微卫星遗传标记在家蚕中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子标记是开展家蚕功能基因组研究的基础,目前这种技术已经在家蚕中得到了较为广泛的应用。然而,作为第二代分子标记的微卫星标记(Simple sequence repeats,SSR)在此之前在家蚕中仅有为数不多的报道。本研究利用本研究组通过建基因组文库-杂交-测序-设计引物的方法获得的SSR分子标记,进行了家蚕品种资源的遗传多样性分析、遗传连锁图构建及茧质性状的QTL定位、定位镇江株浓核病毒不感染基因nsd-Z并将连锁的SSR标记应用于分子标记辅助育种研究。主要研究结果如下:
    1、用26个SSR标记研究了31个代表性家蚕品种资源的遗传关系,这些SSR标记在家蚕品种间表现出丰富的多态性,等位片段数量在2-17个,平均为7.2个。每个SSR标记的平均杂合度在0-0.60之间,最高值为0.96。平均多态性指数为0.66(0.12-0.89之间)。用Nei(1978)的方法分析了各品种间的遗传距离,UPGMA聚类结果与传统意义上的形态分类方法接近。所获得的SSR数据经主成分分析支持UPGMA方法的聚类结果。
    2、用生产上广泛应用的家蚕品种菁松和茧质较差的品种兰10作为亲本组配了BC_1分离群体,用SSR标记构建了分子连锁图并对全茧量、茧层量、茧层率、蛹体重进行了QTL分析。与全茧量、蛹体重和茧层量相关的各3个QTL位点分别位于第1和第23连锁群。与茧层率相关的2个QTL位点分别位于第18和第19连锁群。
    3、利用家蚕减数分裂过程中雌性染色体上的基因不发生交换的特点,以对浓核病毒高度感染的家蚕品种Js和不感染的品种L10分别组配了2种类型的回交群体,即F1为雌的BC1F群体和F1为雄的BC1M群体,分别用于nsd-Z的定位和连锁分析。用22个BC1F群体筛选到7个与nsd-Z连锁的SSR标记。用190个BC1M群体构建了一个长度为80.6cM的连锁图,nsd-Z基因被定位在30cM处,与之最近的标记Fl0316与该基因距离4.4cM。
    4、利用分子标记辅助选择技术在连续回交群体中选择携带nsd-Z的优良个体。连续6代回交后自交,经济性状已经达到实用品种水平,经添食病原证实分子标记辅助选择是高效的育种手段之一。
Molecular markers are very important in functional genome researches and it has beensuccessfully used in silkworm (Bombyx mori L.). Although SSR markers (or microsatellites)have been increasingly used and shown advantages over other markers, they have not beenwidely used in silkworm. In order to pursue the application of SSR markers in theeconomically important insect, Bombyx mori, firstly, robustic SSR markers were obtained bythe flow chart of large insert genome DNA library construction, Southern blotting, sequencingand primer designing, then these markers were used to study the genetic diversity amongsilkworm germplasms, construct SSR linkage map, locate the nonsusceptible to (Zhenjiangstrain) densonucleosis virus gene (nsd-Z) and breed new silkworm strains using markerassisted selection method. The results are shown as follows.
    1. The genetic relationship among 31 different types of silkworm strains was studiedusing 26 SSR markers. All of the markers were polymorphic and unambiguously separatedsilkworm strains from each other. A total of 188 alleles were verified with a mean value of7.2 alleles/loci (range 2-17). The average heterozygosity value for each SSR locus rangedfrom 0 to 0.60, and the highest was 0.96. The average polymorphism index content (PIC)was 0.66 (range 0.12-0.89). UPGMA cluster analysis of Nei's genetic distance groupedsilkworm strains based on their origin. Principal components analysis (PCA) for SSR datasupports their UPGMA clustering.
