达,在感性品系中检测不到,与二维电泳结果一致。
     5.在五龄第二天,将NB家蚕分成不同的性别组,提取中肠组织,用蛋白质组学方法比较不同性别家蚕蛋白质表达谱的差异。发现有5个蛋白只在雄蚕中表达,包括predicted protein, muscle glycogen phosphorylase, isocitrate dehydrogenase, uridine 5'-monophosphate synthase, vacuolar ATPase B subunit。5个蛋白只在雌蚕中表达,包括vacuolar ATP synthase catalytic subunit A, coA-substrate-specific enzyme activase, efl alpha-like factor isoform 1, hypothetical protein,还有一个未成功鉴定的蛋白。8个蛋白在雄蚕中的表达量更高,包括cone cGMP-specific 3',5'-cyclic phosphodiesterase subunit alpha', vacuolar ATP synthase subunit B, thiol peroxiredoxin, H+ transporting ATP synthase subunit d, predicted protein, actin-depolymerizing factor 1, mRNA transport regulator 3,还有一个未成功鉴定的蛋白。25个蛋白在雌蚕中的表达量更高,包括heat shock protein 90, wall-associated receptor kinase-like 4等。将鉴定到的差异蛋白做基因聚类和KEGG pathway分析,统计了雄蚕表达水平高和雌蚕表达水平高的蛋白主要参与的生物途径和分子功能,分析这些途径和功能与不同性别家蚕性状差异的关系。从差异蛋白中选取六个重要的蛋白,包括5’-尿苷酸合成酶,巯基过氧化还原酶,H+ ATP合成酶D亚基,mRNA转运调节因子3,丝氨酸蛋白酶抑制剂-2,磷酸甘油酸变位酶,用荧光定量PCR验证这六个蛋白在不同性别家蚕章的差异表达。实验结果与蛋白质组实验结果一致,即5’-尿苷酸合成酶只在雄蚕中检测到表达,巯基过氧化还原酶,H+ ATP合成酶D亚基和mRNA转运调节因子3在雄蚕中的表达量比雌蚕中的高,丝氨酸蛋白酶抑制剂-2,磷酸甘油酸变位酶在雌蚕中的表达量比雄蚕中的高。
Silkworm is one of important economic insects. Whether in ancient or modern agriculture, sericulture occupies an important position in China. Silkworm diseases are mainly caused by nuclear polyhedrosis virus (Nuclear polyhedrosis virus, NPV), cytoplasmic polyhedrosis virus and densonucleosis virus, among these the nucleopolyhedorosis caused by NPV causes most great loss. In addition, virus which exist in food also bring threaten to food safety. As the natural host of NPV, the interaction of silkworm and virus attracts a lot of attention from all over the world. There have some silkworm strains that have natural existing anti virus ability. Though some genes or proteins were reported capable to anti-virus, the conclusions needed further conformation, and the detail mechanisms that these genes and proteins resist against NPV also needed more researches. On the other hand, there are some different between male and female silkworms, such as male silkworm is stronger than female, the growth rate between different silkworm sex is different, and the mechanisms result in these differences still unclear to day. Understanding the host resistance mechanisms to the virus will greatly promote sericulture as well as reduce the risk of the virus to food security.
     In this study, proteomics technology was used to identify anti-viral proteins in silkworm. NPV-resistant strain NB, susceptible strain 306 and their F1 hybrid were used for construct direct cross group and reciprocal cross group, and analyzed which proteins were related with silkworm resistance to NPV. In addition, in order to find proteins that related to the difference between different genders, two-dimensional electrophoresis was used for separate total protein of midgut from male and female silkworm, this can provide a theoretical basis for silkworm breeding and sericulture. The main findings are as follows:
     1. When administered NPV virus per os to NPV-resistant parent NB, susceptible parent 306 and their F1 hybrid, the result of mortality analysis showed that resistant parent NB and F1 hybrid were alive, they showed the same resistance to NPV. However, susceptible parent 306 died after NPV infection. The result suggested that the inheritance mode of silkworm antiviral traits is dominant inheritance.
     2. After extracted midgut total protein from various silkworm strains, two-dimensional electrophoresis was used for separate the total protein, and protein expression profiling of these silkworm strains were analyzed. In direct cross group (NB♀,306(?),NB×306), seven proteins expressed exclusively in resistant strains, including pc21g12150, protein o-fucosyltransferase 2, protein LST8 homolog, caspase-1, hemolymph protein, serine protease, glucose phosphate dehydrogenase. Three proteins expressed only in susceptible strain, including heat shock protein 90, phosphodiesterase subunit alpha, adenosine kinase. In reciprocal cross group (306♀, NB(?),306xNB), six proteins expressed exclusively in the resistant strains, including caspase-1, carboxylesterase, serine protease, hypothetical protein, antennal binding protein, as well as an unidentified protein. Two proteins expressed only in susceptible strain, including arginine kinase and wall-associated receptor kinase-like 4. Combined the results form direct cross group and reciprocal cross group, it was found that two proteins, caspase-1 and serine protease expressed only in resistant strains but not in susceptible strain.
