家蚕蛾触角蛋白的双向电泳分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
触角是昆虫间通讯的主要器官,在外部形态、嗅觉和味觉感受机制、昆虫间通讯及发生发育方面表现出一定的雌雄性别差异,目前有关这些差异的分子生理基础并不全面。为探讨这种差异的分子基础,本研究以家蚕蛾作为模式昆虫,运用蛋白质组学技术探究雌雄家蚕蛾触角蛋白的表达谱特征,获得雌雄蛾触角的差异和特异蛋白,采用质谱分析技术鉴定了这些蛋白。在此基础上采用实时荧光定量PCR方法,研究相关特征蛋白的基因转录水平表达变动,获得的研究结果如下:
     1家蚕蛾触角蛋白双向电泳表达图谱的研究
     1.1家蚕蛾触角蛋白双向电泳图谱建立
     采用双向电泳技术获得了家蚕蛾触角总蛋白以及雌雄蛾触角蛋白的电泳图谱。采用Image Master 6.0软件分析电泳图谱,在家蚕蛾触角中检测到约550个点,主要集中在分子量14~70 kD、等电点4~8之间。从显色时间为4min的雌雄蛾触角电泳图谱中分别检测到419和489个蛋白点。其中雌雄匹配蛋白点有326对,匹配率为71.81%。
     通过改变显色时间获得了蛋白点数目更多、更清晰的电泳图谱。采用Image Master 6.0软件对显色时间为8 min时获得的电泳图谱进行分析,从雌雄蛾触角电泳图谱中分别检测到693和782个蛋白点。其中雌雄匹配蛋白点有513对,匹配率为69.56%。雌雄间表达差异点有23个,雌雄分别所特有的特异蛋白点分别为4和7个。1.2家蚕雌雄蛾触角中差异和特异蛋白质谱鉴定
     采用MALDI-TOF/MS方法对雌雄家蚕蛾触角中差异和特异蛋白进行了鉴定。经数据库检索,共鉴定出9种蛋白:成虫原基生长因子(imaginal disk growth factor)、表皮蛋白RR-1基序15(cuticular protein RR-1 motif 15)、硫醇过氧化还原酶(thiol peroxiredoxin)、空泡ATP酶B亚基(vacuolar ATPase B subunit)、gasp前体(gasp precursor)、成熟的30K脂蛋白(mature 30K lipoprotein)、类异翅盘蛋白(abnormal wing disc-like protein)、转酮醇酶(transketolase)以及一种家蚕性信息素结合蛋白片段的液态结构(Chain A, Solution Structure Of The Bombyx Mori Pheromone-Binding ProteinFragment),其中前六种在雄触角中的表达量要高于雌触角中,类异翅盘蛋白和转酮醇酶在雄触角中的表达量高于雌触角。家蚕性信息素结合蛋白片段的液态结构在雌雄触角都中存在但是在各自的电泳图谱中的位置却不一致。这些蛋白分别涉及不同的代谢途径。
     2触角相关基因Bmidgf、Bmtpx以及BmvatB的表达定量分析
     采用实时荧光定量PCR方法,对触角相关基因Bmidgf、Bmtpx和BmvatB在5龄第3天的家蚕幼虫各组织以及不同时期成虫触角组织中的转录水平进行检测,并采用家蚕Actin3内参照基因进行归一化处理。结果表明Bmidgf、Bmtpx和BmvatB在不同组织中均表现出一定的转录水平的差异。在不同时期的触角组织中,Bmidgf和BmvatB的转录活性无明显差异,Bmtpx则表现出较为明显的发育阶段差异性。根据以上实验结果推测,以上不同组织和时相的基因表达差异可能与不同时期的触角功能差异相关。
     本研究分析了不同性别家蚕蛾触角蛋白的表达谱,通过质谱鉴定得到了成虫原基生长因子、类异翅盘蛋白和家蚕性信息素结合蛋白片段的液态结构等10种差异和特异蛋白。这些蛋白涉及不同的代谢机制,可能与家蚕蛾触角的发生发育和雌雄蛾间的通讯机制相关。上述研究丰富了家蚕蛋白质组学的研究,为进一步研究触角形态和功能差异提供了一定的基础信息。
Antenna is the major communication organ among insects. Antenna have some male and female gender differences in external shape, smell and taste feeling mechanism, communication among insects and development. Currently, the molecular and physiological basis about these differences is not comprehensive. To explore the molecular basis of these differences, we used silk moth as a model insect, and the proteomics technologies were performed to research the protein expression profile characteristics of antenna of male and female silk moth by proteomic techniques, and obtained different and specific proteins between male and female antenna. And then using mass spectrometry techniques, we identified these proteins. On top of it, the characteristics of protein in the level of gene transcription characteristic was studied by quantitative real time PCR(qPCR) method. The results obtained are showned as follows:
     1 Research of protein expression profile of antenna protein of silk moth
     1.1 The establishment of patterns of antenna protein of silk moth by two dimensional polyacrylamide gel electrophoresis
     We obtained expression profiles of total antenna protein and male and female antenna protein. The Image Master 6.0 software was used to analyze the two-dimensional gel electrophoresis profiles. Approximately 550 spots were detected in the antenna of silk moth, most of which were arranged from 14 to 70 kD with pI value(4~8). 419 and 489 spots were detected in the two-dimensional gel electrophoresis profile of female and male antenna at 4 minutes of color-display time, respectively, and the matched protein spots were 326. The matching rate was 71.81%.