    2. A backcross population (BC1) was derived from two parentals, Jingsong, a widelyused strains in silk production and Lan10, which possesses short silk length. The SSRtechnique was employed for mapping the QTLs. The QTLs for the whole cocoon weight,cocoon shell weight, ratio of cocoon shell, weight of pupae were analyzed. Three QTLs forwhole cocoon weight, pupa weight and cocoon shell weight were mapped on linkage group 1and 23, respectively, and two QTLs were mapped to a same locus. Two QTLs for cocoonshell ratio were mapped on linkage group 18 and 19, respectively.
    3. Due to a lack of crossing over in females, reciprocal backcrossed F_1 (BC_1) progenywere used for linkage analysis and mapping of the nsd-Z gene using silkworm strains Js andL10, which are classified as being highly susceptible and non-susceptible to DNV-Z,respectively. The nsd-Z gene was found to be linked to seven SSR markers, using BC1Fpopulation. Using a reciprocal BC1M cross, we constructed a linkage map of 80.6 cM withnsd-Z mapped at 30 cM, with the closest SSR marker at a distance of 4.4 cM.
    4. Marker-assisted selection of nonsusceptible to DNV-Z silkworm strains wereexercised in predicting DNV-resistant type in backcrossed generations. One silkworm strainnonsusceptible to DNV-Z had been bred using this method and its economic characters weresimilar to the commercial silkworm strains. These PCR-based markers will be useful insilkworm breeding programs screening for this trait in segregating populations.
引文
1. Goldsmith,M.R.,Shimada,T.,and Abe,H. The genetics and genomics of the silkworm,Bombyx mori. Annu. Rev. Entomol,2005,50:71–100.
    2. Botstein,D., White,R. L., Skolnick,M. and Davis,R. W. Construction of genetic linkage map in man using restriction length polymorphisms. Am. J. Hum. Genet., 1980,32, 314-331.
    3. Taylor G. DNA fingerprinting. Nature. 1989,340(6236):672.
    4. Arrighi F. E., Hsu T. C., Saunders P., Saunders GF. Localization of repetitive DNA in the chromosomes of Microtus agrestis by means of in situ hybridization.Chromosoma. 1970;32(2):224-36.
    5. Williams,J.G.K.,Hanafey,M.K.,Rafalski,J.A. and Tingey,S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18:6531–6535.
    6. Tautz,D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989,17:6463–6471.
    7. Vos,P.,Hogers,R.,Bleeker,M.,Reijans M.,van de Lee T.,Hornes M.,Frijters A.,Pot J.,Peleman J.,Kuiper M. and Zabeau M. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res. 1995,23(21):4407–4414.
    8. Cole C.G.,Goodfellow P.N.,Bobrow M.,Bentley D.R.Generation of novel sequence tagged sites (STSs) from discrete chromosomal regions using Alu-PCR. Genomics. 1991,10(3):816-826.
    9. Behura SK,Sahu SC,Rajamani S,Devi A,Mago R,Nair S,Mohan M. Differentiation of Asian rice gall midge, Orseolia oryzae (Wood-Mason), biotypes by sequence characterized amplified regions (SCARs).Insect Mol Biol. 1999, 8(3):391-397.
    10. Gu W,Aguirre GD,Ray K. Related Articles , Detection of single-nucleotide polymorphism. Biotechniques. 1998,24(5):836-837.
    11. Okubo K, Hori N, Matoba R, Niiyama T, Fukushima A, Kojima Y, Matsubara K.Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression.Nat Genet. 1992,2(3):173-9.
    12. Lander ES, Botstein D. Strategies for studying heterogeneous genetic traits in humans by using a linkage map of restriction fragment length polymorphisms.Proc Natl Acad Sci U S A. 1986,83(19):7353-7357.
    13. Gustafson JP, Dille JE.Chromosome location of Oryza sativa recombination linkage groups.Proc Natl Acad Sci U S A. 1992,89(18):8646-8650
    14. Feuillet C, Messmer M, Schachermayr G, Keller B. Genetic and physical characterization of the LR1 leaf rust resistance locus in wheat (Triticum aestivum L.). Mol Gen Genet. 1995,248(5):553-62.