     3. Resistant or susceptible strain-specific proteins in two cross groups were subject to GO and KEGG pathway analysis, and the biological processed and molecular functions of these proteins were analyzed. It was found that caspases-1, serine protease and carboxylesterase may be involved in the process of silkworm resist to NPV, whereas heat shock protein 90 maybe a factor made silkworm susceptible to NPV.
     4. Because caspase-1 and serine protease were showed specific in resistant parent and F1 hybrid (D-F1 and R-F1), and couldn't be detected in susceptible parent, suggesting that they may play a key role in silkworm antivirus. Thus Western blot was employed to confirm the different expression of the two proteins in resistant and susceptible strains. The results show that these two proteins could be detected only in resistant strains, and could not be detected in susceptible strains, consistent with result in two-dimensional electrophoresis.
     5. In the second day of fifth instar, NB silkworm was divided into two groups according to different genders, and proteomic method was used for compare the protein profile of midgut from two silkworm sexes. Finally, it was found that five proteins expressed only in male silkworm, including predicted protein, muscle glycogen phosphorylase, isocitrate dehydrogenase, uridine 5'-monophosphate synthase, vacuolar ATPase B subunit. Five proteins only expressed in female, including vacuolar ATP synthase catalytic subunit A, coA-substrate-specific enzyme activase, efl alpha-like factor isoform 1, hypothetical protein, as well as an unidentified protein.8 proteins expressed higher in male silkworm, including cone cGMP-specific 3',5'-cyclic phosphodiesterase subunit alpha', vacuolar ATP synthase subunit B, thiol peroxiredoxin, H+ transporting ATP synthase subunit d, predicted protein, actin-depolymerizing factor 1, mRNA transport regulator 3, as well as an unidentified protein.25 proteins expressed higher in female, including heat shock protein 90, wall-associated receptor kinase-like 4, et al. GO and KEGG pathway analysis was also employed to analyzed the different proteins, for proteins higher in male or female silkworm, their biological processed and molecular functions was analyzed respectively. Finally, the relationship of these processes (or functions) and special traits in two silkworm sexes were also explored. Six proteins were selected for confirm their different expression, including uridine 5'-monophosphate synthase, thiol peroxiredoxin, H+ transporting ATP synthase subunit d, mRNA transport regulator 3, serpin-2 and phosphoglyceromutase. qRT-PCR was used to detected their expression level in different silkworm sexes. The result was similar with that in 2-DE, which showed that uridine 5'-monophosphate synthase could only be detected in male silkworm, thiol peroxiredoxin, H+ transporting ATP synthase subunit d, mRNA transport regulator 3 expressed higher in male silkworm, whereas serpin-2 and phosphoglyceromutase expressed higher in female silkworm.
引文
1魏兆军,姜绍通.蚕食用化开发研究进展.食品科学.2005(26):592-596
    2桂仲争,庄大桓,戴建一.资源昆虫(家蚕)的食用与药用价值研究进展.中国蚕业.2002(33):63-65
    3许翀,储一宁.蚕的种类及其用途简介.云南农业科技.2009(3):34-36
    4贾俊强,谭广秀,吴琼英,徐金玲,桂仲争.家蚕幼虫蛋白的营养学评价及其热力学性质分析.食品工业.2011(2):13-16
    5陈倩,骆海朋,赵春玲.北京市食品中五种食源性致病菌污染状况调查研究.中国卫生检验杂志.2003(13):570-581
    6陈长宏,张科.食品的病毒污染途径及预防措施.现代农业科技.2011(14):371-372
    7 Hiscock D, Upton C. Viral Genome DataBase:storing and analyzing genes and proteins from complete viral genomes. Bioinformatics.2000(16):484-485
    8 Theilmann DA, Blissard GW, Bonning B, Jehle JA, O'Reilly DR, Rohrmann GF, et al. in Virus Taxonomy-Classification and Nomenclature of Viruses 8th Report of the International Committee on the Taxonomy of Viruses. In:Fauquet CX, Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. Amsterdam:Elsevier; 2005. p.177-185.
    9 Mayo MA, Christian PD, Hillmann BI, Brunt AA, Desselberger U. The unassigned Viruses. In:Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. Virus Taxonomy-Eighth Report of the International Committee on Taxonomy of Viruses. New York:Springer-Verlag; 2005. p.1129-1144.