     We obtained profiles which were clearer and have more protein spots by chananging color-display time. The Image Master 6.0 software was used to analyze the new two-dimensional gel electrophoresis profiles. 693 and 782 spots were detected in the two-dimensional gel electrophoresis profile of female and male antenna, respectively, and the matched protein spots were 513. The matching rate was69.56%. There were23 spots which have different gray value but distributed in both gel electrophoresis profile of female and male antenna. Meanwhile, there were 4 and 7 special spots which detected in gel electrophoresis profile of female and male respectively.
     1.2 The spectrum identification of different and specific protein in male and female antenna
     The different and specific protein spots were identified by MALDI-TOF MS. Through database, we obtained nine proteins: imaginal disk growth factor, cuticular protein RR-1 motif 15, thiol peroxiredoxin, vacuolar ATPase B subunit, gasp precursor, mature 30K lipoprotein, abnormal wing disc-like protein, transketolase and chain A, solution structure of the Bombyx Mori pheromone-binding protein fragment. Imaginal disk growth factor, cuticular protein RR-1 motif 15, thiol peroxiredoxin, vacuolar ATPase B subunit, gasp precursor and mature 30K lipoprotein have higher expression levels in male antenna than in female antenna. Abnormal wing disc-like protein and transketolase have higher expression levels in female antenna than in male antenna. Chain A exist in all male and female antenna, but its position in the profile of male antenna was inconsistent with that in the profile of female antenna. These proteins are involved in different metabolic pathways respectively.
     2 Quantitative analysis of transcription levels of Bmidgf, Bmtpx and BmvatB
     The transcription levels in each tissue of Bombyx mori of day 3 of 5th instar and in antenna of different periods of Bmidgf, Bmtpx and BmvatB were studied by quantitative real time PCR(qPCR) method. The detection results were normalized by using a Bombyx mori internal reference gene namely Actin3. The results indicated that Bmidgf, Bmtpx and BmvatB have different transcription levels in different tissues of Bombyx mori of day 3 of 5th instar. The transcription levels of Bmidgf and BmvatB have no obvious differences in antenna of different periods. Bmtpx have different transcription levels in antenna of different periods. It is thus concluded that the result was probably involved in the different function of antenna in different periods.
     We have analyzed the protein expression profiles of male and female antenna protein of silk moth. Through mass spectrometry we obtained ten kinds of protein which were expressed differentially and specificly between female and male antenna, including imaginal disk growth factor, abnormal wing disc-like protein and chain A etc. These proteins are involved in different metabolize mechanism, and probably related with the development of antenna of silk moth and the communication mechanism between male and female silk moth. The results not only enriched the proteomics research of Bombyx mori, but provided some basic informations for further study of morphological and functional differences between male and female antenna.