    15. Helentjaris T, Weber DF, Wright S. Use of monosomics to map cloned DNA fragments in maize. Proc Natl Acad Sci U S A. 1986,83(16):6035-6039.
    16. Ganal MW, Czihal R, Hannappel U, Kloos DU, Polley A, Ling HQ. Sequencing of cDNA clones from the genetic map of tomato (Lycopersicon esculentum).Genome Res. 1998,8(8):842-7.
    17. Gebhardt C, Eberle B, Leonards-Schippers C, Walkemeier B, Salamini F.Isolation, characterization and RFLP linkage mapping of a DNA repeat family of Solanum spegazzinii by which chromosome ends can be localized on the genetic map of potato.Genet Res. 1995 ,65(1):1-10.
    18. Chalmers KJ, Waugh R, Sprent JI, Simons AJ, Powell W.Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers.Heredity. 1992,69 ( Pt 5):465-72.
    19. James CM, Clarke JB, Evans KM. Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor Appl Genet. 2004 Dec;110(1):175-81
    20. Gan S, Shi J, Li M, Wu K, Wu J, Bai J. Moderate-density molecular maps of Eucalyptus urophylla S. T. Blake and E. tereticornis Smith genomes based on RAPD markers. Genetica. 2003,118(1):59-67.
    21. Ipek M, Ipek A, Almquist SG, Simon PW. Demonstration of linkage and development of the first low-density genetic map of garlic, based on AFLP markers.Theor Appl Genet. 2005,110(2):228-36
    22. Komatsuda T, Maxim P, Senthil N, Mano Y. High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.).Theor Appl Genet. 2004,109(5):986-95
    23. Wang B, Porter AH. An AFLP-based interspecific linkage map of sympatric, hybridizing Colias butterflies.Genetics. 2004,168(1):215-25.
    24. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 1989,17:6463–6471
    25. Moore SS, Sargeant LL, King TJ, Mattick JS, Georges M, Hetzel DJ. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics. 1991,10(3):654-60
    26. Decker RA, Moore J, Ponder B, Weber JL. Linkage mapping of human chromosome 10 microsatellite polymorphisms.Genomics. 1992,12(3):604-6
    27. Qiu YC, Zhou RH, Kong XY, Zhang SS, Jia JZ. Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.).Theor Appl Genet. 2005,111(8):1524-31.
    28. Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Henaut I, Burstin J. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet. 2005,111(6):1022-31
    29. Billotte N, Marseillac N, Risterucci AM, Adon B, Brottier P, Baurens FC, Singh R, Herran A, Asmady H, Billot C, Amblard P, Durand-Gasselin T, Courtois B, Asmono D, Cheah SC, Rohde W, Ritter E, Charrier A. Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.).Theor Appl Genet. 2005,110(4):754-65.
    30. Solignac M, Vautrin D, Baudry E, Mougel F, Loiseau A, Cornuet JM. A microsatellite-based linkage map of the honeybee, Apis mellifera L. Genetics. 2004,167(1):253-62.
    31. Zietkiewicz, E., A. Rafalski, and D. Labuda. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176-183.
    32. Cole CG, Goodfellow PN, Bobrow M, Bentley DR. Generation of novel sequence tagged sites (STSs) from discrete chromosomal regions using Alu-PCR. Genomics. 1991,10(3):816-26.
    33. Konieczny A,Frederick M A.A procedure for mapping Arabidopsis mutations using co·-dominant ecotype-specific PCR-based markers The Plant Journal,1993,4(2):403~ 410.
    34. Baumbusch L O,Sundal I K,Hughes D W,Galau G A,Jakobsen K S Eficient protocols for CAPs-based mapping in Arabidopsis.Plant Molecular Biology Reporter,2001,19(3):137~149.