    10 Zanotto PM, Kessing BD, Maruniak JE. Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. J Invertebr Pathol.1993(62):147-164
    11 Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, et al. On the classification and nomenclature of baculoviruses:a proposal for revision. Arch Virol.2006(151):1257-1266
    12 Winstanley D, Crook NE. Replication of cydia pomonella Granulosis virus in cell cultures. The Journal of general virology.1993(74):1599-1609
    13 Blissard GW. Baculovirus--insect cell interactions. Cytotechnology.1996(20):73-93
    14 Braunagel SC, Summers MD. Autographa californica nuclear polyhedrosis virus, PDV, and ECV viral envelopes and nucleocapsids:structural proteins, antigens, lipid and fatty acid profiles. Virology. 1994(202):315-328
    15 Westenberg M, Veenman F, Roode EC, Goldbach RW, Vlak JM, Zuidema D. Functional analysis of the putative fusion domain of the baculovirus envelope fusion protein F. J Virol.2004(78):6946-6954
    16 Blissard GW, Black B, Crook N, Keddie BA, Possee R. Family Baculoviridae. In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses, ed. MHV Van Regenmortel, CM Fauquet, DHL Bishop, EB Carstens, MK Estes, et al.:San Diego:Academic; 2000. p.195-202.
    17 Ghosh S, Parvez MK, Banerjee K, Sarin SK, Hasnain SE. Baculovirus as mammalian cell expression vector for gene therapy:an emerging strategy. Mol Ther.2002(6):5-11
    18 Horton HM, Burand JP. Saturable attachment sites for polyhedron-derived baculovirus on insect cells and evidence for entry via direct membrane fusion. J Virol.1993(67):1860-1868
    19 Charlton CA, Volkman LE. Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected Spodoptera frugiperda cells. Journal of virology.1991(65):1219-1227
    20 Lanier LM, Volkman LE. Actin binding and nucleation by Autographa california M nucleopolyhedrovirus. Virology.1998(243):167-177
    21 Nrshimura T, Favre D, Durrenberger M, Michel MR, Ichihara I, Koblet H. Nuclear export of recombinant baculovirus nucleocapsids through small pore or nuclear-pore-like structure in Sf9 cells. Okajimas folia anatomica Japonica.1994(71):83-97
    22 Oomens AG, Monsma SA, Blissard GW. The baculovirus GP64 envelope fusion protein:synthesis, oligomerization, and processing. Virology.1995(209):592-603
    23 Lu A, Miller LK. Generation of recombinant baculoviruses by direct cloning. BioTechniques. 1996(21):63-68
    24 Imler JL, Zheng L. Biology of Toll receptors:Lessons from insects and mammals. J Leukoc Biol 2004(75):18-26
    25 Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996(86):973-983
    26 Parker JS, Mizuguchi K, Gay NJ. A family of proteins related to Spatzle, the toll receptor ligand, are encoded in the Drosophila genome. Proteins.2001(45):71-80
    27 Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science.1999(284):1313-1318
    28 Sanders HR, Foy BD, Evans AM, Ross LS, Beaty BJ, Olson KE, et al. Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. Insect biochemistry and molecular biology.2005(35):1293-1307
    29 Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annual review of immunology. 2007(25):697-743
    30 Popham HJ, Shelby KS, Brandt SL, Coudron TA. Potent virucidal activity in larval Heliothis virescens plasma against Helicoverpa zea single capsid nucleopolyhedrovirus. The Journal of general virology. 2004(85):2255-2261
    31 Zambon RA, Nandakumar M, Vakharia VN, Wu LP. The Toll pathway is important for an antiviral response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America.2005(102):7257-7262
    32 Trudeau D, Washburn JO, Volkman LE. Central role of hemocytes in Autographa californica M nucleopolyhedrovirus pathogenesis in Heliothis virescens and Helicoverpa zea. Journal of virology. 2001(75):996-1003
    33 Cashio P, Lee TV, Bergmann A. Genetic control of programmed cell death in Drosophila melanogaster. Seminars in cell & developmental biology.2005(16):225-235
    34 Siegel RM. Caspases at the crossroads of immune-cell life and death. Nature reviews Immunology. 2006(6):308-317
    35 Clem RJ. The role of apoptosis in defense against baculovirus infection in insects. Current topics in microbiology and immunology.2005(289):113-129
    36 Salvesen GS, Duckett CS. IAP proteins:blocking the road to death's door. Nature reviews Molecular cell biology.2002(3):401-410
    37 Karpf AR, Brown DT. Comparison of Sindbis virus-induced pathology in mosquito and vertebrate cell cultures. Virology.1998(240):193-201