引文
[1]刘勇,张峻华.蛋白质组学研究进展及展望.内江师范学院学报, 2003, 18(2): 45-48
    [2]李宁,吴松锋,朱云平,等.鸟枪法蛋白质鉴定质量控制方法研究进展.生物化学与生物物理进展, 2009, 36(6): 668-675
    [3] Li J Y, Chen X, Hosseini Moghaddam S H, et al. Shotgun proteomics approach to characterizing the embryonic proteome of the silkworm, Bombyx mori, at labrum appearance stage. Insect Molecular Biology, 2009, 18(5): 649-660
    [4]崔颖俊,赵巧玲,裘智勇,等.蜕皮前后家蚕幼虫血淋巴的蛋白质组学研究[J].中国农业科学, 2008, 41(12): 4381-4386
    [5]侯勇,赵萍,邹勇,等.家蚕5龄第3天血液蛋白的双向电泳及质谱分析.蚕业科学, 2008, 34(4): 670-675
    [6]吴立娜,赵巧玲,裘智勇,等.农药氰戊菊酯和杀虫双诱导家蚕血液蛋白的变化.蚕业科学, 2010, 36(2): 262-267
    [7]刘艳艳,池旭娟,阚雪芹,等.家蚕性别相关血液蛋白质组的一维电泳-液相色谱-质谱分析.蚕业科学, 2009, 35(2): 287-294
    [8] Kajiwara H, Ito Y, Imamaki A, et al. Protein profile of silkworm midgut of fifth-instar day-3 larvae. J Electrophoresis, 2005, 49: 61-69
    [9]侯勇,官建,赵萍,等.家蚕中肠组织蛋白质组学研究.蚕业科学, 2007, 33(2): 216-222
    [10]姚慧鹏,郭爱琴,何芳青,等.家蚕幼虫5龄期中肠蛋白质组学.生物工程学报, 2008, 24(1): 89-94
    [11] Inagami K. Studies on the proteins of the body fluid in the silkworm: on the Electrophorefic components of the body fluid proteins[J]. The Journal of Sericultural Science of Japan, 1954, 23: 304-307
    [12]黄志君,邓小娟,陈芳艳,等.家蚕中肠组织在变态发育不同时期的蛋白表达差异分析.蚕业科学, 2007, 33(2): 207-215
    [13]刘晓勇,陈克平,姚勤,等.家蚕中肠组织抗核型多角体病毒病的相关蛋白分析.昆虫学报, 2008, 54(1): 443-448
    [14]包方,姚勤,李军,等.家蚕对浓核病毒中国株(BmDNV-3)抗性及感性品系中肠的差异蛋白质分析.昆虫学报, 2007, 50(12): 1219-1224
    [15]李宏,钱永华.家蚕丝腺生物反应器的研究现状.北方蚕业, 2003, 24(98): 15-16
    [16] Hou Y, Xia Q Y, Zhao P, et al. Studies on middle and posterior silk glands of silkworm (Bombyx mori) using two-dimensional electrophoresis and mass spectrometry. Insect Biochemistry and Molecular Biology, 2007, 37(5): 486–496
    [17]吴卫成,钟伯雄,孟智启,等.家蚕4眠期与5龄期后部丝腺细胞蛋白质组成分析.蚕业科学, 2005, 31(3): 273-279
    [18]鲁华云,叶键,李建营.家蚕不同品种后部丝腺蛋白质双向电泳图谱比较.蚕业科学, 2006, 32(1): 114-117
    [19]颜新培,钟伯雄,徐孟奎,等.家蚕五龄后部丝腺蛋白质构成与茧层量的关系.蚕业科学, 2003, 29(4): 344-348
    [20] Jin Y X, Chen Y Y, Xu M K, et al. Studies on middle silkgland proteins of cocoon colour sex-limited silkworm (Bombyx mori L.) using two-dimensional polyacrylamide gel electrophoresis. J. Biosci, 2004, 29: 45–49
    [21] Zhang P, Aso Y, Yamamoto K, et al. Proteome analysis of silkgland proteins from the silkworm, Bombyx mori [J]. Proteomics, 2006, 6(8): 2586-2599
    [22]徐豫松,徐俊良,川崎秀树.家蚕脂肪体合成蛋白质变化的研究.蚕业科学, 2000, 26(4): 239-243
    [23] Kajiwara H, Itou Y, Imamaki A, et al. Proteomic analysis of silkworm fat body[J]. Journal of Insect Biotechnology and Sericology. 2006, 75: 47-56