    35. Baralle M, Baralle FE. Genetics and molecular biology:single nucleotide polymorphism associations and their functional significance. Curr Opin Lipidol. 2006 Jun;17(3):360-2
    36. Trask BJ.Fluorescence in situ hybridization:applications in cytogenetics and gene mapping.Trends Genet. 1991,7(5):149-54.
    37. Goldsmith M R et al. Genetics of the silkworm:revisiting an ancient model system in molecular model systems. New York:Combridge University Press, 1994, 21~76
    38. Shi J, Heckel D G, Goldsmith M R. A genetic linkage map for the domesticated silkworm, Bombyx mori, based on restriction fragment length polymorphisms (J). Genet. Res., 1995, 66:109–26
    39. Promboon A, Shimada T, Fujiwara H, et al. Linkage map of random amplified DNAs (RAPDs) in the silkworm, Bombyx mori(J). Genet. Res., 1995, 66:1–7
    40. Yasukochi Y. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics. 1998,150(4):1513-25.
    41. 李斌,鲁成,周泽扬,等. RAPD标记构建家蚕分子连锁图(J).遗传学报,2000,27(2):127-132
    42. 何宁佳,鲁成,李斌,等.结合SADF与RAPD标记构建家蚕连锁图(J). 昆虫学报,2001,44(4):476-482
    43. Tan YD, Wan C, Zhu Y, Lu C, Xiang Z, Deng HW.An amplified fragment length polymorphism map of the silkworm. Genetics. 2001, 157(3):1277-84.
    44. 万春玲,谭远德.利用AFLP标记构建家蚕分子连锁图谱. 中国农业科学,2001, 34(3):338-341
    45. 朱玉芳,谭远德. 家蚕AFLP连锁框架图谱的构建. 昆虫学报,2001, 44(4):483-493
    46. 鲁成,李斌,赵爱春,向仲怀. 家蚕重要经济性状的QTL定位研究. 中国科学 C 辑-生命科学 2004, 34 (3):236~242
    47. 赵爱春 鲁成 李斌 普孝英 周泽扬 向仲怀. 家蚕AFLP分子连锁图谱的构建及绿茧基因定位. 遗传学报,2004,31(8):787-794
    48. Miao X.X., Xu S.J., Li M.H., Li M.W., Huang J.H. Huang Y.P. et al.. Simple Sequence Repeat-Based Consensus Linkage Map of Bombyx mori.Proc Natl Acad Sci USA. 2005, 102:16303–16308
    49. Yasukochi Y, Banno Y, Yamamoto K, Goldsmith MR, Fujii H. Integration of molecular and classical linkage groups of the silkworm , Bombyx mori ( n = 28).Genome, 2005, 48(4):626-9.
    50. Yoshido A., Bando H., Yasukochi Y., and Sahara K. The Bombyx mori Karyotype and the Assignment of Linkage Groups.Genetics,2005, 170:675–685
    51. Kadono-Okuda K, Kosegawa E, Mase K, Hara W.Linkage analysis of maternal EST cDNA clones covering all twenty-eight chromosomes in the silkworm, Bombyx mori. Insect Mol Biol. 2002, 11(5):443-51.