    38 Girard YA, Schneider BS, McGee CE, Wen J, Han VC, Popov V, et al. Salivary gland morphology and virus transmission during long-term cytopathologic West Nile virus infection in Culex mosquitoes. The American journal of tropical medicine and hygiene.2007(76):118-128
    39吕鸿声,张志芳,吴金美.细胞凋亡:昆虫抗病毒感染的重要机制.中国蚕业.2003(24):4-12
    40 Brennan CA, Anderson KV. Drosophila:the genetics of innate immune recognition and response. Annual review of immunology.2004(22):457-483
    41 Vidal S, Khush RS, Leulier F, Tzou P, Nakamura M, Lemaitre B. Mutations in the Drosophila dTAKl gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses. Genes & development.2001(15):1900-1912
    42 Thoetkiattikul H, Beck MH, Strand MR. Inhibitor kappaB-like proteins from a polydnavirus inhibit NF-kappaB activation and suppress the insect immune response. Proceedings of the National Academy of Sciences of the United States of America.2005(102):11426-11431
    43 Venter PA, Schneemann A. Recent insights into the biology and biomedical applications of Flock House virus. Cellular and molecular life sciences:CMLS.2008(65):2675-2687
    44 Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007(128):1089-1103
    45 Kawamura Y, Saito K, Kin T, Ono Y, Asai K, Sunohara T, et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature.2008(453):793-797
    46 Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, et al. An endogenous small interfering RNA pathway in Drosophila. Nature.2008(453):798-802
    47 Grassmann R, Jeang KT. The roles of microRNAs in mammalian virus infection. Biochimica et biophysica acta.2008(1779):706-711
    48 Aliyari R, Wu Q, Li HW, Wang XH, Li F, Green LD, et al. Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell host & microbe. 2008(4):387-397
    49 Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nature immunology.2006(7):590-597
    50 van Rij RP, Saleh MC, Berry B, Foo C, Houk A, Antoniewski C, et al. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes & development.2006(20):2985-2995
    51王献兵,张凌娣,李大伟,韩成贵,于嘉林.植物病毒编码RNA沉默抑制子的研究进展.中国农 业大学学报.2005(10):31-38
    52 Zambon F, Hasselberg M. Factors affecting the severity of injuries among young motorcyclists--a Swedish nationwide cohort study. Traffic injury prevention.2006(7):143-149
    53 JR K, S Y, RW C. RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes & development.2002(16):1884-1889
    54 MH M, C T. The transmission of equine encephalomyelitis virus by Aedes aegypti. J Exp Med. 1935(62):687-695
    55 DM M. Moutiplication of viruses in mosqutoes. Aust J Exp Bilo Med Sci.1955(31):481-490
    56 JL H, WC R, JP S. Arctic and Tropical Arboviruses. New York:Academic press,1979
    57 JL H, EJ H, LD K. Intrinsic factors affecting vector competence of mosquitoes for arbovirus. Annual Review of Entomology.1983(28):229-262
    58 Richardson MW, Romoser WS. The formation of the peritrophic membrane in adult Aedes triseriatus (Say) (Diptera:Culicidae). Journal of medical entomology.1972(9):495-500
    59 Terenius O. Anti-Parasitic and Anti-Viral Immune Responses in Insects. Stockholm, Sweden: Stockholm University publisher,2004
    60 Bettencourt R, Lanz-Mendoza H, Lindquist KR, Faye I. Cell adhesion properties of hemolin, an insect immune protein in the Ig superfamily. European journal of biochemistry/FEBS.1997(250):630-637
    61 Hirai M, Terenius O, Li W, Faye I. Baculovirus and dsRNA induce Hemolin, but no antibacterial activity, in Antheraea pernyi. Insect molecular biology.2004(13):399-405
    62 Kanost MR, Zhao L. Insect hemolymph proteins from the immunoglobulin superfamily. Adv Comp Environ Physiol.1996(23):185-197
    63 Popham HJ, Shelby KS. Uptake of dietary micronutrients from artificial diets by larval Heliothis virescens. J Insect Physiol.2006(52):771-777
    64 Ourth DD, Renis HE. Antiviral melanization reaction of Heliothis virescens hemolymph against DNA and RNA viruses in vitro. Comp Biochem Physiol B.1993(105):719-723
    65 Yang X, Cox-Foster DL. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci U S A. 2005(102):7470-7475
    66 Yang X, Cox-Foster D. Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology. 2007(134):405-412
    67 Yu XQ, Prakash O, Kanost MR. Structure of a paralytic peptide from an insect, Manduca sexta. The journal of peptide research:official journal of the American Peptide Society.1999(54):256-261
    68 Khurad AM, Mahulikar A, Rathod MK, Rai MM, Kanginakudru S, Nagaraju J. Vertical transmission of nucleopolyhedrovirus in the silkworm, Bombyx mori L. J Invertebr Pathol.2004(87):8-15