    [24]侯勇,赵萍,刘鸿丽,等.家蚕脂肪体蛋白质组学研究.生物工程学报. 2007, 23(5): 867-872
    [25]董久鸣,徐和平,何达,等.家蚕钙网蛋白的基因结构与初步表达谱研究.蚕业科学, 2008, 34(4): 619-626
    [26]沈以红,夏庆友,向仲怀,等.家蚕脂肪体组织基因表达谱的研究I.家蚕5龄中期幼虫脂肪体组织基因表达分析[J].蚕业科学, 2004, 30(1): 24-27
    [27] Cheng D J, Xia Q Y, Zhao P, et al. EST-based profiling and comparison of gene expression in the silkworm fat body during metamorphosis[J]. Arch Insect BiochemPhysiol, 2006, 61(1): 10-23
    [28] Petersen R A, Zangerl A R, Berenbaum M R, et al. Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes(Lepidoptera: Papilionidae)[J]. Insect Biochem Mol Biol, 2001, 31(6/7): 679-690
    [29] Cheng T C, Zhao P, Liu C, et al. Structures, regulatory regions and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori[J]. Genomics, 2006, 87(3): 356-365
    [30] Wen Z M, Pan L P, Berenbaum M R, et al. Metabolism of linear and angular furanocouarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase[J]. Insect Biochem Mol Biol, 2003, 33(9): 937-947
    [31] Feyereisen R. Insect P450 enzymes[J]. Annu Rev Entomol, 1999, 44: 507-533
    [32] Enayati A A, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance[J]. Insect Mol Biol, 2005, 14(1): 3-8
    [33]王举梅,葛君,李兵,等.家蚕经菊酯类农药诱导后脂肪体蛋白的表达谱及烯醇酶基因的组织转录活性.蚕业科学, 2010, 36 (2): 256-261
    [34]葛君,王举梅,李兵,等.杀虫剂辛硫磷诱导家蚕脂肪体蛋白的表达特征及SerB基因的组织转录活性分析.蚕业科学, 2010, 36(3): 428-434
    [35]钟伯雄.家蚕胚胎发育时期的蛋白质变化及构造分析.遗传学报, 1999, 26 (6): 627-633
    [36] Long X H, Zhu J W, Mo Z H, et al. Development of an effective sample preparation approach for proteomic analysis of silkworm eggs using two-dimensional gel electrophoresis and mass spectrometry. Journal of Chromatography A, 2006, 1128(1-2): 133-137
    [37] Li J Y, Hosseini Moghaddam S H, Chen J E, et al. Shotgun proteomic analysis on the embryos of silkworm Bombyx mori at the end of organogenesis. Insect Biochemistry and Molecular Biology, 2010, 40(4): 293-302
    [38]姚国华,钟伯雄,颜新培,等.家蚕胚胎发育关联的初始蛋白质研究.蚕业科学, 2004;30(4): 436-439
    [39]赵峰,霍永康,林建荣,等.家蚕滞育卵浸酸后易溶性蛋白的表达差异分析[J].蚕业科学, 2008, 34(1): 54-60
    [40]颜新培,钟伯雄,曹家树.家蚕催青后期胚胎蛋白质双向电泳分析[J].蚕业科学, 2004, 30(1): 28-33
    [41]钟伯雄,陈金娥,颜新培,等.家蚕催青后期胚胎蛋白质双向电泳图谱分析.昆虫学报, 2005, 48(4): 637-642
    [42]潘庆中,陈业林,陈劲伟,等.利用催青温湿度敏感性状控制家蚕性别.科学通报, 1992, 37(12): 1133-1136
    [43] Pan Q Z, Chen Y L, Chen J W, et al. Sex control of silkworm, Bombyx mori by using sensitive characterto ineubating temperature and humidity. Chinese Science Bulletin, 1994, 39(l): 67-71