    52. Yamamoto K, Narukawa J, Kadono-Okuda K, Nohata J, Sasanuma M, Suetsugu Y, Banno Y, Fujii H, Goldsmith MR, Mita K. Construction of a Single Nucleotide Polymorphism Linkage Map for the Silkworm, Bombyx mori, Based on BAC End-Sequences. Genetics. 2006 Mar 1710.1534/genetics.105.053801
    53. 夏庆友,周泽扬,鲁成,向仲怀. 家蚕不同地理品种分子形态学研究. 昆虫学报,1998,41(1):32-40
    54. 刘玲玲,潘敏慧,代方银,余红仕,鲁成. 家蚕与中国野桑蚕的RAPD标记遗传多样性比较分析. 蚕业科学,2004,30(3):237-241
    55. 鲁成 余红仕 向仲怀.基于RAPD分析的中国野桑蚕和家蚕遗传多样性和系统发育关系研究.昆虫学报,2002,45(2):198-203
    56. 鲁成,余红仕.中国野桑蚕和家蚕的分子系统学研究.中国农业科学,2002,35(1):94-101
    57. 鲁成,万春玲. 中国野桑蚕遗传多样性的AFLP分析. 动物学研究.2002,23(2):166-172
    58. 鲁成,赵爱春,周泽扬,向仲怀,万春玲.中国野桑蚕和家蚕的AFLP分析.蚕业科学,2001, 27(4):243-252
    59. 鲁成,向仲怀,陈大霞,司马杨虎,孙德斌.家蚕杂交分离系的AFLP分析初探.西南农业大学学报 2003, 25(2):101-104,107
    60. 周泽扬,李斌,G.Ravikumar,全国兴,田村俊树. 家蚕AFLP分子进化研究.西南农业学报.2004,17(2):240-243
    61. Nagaraja GM, Nagaraju J.Genome fingerprinting of the silkworm, Bombyx mori, using random arbitrary primers. Electrophoresis. 1995, 16(9):1633-8.
    62. Reddy KD, Nagaraju J, Abraham EG.Genetic characterization of the silkworm Bombyx mori by simple sequence repeat (SSR)-anchored PCR. Heredity, 1999, 83:681-687.
    63. Reddy KD, Abraham EG, Nagaraju J.Microsatellites in the silkworm, Bombyx mori:abundance, polymorphism, and strain characterization. Genome. 1999, 42(6):1057-65.
    64. Li MW, Shen L., Xu AY 1, Miao XX,Hou CX, Sun PJ, Zhang YH, Huang YP. 2005. Genetic diversity among the silkworm ( Bombyx mori L. , Lep. , Bombycidae) germplasm revealed by microsatellites. Genome, 2005,48:802–810
    65. Nagaraju J, Reddy KD, Nagaraja GM, Sethuraman BN.Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity. 2001, 5:588-97.
    66. 黄健华,苗雪霞, 李木旺, 张勇,赵卫国,黄勇平. 家蚕基因特异性CAPs标记获 得及其分子系统学应用. 遗传,2005,27(4):584-588
    67. 徐世清,陈息林,戴璇颖,司马杨虎,王玉军,吴阳春,朱端红,唐斌. DNA分子标记检测家蚕黄海、苏春品种和纯度的研究.江苏蚕业,2005, 27(3):4-9
    68. 张金卫,钟伯雄,丁农,吴卫成,赵丽华. 应用AFLP分子标记对6个家蚕品种的鉴定. 蚕业科学,2004, 30(2):137-142
    69. 林健荣,文哲光, 等.RAPD分子标记技术应用于家蚕品种纯度检测的研究.湖北农业科学.2002, 3:56-58
    70. 童晓玲,代方银,余泉友,颜虹,鲁成,魏泓,向仲怀. 家蚕近交系遗传纯度的RAPD检测.2005,13(3):149-153
    71. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL. Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 2002,129(2):440-50.
    72. Ron M, Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato.Plant Cell. 2004,16(6):1604-15.
    73. Nalam VJ, Vales MI, Watson CJ, Kianian SF, Riera-Lizarazu O. Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theor Appl Genet. 2006,112(2):373-381.
    74. Keller B, Feuillet C, Yahiaoui N. Map-based isolation of disease resistance genes from bread wheat:cloning in a supersize genome. Genet Res. 2005,85(2):93-100.
    75. Hagihara E, Itchoda N, Habu Y, Iida S, Mikami T, Kubo T. Molecular mapping of a fertility restorer gene for Owen cytoplasmic male sterility in sugar beet. Theor Appl Genet. 2005,111(2):250-5.