    69陈克平,林昌麒,姚勤.家蚕对核型多角体病的抗性及遗传规律的研究.蚕业科学.1996(vol.22):160-163
    70姚勤刘,陈克平.家蚕抗核型多角体病毒病分子标记辅助育种.分子植物育种.2005(vol.3):pp.537-542
    71 J. P. Xu KPC, Q. Yao and X. Y. Liu. Fluorescent differential display analysis of gene expression for NPV resistance in Bombyx mori L. Journal of Applied Entomology.2005(JEN 129(1)):27-31
    72 Daimon T, Katsuma S, Kang W, Shimada T. Comparative studies of Bombyx mori nucleopolyhedrovirus chitinase and its host ortholog, BmChi-h. Biochem Biophys Res Commun. 2006(345):825-833
    73 H. Sawada YY, T. Yamamoto, K. Mase, H. Ogawa, T. Iino. A novel RNA helicase-like protein during early embryonic development in silkworm Bombyx mori:olecular characterization and intracellular localization. Insect Biochemistry and Molecular Biology.2006(36):911-920
    74 Nakazawa H, Tsuneishi E, Ponnuvel KM, Furukawa S, Asaoka A, Tanaka H, et al. Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus. Virology. 2004(321):154-162
    75 Ponnuvel KM, Nakazawa H, Furukawa S, Asaoka A, Ishibashi J, Tanaka H, et al. A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. Journal of virology.2003(77):10725-10729
    76 Aizawa K. Antiviral substance in the gut-juice of the silkworm. J Insect Pathol.1962(4):72-76
    77 Funakoshi M, Aizawa K. Antiviral substance in the silkworm gut juice against a nuclear polyhedrosis virus of the silkworm. J Invertebr Pathol.1989(54):151-155
    78 Hayashiya K, Nishida J. Inactivation of nuclear polyhedrosis virus in the digestive of larvae reared on natural and artificial diets. J Appl Entomol Zool.1968(12):189-193
    79 Hayashiya K, Matsubara F. Comparative experiments with the silkworm larvae reared on mulberry leaves and artificial diets:comparison of antiviral activities in the digestive juice of larvae reared on natural and artificial diets. Bull Fac Text Sci.1971(6):87-100
    80 Jayaprakash RM, Rachappa KD. Virus activating protein RFP. Indian Silk.2000(4):11-12
    81 Ponnuvel KM, Nakazawa H, Furukawa S, Asaoka A, Ishibashi J, Tanaka H, et al. A Lipase Isolated from the Silkworm Bombyx mori Shows Antiviral Activity against Nucleopolyhedrovirus. Journal of virology.2003(77):10725-10729
    82 Hiraki A, Hirayama E, Kim J. Antiviral substance from silkworm faeces:characterization of its antiviral activity. Microbiology and immunology.2000(44):669-676
    83 Lim DS, Ko SH, Kim SJ, Park YJ, Park JH, Lee WY. Photoinactivation of vesicular stomatitis virus by a photodynamic agent, chlorophyll derivatives from silkworm excreta. Journal of photochemistry and photobiology B, Biology.2002(67):149-156
    84 Liu X, Yao Q, Wang Y, Chen K. Proteomic analysis of nucleopolyhedrovirus infection resistance in the silkworm, Bombyx mori (Lepidoptera:Bombycidae). Journal of invertebrate pathology.2010(105):84-90
    85 X L, K C, Q Y, H. X. Proteomic analysis of differentially expressed proteins involved in BmNPV resistance in the fat body of silkworm, Bombyx mori. Zeitschrift fur Naturforschung.2010(65):713-715
    86 Bao YY, Tang XD, Lv ZY, Wang XY, Tian CH, Xu YP, et al. Gene expression profiling of resistant and susceptible Bombyx mori strains reveals nucleopolyhedrovirus-associated variations in host gene transcript levels. Genomics.2009(94):138-145
    87 Selot R, Kumar V, Shukla S, Chandrakuntal K, Brahmaraju M, Dandin SB, et al. Identification of a soluble NADPH oxidoreductase (BmNOX) with antiviral activities in the gut juice of Bombyx mori. Bioscience, biotechnology, and biochemistry.2007(71):200-205
    88 Hiraki A, Yukawa M, Kim J, Ueda S. Antiviral substance from silkworm faeces:purification and its chemical characterization. Biological & pharmaceutical bulletin.1997(20):547-555
    89 Isomura T, Tamiya-Koizumi K, Suzuki M, Yoshida S, Taniguchi M, Matsuyama M, et al. RFP is a DNA binding protein associated with the nuclear matrix. Nucleic acids research.1992(20):5305-5310
    90 Pech LL, Strand MR. Granular cells are required for encapsulation of foreign targets by insect haemocytes. journal of cell science.1996(109):2053-2060
    91 Ausborn J, Stein W, Wolf H. Frequency control of motor patterning by negative sensory feedback. The Journal of neuroscience:the official journal of the Society for Neuroscience.2007(27):9319-9328
    92 Bao YY, Lv ZY, Liu ZB, Xue J, Xu YP, Zhang CX. Comparative analysis of Bombyx mori nucleopolyhedrovirus responsive genes in fat body and haemocyte of B. mori resistant and susceptible strains. Insect Mol Biol.