    [44]卢忠燕,侯勇,赵萍,等.家蚕伴性赤蚁sch胚胎期致死特异蛋白差异的研究.蚕业科学, 2005, 31(1): 42-46
    [45]叶键,钟伯雄,林健荣,等.家蚕温敏性品种胚胎发育的蛋白质表达谱变化.蚕业科学, 2005, 31(3): 362-365
    [46] Zhong B X, Li J K, Lin J R, et al. Possible Effect of 30K Proteins in Embryonic Development of Silkworm Bombyx mori. Acta Biochimica et Biophysica Sinica, 2005, 37(5): 355-361
    [47]周庆祥,易咏竹,张志芳,等.家蚕翅原基的一些发育规律研究.蚕业科学, 2004, 30(1): 44-49
    [48]韩宾.家蚕翅原基蛋白质组学研究.硕士论文.中国农业科学院, 2010
    [49]马瑞燕,杜家纬.昆虫的触角感器.昆虫知识, 2000, 37(3): 179-183
    [50]沈杰,楼兵干,沈幼莲,等.蔗扁蛾触角扫描电镜观察.浙江林业科技, 2005, 25(6): 27-30
    [51] Steinbrecht R A. Pore structures in insect olfactory sensilla: A review of data and concepts[J]. Int J Insect Morphol Embryol, 1997, 26: 229-245
    [52] Steinbrecht R A, Stankiewicz B A. Molecular composition of the wall of insect olfactory sensilla-the chitin question[J]. J Insect Physiol, 1999, 45: 785-790
    [53]那杰,于维熙,李玉萍,等.昆虫触角感器的种类及其生理生态学意义.沈阳师范大学学报(自然科学版), 2008, 26(2): 213-216
    [54] Schneider D. Ann. Rev. Ent., 1964, 9: 103-122
    [55]余海忠.昆虫触角感受器研究进展.安徽农业科学, 2007, 35(14): 4238-4240,4243
    [56] Leru B, Renard S, Allo M R, et al. Antennnal sensilla and their possible function in the host plant selection behavior of Phenacoccus manihoti (Matile-Ferrero)( Homoptera: Pseudococcidae)[J]. Insect Morphol Embryol, 1995, 24: 375-389.
    [57] Hansson B S, Larsson M, Leal W S. Green leaf volatile-and specificity in a scarab beetle[J]. Physiological Entomology, 1994, 24: 121-126.
    [58] Kaissling K E. Chemo-electrical transduction in insect olfactory receptors[J]. J Ann Rev Neurosci, 1986, 9: 121-145.
    [59] Tarumingkeng R C, Coppel H C, Matsumura F. Morphology and ultrastructure of the antennal chemoreceptors and mechanorecepteors of worker Coptotermes formosanus Shiraki [J]. Cell Tis Res, 1976, 173: 173-178.
    [60]王桂荣,郭予元,吴孔明.棉铃虫触角感器的超微结构观察[J].中国农业科学, 2002, 35(12): 1479-1482.
    [61]姚永生,原国徽,罗梅浩.铜绿丽金龟成虫触角感受器的超微结构观察[J] .华北农学报, 2004, 19(3): 96-99.
    [62] Vanderpers J N C, CuperpIIs P I, Denotter C J. Distribution of sense organs on male antennae of small ermine moth, Yponomeuta spp. (Lepidoptera: Yponomeutidae)[J]. J Insect Moerphol & Embryol, 1980, 9: 15-23.
    [63] Davis E E, Sokolove P G. Temperature responses of antennal receptors of the mosquito Aedes aegypti [J]. J Comp Physiol, 1975, 6: 223-236.