    76. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX.(.2005), A Rice Quantitative Trait Locus for Salt Tolerance Encodes a Sodium Transporter. Nature Genetics. 2005,37(10):1141-1146.
    77. 鲁成,等.丝素基因(pFB2.9)限制性片段多态性(RFLP)研究.西南农业大学学报,1996,18,103~106
    78. 刘爱华,陈克平,姚勤. 家蚕荧光茧色分子标记初探. 安徽农业大学学报,2005, 32(4):490-492
    79. 李斌,鲁成,赵爱春,向仲怀. 家蚕全茧量及重要相关经济性状的多重区间作图分析. 中国农业科学,2005,38(7):1474-1479
    80. 陈克平,姚勤, 等.家蚕耐氟笥RAPD分子标记研究.农业生物技术学报,2001,9(2):136-138
    81. 徐庆刚,陈克平,姚勤,陆健.家蚕耐氟基因RAPD分子标记的筛选及其克隆.生物技术,2004, 14(3):10-11
    82. Abe H, Kanehara M, Terada T, Ohbayashi F, Shimada T, Kawai S, Suzuki M, Sugasaki T, Oshiki T. Identification of novel random amplified polymorphic DNAs (RAPDs) on the W chromosome of the domesticated silkworm, Bombyx mori, and the wild silkworm, B. mandarina, and their retrotransposable element-related nucleotide sequences. Genes Genet Syst. 1998,73(4):243-54.
    83. Abe H, Sugasaki T, Terada T, Kanehara M, Ohbayashi F, Shimada T, Kawai S, Mita K, Oshiki T.Nested retrotransposons on the W chromosome of the wild silkworm Bombyx mandarina. Insect Mol Biol. 2002,11(4):307-14.
    84. 王慧超,朱勇.家蚕雌特异分子标记筛选、克隆及其序列分析.蚕业科学,2004,30(1):34-37
    85. 林健荣,梅曼彤. 等. 家蚕胚胎温敏性基因的RAPD标记筛选. 农业生物技术学报.2001,9(2):171-174
    86. 颜虹,李斌,张斌,代方银,鲁成. 家蚕显性赤蚁(Ia)的RAPD分析. 西南农业大学学报,2004,26(5):563-566
    87. 孟艳,鲁成,徐厚镕,等. 氮离子束注入家蚕卵的生化效应及其RAPD分析. 蚕业科学,2001, 27( 3):227-232
    88. 司马杨虎,陈大霞,孙德斌,何斯美,钱荷英,李斌,鲁成,向仲怀. 家蚕杂交分离系间的分子标记特征研究.蚕业科学,2005,31(1):36-41
    89. Mohandas TP, Sethuraman BN, Saratchandra B, Chatterjee SN. Molecular genetic approach for identifying markers associated with yield traits in the silkworm, Bombyx mori using RFLP-STS primers. Genetica. 2004, 122(2):185-97.
    90. Chatterjee SN , Mohandas TP.Identification of ISSR markers associated with productivity traits in silkworm, Bombyx moni L. Genome. 2003, 46(3):438-47.
    91. Chatterjee SN, Pradeep AR. Molecular markers (RAPD) associated with growth, yield and origin of the silkworm, Bombyx mori L. in India.Genetika. 2003, 39(12):1612-24.
    92. Abe H, Harada T, Kanehara M, Shimada T, Ohbayashi F, Oshiki T.Genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, nsd-1, in the silkworm, Bombyx mori. Genes Genet Syst. 1998,73(4):237-42.
    93. Abe H, Sugasaki T, Kanehara M, Shimada T, Gomi SJ, Ohbayashi F, Oshiki T.Identification and genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, nsd-2, in the silkworm, Bombyx mori. Genes Genet Syst. 2000, 75(2):93-6.