    93王跃招,曾晓茂,方自力.西藏沙蜥属一新种——泽当沙蜥.动物学研究.1996(17):27-29
    94吴鹏飞,王跃招,郭海燕.青海沙蜥的生长及两性生长差异.四川大学学报(自然科学版].2005(42):1252-1257
    95王晓清,李传武,谢中国.鳜雌雄生长差异的研究.淡水渔业.2006(26):34-37
    96苑纯秀,铭李,陈永军,石耀军,吴祥甫,蔡幼民,et al日本血吸虫中国大陆株雌、雄成虫cDNA文库的构建.生物工程学报.2000(16):728-720
    97 C.O. P, N. I, S.C. K. Familial aggregation in type 1 (insulin-dependent) diabetes mellitus:a study from south India. Sercologia.1998(28):39-44
    98宋方洲,刘绍兰.家蚕丝胶基因1(Ser-1)和胰凝乳蛋白酶抑制因子13基因(CI-13)的FISH定位.西南农业大学学报.1988(10):324-326
    99宋方洲,向仲怀,刘绍兰,伴野丰,藤井博.蓖麻蚕和栗蚕的性染色体研究.蚕业科学.1996(22):170-173
    100常平安,刘运强,易发平,宋方洲.雌雄蓖麻蚕减数分裂染色体的比较研究.昆虫知识.2006(43):33-37
    101吴忠道,冯明钊,徐劲,玮孟,阮志燕,余新炳.日本血吸虫雌雄成虫可溶性蛋白组分的双向电泳分析.热带医学杂志.2001(1):120-122
    102 Garcia AR, Batal AB, Baker DH. Variations in the digestible lysine requirement of broiler chickens due to sex, performance parameters, rearing environment, and processing yield characteristics. Poultry science.2006(85):498-504
    103吴绍强,邹丰才,翁亚彪,宋慧群,林瑞庆,朱兴全.利用抑制消减杂交技术筛选猪蛔虫性别差异表达基因.中国农业科学.2005(38):1040-1045
    104维李,葛方兰,叶德萍,雷仕红,敏黄.家蚕细胞遗传学及其应用.遗传.2006(28):1167-1172
    105 Sakurai H, Fujii T, Izumi S, Tomino S. Structure and expression of gene coding for sex-specific storage protein of Bombyx mori. The Journal of biological chemistry.1988(263):7876-7880
    106大林文,铃木正彦,岛田透.家蚕性别决定.蚕学通讯.2002(22):28-36
    107 Sahara K, Yoshido A, Kawamura N, Ohnuma A, Abe H, Mita K, et al. W-derived BAC probes as a new tool for identification of the W chromosome and its aberrations in Bombyx mori. Chromosoma. 2003(112):48-55
    108 Abe H, Mita K, Yasukochi Y, Oshiki T, Shimada T. Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori. Cytogenetic and genome research.2005(110):144-151
    109薛坤荣,田发芳,陆建国.雄蚕一代杂交种选育技术的研究.中国蚕业.2004(25):41-42
    110向仲怀,黄君霆,夏建国,鲁成.蚕丝生物学.北京:中国林业出版社,2005
    111 Strunnikov.V.A. Control over reproduction, sex, and heterosis of the silkworm.1 ed. Reading, UK: Harword Academic,1995
    112靳永年.家蚕斑纹限性品种实用化进展与选育技术.中国蚕业.1998(1):20-22
    113潘庆中,陈中林,陈劲伟.利用催青温湿度敏感性状控制家蚕性别.科学通报.1998(2):1133-1136
    114徐安英,方缓,黄君霆.辐射诱发家蚕雄核发育的研究.核农学报.1994(8):189-192
    115吴德龙,魏洪义,匡英秋,朱铭件,施翔,吴斌,et al家蚕性别控制化学诱导物的研究.江西农业大学学报.2004(26):.874-877
    116刘俊凤,杜周和,张剑飞.雌雄蚕饲料效率对比试验.四川蚕业.2004(3):11-12
    117吴小锋,崔为政,徐俊良.家蚕血液超氧化物岐化酶及其影响因素.蚕业科学.1997(23):38-41
    118姜峰,磊王,严会超,林健荣.雌雄家蚕血液中的保护酶差异研究.广东农业科学.2006(8):74-76
    119孙姗姗,谢志雄,铭周,聪周,陈孝文,虞晓华.雌雄茧丝性状差异性调查.江苏蚕业.2009(3):50-51
    120宋小平.农药制造技术.北京:科学技术文献出版社,2000
    121刘海涛,兵李,王国宝,沈卫德.辛硫磷对家蚕雌雄个体的毒力比较.江苏农业科学.2010(6):391-392
    122毛立明,陈迎,林健荣.昆虫特异蛋白研究进展.广东蚕业.2005(39):39-40
    123 Stifani S, George R, Schneider WJ. Solubilization and characterization of the chicken oocyte vitellogenin receptor. The Biochemical journal.1988(250):467-475
    124 Koeppe J, Ofengand J. Juvenile hormone-induced biosynthesis of vitellogenin in Leucophaea maderae. Archives of biochemistry and biophysics.1976(173):100-113
    125 Trewitt PM, Heilmann LJ, Degrugillier SS, Kumaran AK. The boll weevil vitellogenin gene: nucleotide sequence, structure, and evolutionary relationship to nematode and vertebrate vitellogenin genes. Journal of molecular evolution.1992(34):478-492
    126 Yano K, Sakurai MT, Watabe S, Izumi S, Tomino S. Structure and expression of mRNA for vitellogenin in Bombyx mori. Biochimica et biophysica acta.1994(1218):1-10
    127 Chen JS, Cho WL, Raikhel AS. Analysis of mosquito vitellogenin cDNA. Similarity with vertebrate phosvitins and arthropod serum proteins. Journal of molecular biology.1994(237):641-647
    128 Chen YS, Stash AI, Pinkerton AA. Chemical bonding and intermolecular interactions in energetic materials:1,3,4-trinitro-7,8-diazapentalene. Acta crystallographica.2007(63):309-318
    129王荫长.昆虫生物化学.editor.(?)editors.北京:中国农业出版社:2001.