    [64] Ochieng S A, Hallberg E, Hasson B S. Fine structure and distribution of antennal sensills of the desert locust Schistocerca gregaria(Orthoptera: Acrididae) [J]. Cell Tissue Res, 1998, 291: 525-536.
    [65] Ochieng S A, Park K C. Function morphology of antennal chemoreceptors of the parasitoid Microplitis croceipes (Hymenoptera: Braconidae)[J]. J Insect Moerphol & Embryol, 2000, 29: 231-240.
    [66]刘旭.齿爪鳃金龟属幼虫近似种触角超微结构研究[J].西南农业大学学报, 1996, 18(6): 507-510.
    [67]杜家纬.昆虫信息素及其应用[M].北京:中国农业出版社, 1988: 62-70
    [68] Pelosi P, Maida R. Odorant-binding proteins in insects [J]. Comp-Biochem. Physiol. B Biochem. Mol. Biol., 1995, 111(3): 503-514
    [69] Vogt R G, Kohne A C, Dubnau J T, et al. Expression of phero-mone binding proteins during antennal development in the gypsy moth Lymantria dispar[J]. Neurosci, 1989, (9): 3332-3346
    [70] Vogt R G, Lerner M R. Two groups of odorant binding p roteins in insects suggest specific and general olfactory pathways[J]. Neurosci, 1989, 15: 1290
    [71] Vogt R G, Prestwich G D, Lerner M R. Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects[J]. Neurobiol, 1991, 22: 74-84
    [72] Steinbrecht R A. Structure and function of insect olfactory sensilla[J]. Ciba Found Symp, 1996, 200: 158-174
    [73] Krieger J, Evon N R, Mameli M, et al. Binding Proteins from the antennae of Bombyx mori[J]. Insect Biochem Mol Biol, 1996, 26(3): 297- 307
    [74] Vogt R G, Riddiford L M. Pheromone binding and inactivation by moth antennae[J]. Nature, 1981, 293: 161-163
    [75] Breer H, Krieger J, Raming K. A novel class of binding proteins in the antennae of the silk moth Antheraea pernyi[J]. Insect Biochem, 1990, 20: 735-740
    [76] Krieger J, Raming K, Breer H. Cloning of genomic and comple-mentary DNA encoding insect pheromone binding proteins: evidence for microdiversity[J]. Gene structure and Expression, 1991, 1088: 277-284
    [77]龚达平,赵萍,林英,等.家蚕信息素结合蛋白BmPBP2和BmPBP3基因的初步鉴定及表达分析[J].昆虫学报, 2006, 49(3): 355-362
    [78]刘勇,倪汉祥,胡萃.昆虫气味结合蛋白研究进展[J].昆虫知识, 2000, 37(6): 367-371
    [79] Callahan F E, Vogt R G, Tucker M L, et al. High level expression of“male specific”pheromone binding protein (PBPs) in the antennae of female noctuiid moths[J]. Insect Biochem Mol Biol, 2000, 30: 507-514
    [80] McKenna M P, Hekmat-Scafe D S, Gaines P, et al. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system[J]. J Biol Chem, 1994, 269: 16340-16347
    [81] Picimbon J F, Dietrich K, Angeli S, et al. Purification and molecular cloning of c hemosensory proteins from Bombyx mori [ J ]. Insect Biochem, 2000, 44: 120- 129
    [82] Gong D P, Zhang H J, Zhao P, et al. Identification and expression pattern of thechemosensory protein gene family in the silkworm, Bombyx mori [J]. Insect Biochem Mol Biol, 2007, 37: 266-277
    [83] Jacquin-Joly E, Vogt R G, Francois M C, et al. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamesrtra brassicae[J]. Chem Senses, 2001, 26: 833-844
    [84] Dyanov H M, Dzitoeva S G. Method for attachment of microscopic prepatations on glass for in situ hybridization, PRINS and in situ PCR studies[J]. Biotechniques, 1995, 18: 822-824
    [85] Picimbon J F, Dietrich K, Krieger J, et al. Identity and expression pattern of chemosensory proteins in Heliothis virescens (Lepidoptera, Noctuidae) [J]. Insect Biochem Mol Biol, 2001, 31: 1173-1181
    [86] Pennisi E. Fruit fly odor receptors found. Science, 1999, 283(5406): 1239.