    94. Ogoyi DO, Kadono-Okuda K, Eguchi R, Furuta Y, Hara W, Nguu EK, Nagayasu K.Linkage and mapping analysis of a non-susceptibility gene to densovirus (nsd-2) in the silkworm, Bombyx mori. Insect Mol Biol. 2003 , 12(2):117-24.
    95. Yao, Q., Li, M.W., Wang, Y., Wang, W.B., Lu, J., Dong, Y., and Chen, K.P. Screening of molecular markers for NPV resistance in Bombyx mori L. (Lep.:Bombycidae). J. Appl. Ent. 2003,127, 134–136
    96. Xu J. P., Chen K. P., Yao Q. and Liu X. Y. Fluorescent differential display analysis of gene expression for NPV resistance in Bombyx mori L. J. Appl. Ent. 2005,129:27–31
    97. 姚勤,刘晓勇,唐旭东,陈克平. 家蚕抗核型多角体病毒病分子标记辅助育种.分子植物育种.2005,3(4):537-542
    98. Eguchi R., Ninaki O., and Hara W. Genetical analysis of the nonsusceptibility to densonucleosis virus in the silkworm, Bombyx mori. J Seric Sci Jpn 1991,60:384-389.
    99. Eguchi R.,Furuta Y. and Ninaki O. Dominant nonsusceptibility to densonucleosis virus in the silkworm, Bombyx mori. J Seric Sci Jpn, 1986,55(2):177~178
    100.ABE H., Watanabe H. and Eguchi R. Genetical relationship between nonsusceptibilities of the silkworm ,Bombyx mori ,to two densonucleosis viruses. J .Seric.Sci.Jpn,1987,56(3)443~444;
    101.胡雪芳,钱元骏,王红林.家蚕浓核病毒(DNV)对不同蚕品种的侵染抵抗性.蚕业科学,1984,10(2):87~90
    102.秦俭,易文仲.家蚕对浓核病病毒中国(镇江)株不感受性基因的连锁分析. 蚕业科学,1988,14(3):129~132
    103.ABE H., Yokoyarua T., Oshiki T.and Kobayashi M. Analysis of the mechanism of nonsusceptibility to the densonueleosis virus (densovirus) type-2 in the silkworm Bombyx mori using a genetic mosaic, J. Seric. Sci. Jpn, 1993,62(1):38~44;
    104.Li M.W., Hou C.X., Yao Q., and Chen K.P. Breeding commercial bivoltine silkworm hybrid resistant Zhenjiang (China) strain of densonucleosis virus (DNV-Z). Sericologia 2001,41(4):581-588.
    105.徐云碧,朱立煌.分子数量遗传学. 北京:中国农业出版社,1994.
    106.Eguchi R., Hara W., Shimazaki A., Hirota K., Ichiba M., Ninagi O., and Nagayasu K. Breeding of the silkworm race “taisei” non-susceptible to a densonucleosis virus type 1. J Seric Sci Jpn. 1998, 67:361-366.
    107.Abe H., Harada T., Kanehara M., Shimada T., Ohbayashi F., and Oshiki T. Genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, nsd-1, in the silkworm, Bombyx mori. Genes Genet Syst,1998, 73:237-242.
    108.Abe H., Sugasaki T., Kanehara M., Shimada T., Gomi S.T., and Ohbayashi F. Identification and genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, nsd-2, in the silkworm, Bombyx mori. Genes Genet Syst, 2000, 75:93-96.
    109.Li M.W., Yao Q., Hou C.X., Lu C., and Chen K.P. Studies on RAPD markers linked to the densonucleosis refractoriness gene, nsd-Z in silkworm, Bombyx mori L.. Sericologia 2001, 41(3):409-415.
    110.Li M.W.,Guo Q.H., Hou C.X., Miao X. X., Xu A.Y., Guo X.J., Huang Y.P. Linkage and mapping analyses of the densonucleosis non-susceptible gene nsd-Z in the silkworm Bombyx mori using SSR markers. Genome, 2006,49(4):397-402

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700