    130 Brock.H.W, Roberts.D.B. Quantitative in situ hybridization reveals extent of sequence homology between related DNA sequence in Drosophila melanogaster. Chromosoma.1981(83):159-168
    131 Sugiyama Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye MM, et al. Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. The Journal of biological chemistry.2000(275):1095-1104
    132王秋香,李宗芸,谢艳.果蝇热激蛋白的研究进展.昆虫知识.2008(45):698-702
    133张文姬,查幸福,夏庆友,向仲怀.家蚕成虫雌雄差异的基因表达分析.蚕业科学.2010(36):0229-0235
    134靳远祥,徐孟奎,姜永煌,陈玉银.家蚕茧色限性品种雌雄绢丝腺组织蛋白质组.农业生物技术学报.2004(12):431-435
    135毛立明,林健荣,峰赵,钟杨生,王叶元,孔庆明,et al.家蚕蛹期雌雄生殖腺蛋白质双向电泳比较分析.昆虫学报.2007(50):628-633
    136 Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. WEGO:a web tool for plotting GO annotations. Nucleic acids research.2006(34):W293-297
    137 Li JY, Chen X, Fan W, Moghaddam SH, Chen M, Zhou ZH, et al. Proteomic and bioinformatic analysis on endocrine organs of domesticated silkworm, Bombyx mori L. for a comprehensive understanding of their roles and relations. Journal of proteome research.2009(8):2620-2632
    138 Gevaert K, Vandekerckhove J. Protein identification methods in proteomics. Electrophoresis. 2000(21):1145-1154
    139 Vaidyanathan R, Scott TW. Apoptosis in mosquito midgut epithelia associated with West Nile virus infection. Apoptosis:an international journal on programmed cell death.2006(11):1643-1651
    140 Chitnis NS, D'Costa SM, Paul ER, Bilimoria SL. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase. Virology.2008(370):333-342
    141 Yigong S. Mechanisms of Caspase Activation and Inhibition during Apoptosis. Molecular cell. 2002(9):459-470
    142 Bergmann A, Agapite J, Steller H. Mechanisms and control of programmed cell death in invertebrates. Oncogene.1998(17):3215-3223
    143 Lee G, Wang Z, Sehgal R, Chen CH, Kikuno K, Hay B, et al. Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. The Journal of comparative neurology.2011(519):34-48
    144 Fujimoto I, Pan J, Takizawa T, Nakanishi Y. Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. Journal of virology. 2000(74):3399-3403
    145 Clarke TE, Clem RJ. In vivo induction of apoptosis correlating with reduced infectivity during baculovirus infection. Journal of virology.2003(77):2227-2232
    146 Sriphaijit T, Flegel TW, Senapin S. Characterization of a shrimp serine protease homolog, a binding protein of yellow head virus. Developmental & amp; Comparative Immunology.2007(31):1145-1158
    147 Reyes-Del Valle J, Chavez-Salinas S, Medina F, Del Angel RM. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. Journal of virology. 2005(79):4557-4567
    148 Wang X, Qian X, Guo HC, Hu J. Heat shock protein 90-independent activation of truncated hepadnavirus reverse transcriptase. Journal of virology.2003(77):4471-4480
    149 Lin TW, Lo CW, Lai SY, Fan RJ, Lo CJ, Chou YM, et al. Chicken heat shock protein 90 is a component of the putative cellular receptor complex of infectious bursal disease virus. Journal of virology. 2007(81):8730-8741
    150 Kampmueller KM, Miller DJ. The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells. Journal of virology.2005(79):6827-6837
    151 Castorena KM, Weeks SA, Stapleford KA, Cadwallader AM, Miller DJ. A functional heat shock protein 90 chaperone is essential for efficient flock house virus RNA polymerase synthesis in Drosophila cells. Journal of virology.2007(81):8412-8420
    152 Jokanovic M. Biotransformation of organophosphorus compounds. Toxicology.2001(166):139-160
    153 Satoh T, Hosokawa M. Structure, function and regulation of carboxylesterases. Chemico-biological interactions.2006(162):195-211
    154 Chongsatja PO, Bourchookarn A, Lo CF, Thongboonkerd V, Krittanai C. Proteomic analysis of differentially expressed proteins in Penaeus vannamei hemocytes upon Taura syndrome virus infection. Proteomics.2007(7):3592-3601
    155 F.Weaver R. Molecular Biology.2 ed. New York, USA:McGraw-Hill,2002
    156 Sun S, Xie Z, Zhou M, Zhou C, Chen X, Yu X. Survey on different traits in male and female cocoon. Jiangsu Sericulture.2009(3):50-51