    [87] Sakural T, Nakagawa T, Mitsuno H, et al. Identification and functional characterization of a sex pheromone receptor in the silkworm Bombyx mori [J]. Proc Natl Acad Sci USA, 2004, 101: 16653-16658
    [88] Krieger J, Grosse-Wilde E, Gohl T, et al. Candidate pheromone receptors of the silkworm Bombyx mori[J]. Neurosic, 2005, 21: 2167-2176
    [89] Wanner K W, Anderson A R, Trowell S C, et al. Female-biased expression of odorant receptor genes in the adult antennae of the silkworm, Bombyx mori[J]. Insect Mol Biol, 2007, 16(1): 107-119
    [90] Acín P, Carrascal M, Abián J, et al. Expression of differential antennal proteins in males and females of an important crop pest, Sesamia nonagrioides. Insect Biochemistry and Molecular Biology, 2009, 39(1): 11-19
    [91] Wang H B, Sakudoh T, Kawasaki H, et al. Purification and expression analysis of imaginal disc growth factor in the silkworm, Bombyx mori. Journal of Insect Physiology, 2009, 55(11): 1065-1071
    [92] Futahashi R, Okamoto S, Kawasaki H, et al. Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2004, 38(12): 1138-1146
    [93] Lee K S, Kim S R, Park N S, et al. Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection. Insect Biochemistry and Molecular Biology, 2005, 35(1): 73-84
    [94]聂红毅,钟晓武,邹勇,等.家蚕精巢蛋白质的双向电泳及质谱分析.昆虫学报, 2010, 53(4): 369-378
    [95] Park S G, Cha M K, Jeong W, et al. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 2000, 275(8): 5723–5732
    [96] Barry M K, Triplett A A, Christensen A C. A peritrophin-like protein expressed in the embryonic tracheae of Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 1999, 29(4): 319-327
    [97] Colinet H, Nguyen T T A, Cloutier C, et al. Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure. Insect Biochemistry and Molecular Biology, 2007, 37(11): 1177-1188
    [98]任锋. MALDI-TOF-MS技术应用于非肝癌肝病蛋白质组学的研究进展.实用肝脏病杂志, 2009, 12(1): 59-63
    [99]赵贤能,任安丽,童富淡,等.家蚕异翅基因的表达、纯化和亚细胞定位. 2009.
    [100] Zhong B X. Characterization and stage-specific change of protins during the embryonic development of silkworm Bombyx mori. Yi Chuan Xue Bao, 1999, 26: 627-633
    [101] Zhong B X, et al. Possible effect of 30K proteins in embryonic development of silkworm, Bombyx mori. Acta Biochimica et Biophysica Sinica, 2005, 37: 355-361
    [102] Schefe J H, Lehmann K E, Buschmann I R, et al. Quantitative real-time RT-PCR data analysis: current concepts and the novel“gene expression’s CT difference”formula [J]. J Mol Med, 2006, 84: 901-910
    [103] Bracco E, Peracino B, Noegel A A., Bozzaro S. Cloning and transcriptional regulation of the gene encoding the vacuolar/H+ ATPase B subunit of Dictyostelium discoideum. FEBS Letters, 1997, 419(1): 37-40
    [104] Xia QY, Zhou ZY, Lu C, et a1. A draft sequence for the genome of the domesticated Silkworm(Bombyx mori). Science, 2004, 306: 1937-1940
    [105]李建营.家蚕蛋白质组表达谱分析.博士论文.杭州:浙江大学, 2010
    [106] Yang H J, Zhou Z H, Zhang H A, et a1. Shotgun proteomic analysis of the fat body during metamorphosis of domesticated silkworm (Bombyx mori). Amino Acids, 2010, 38:1333-1342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700