    157 Song X, Ni Z, Yao Y, Xie C, Li Z, Wu H, et al. Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics.2007(7):3538-3557
    158 Zhou ZH, Yang HJ, Chen M, Lou CF, Zhang YZ, Chen KP, et al. Comparative proteomic analysis between the domesticated silkworm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet. Journal of proteome research.2008(7):5103-5111
    159 Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, et al. Antiviral and antitumor peptides from insects. Proceedings of the National Academy of Sciences of the United States of America. 2002(99):12628-12632
    160 Wieczorek H, Grber G, Harvey WR, Huss M, Merzendorfer H, Zeiske W. Structure and regulation of insect plasma membrane H(+)V-ATPase. The Journal of experimental biology.2000(203):127-135
    161 Giavalisco P, Nordhoff E, Kreitler T, Kloppel KD, Lehrach H, Klose J, et al. Proteome analysis of Arabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Proteomics.2005(5):1902-1913
    162 Craig CL, Hsu M, Kaplan D, Pierce NE. A comparison of the composition of silk proteins produced by spiders and insects. International journal of biological macromolecules.1999(24):109-118
    163 Wen-Ji Z, Xing-Fu Z, Qing-You X, Zhong-Huai X. Analysis of Differentially Expressed Genes Between Male and Female Adults of the Silkworm, Bombyx mori. Science of Sericultur. 2010(36):0229-0235
    164 Kanehisa M, Goto S. KEGG:kyoto encyclopedia of genes and genomes. Nucleic acids research. 2000(28):27-30
    165 Jones ME. Pyrimidine nucleotide biosynthesis in animals:genes, enzymes, and regulation of UMP biosynthesis. Annual review of biochemistry.1980(49):253-279
    166 Nasr F, Bertauche N, Dufour M-E, Minet M, Lacroute F. Heterospecific cloning of <i>Arabidopsis thaliana cDNAs by direct complementation of pyrimidine auxotrophic mutants of <i>Saccharomyces cerevisiae. I. Cloning and sequence analysis of two cDNAs catalysing the second, fifth and sixth steps of the de novo pyrimidine biosynthesis pathway. Molecular and General Genetics MGG.1994(244):23-32
    167 Naciff JM, Overmann GJ, Torontali SM, Carr GJ, Khambatta ZS, Tiesman JP, et al. Uterine temporal response to acute exposure to 17alpha-ethinyl estradiol in the immature rat. Toxicological sciences:an official journal of the Society of Toxicology.2007(97):467-490
    168 Santoso D, Thornburg R. Uridine 5'-Monophosphate Synthase Is Transcriptionally Regulated by Pyrimidine Levels in Nicotiana plumbaginifolia. Plant physiology.1998(116):815-821
    169 Moffatt BA, Ashihara H. Purine and Pyrimidine Nucleotide Synthesis and Metabolism. The Arabidopsis Book.2002:e0018
    170 Ohsawa I, Nishimaki K, Yasuda C, Kamino K, Ohta S. Deficiency in a mitochondrial aldehyde dehydrogenase increases vulnerability to oxidative stress in PC12 cells. Journal of neurochemistry. 2003(84):1110-1117
    171 Freitas DR, Rosa RM, Moraes J, Campos E, Logullo C, Da Silva Vaz I, Jr., et al. Relationship between glutathione S-transferase, catalase, oxygen consumption, lipid peroxidation and oxidative stress in eggs and larvae of Boophilus microplus (Acarina:Ixodidae). Comparative biochemistry and physiology Part A, Molecular & integrative physiology.2007(146):688-694
    172 Xiang Z, Huang J, Xia J, Lu C. BIOLOGY OF SERICULTURE.1 ed. Bejing, China:China Forestry Press,2005
    173 Wu P, Wang Y, Guo H, Wang S, Zeng Z, Zeng T, et al. Growth of Phrynocephalus vlangalispend and sex difference. Journal of Sichuan Universit.2005(42):1252-1257
    174 Forgac M. Structure, function and regulation of the vacuolar (H+)-ATPases. FEBS letters. 1998(440):258-263
    175 Sumner JP, Dow JA, Earley FG, Klein U, Jager D, Wieczorek H. Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. The Journal of biological chemistry. 1995(270):5649-5653
    176 Forgac M. The vacuolar H+-ATPase of clathrin-coated vesicles is reversibly inhibited by S-nitrosoglutathione. The Journal of biological chemistry.1999(274):1301-1305
    177 Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature.1961(191):144-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700