不同热处理工艺对35CrMo钢应力腐蚀敏感性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对石油设备及井下工具常用钢低合金高强度35CrMo钢进行热处理来改善材料的组织结构性能及晶粒尺度。并借助慢应变速率拉伸(SSRT)实验,结合现代微观分析方法,在以不同充氢电流密度进行动态电化学充氢的环境下研究组织结构及晶粒尺度对35CrMo钢应力腐蚀敏感性的影响。随着近几十年来,对酸性油气田以及高含H2S油气田开发增加的局面,增强了石油设备及井下工具发生应力腐蚀或滞后开裂的可能性,因此研究该钢种应力腐蚀或滞后开裂行为对油气田开发过程中安全问题具有重要的意义。
     试验结果表明:35CrMo钢抗应力腐蚀或滞后开裂敏感性随着动态电化学充氢电流密度的增加而降低;35CrMo钢经过完全淬火+亚温淬火+高温回火可以把晶粒度细化到10.8μm,晶粒度级别为10.0-10.5级,且在动态充氢电流密度为150mA/cm2和200mA/cm2时还具有很好的强塑性,其断裂强度分别为570MPa、580MPa,延伸率分别为15.5%、15.0%,以及断面收缩率分别为38.96%、33.27%;35CrMo钢在经过亚温淬火+高温回火后可以得到显微组织结构细小、均匀的回火索氏体和未溶铁素体,这不仅能提高35CrMo钢的力学综合性能,而且通过增加组织中氢陷阱的相对量以及均匀性,达到提高35CrMo钢抗应力腐蚀或滞后开裂性能的目的;35CrMo钢抗应力腐蚀或滞后开裂敏感性均随组织均匀化及晶粒尺度的细化而提高,改善组织均匀化及细化晶粒是提高35CrMo钢抗应力腐蚀敏感性的一种有效途径。
The main aim of this thesis is to improve the microstructure of materials and the grain size through the heat treatment process of high-strength low alloy 35CrMo steel which is common component of oil equipments and downhole tools. An experiment is conducted in the paper to study the influence of the grain size and the microstructure of materials on the stress corrosion cracking susceptibility of 35CrMo, through dynamic electrochemical charging in different current density, slow strain rate tension technique (SSRT) and modern microscopic analysis method. In recent decades, the extensive explorations of acidic oil and gas field or high H2S oil and gas field increased the possibility of stress corrosion cracking in oil equipment or down hole tools. Therefore, the research on 35CrMo steel'cracking caused by the stress corrosion or lag cracking is extremely significant for the safety of oilfield development process.
     The results show:The susceptibility of 35CrMo steel resistance stress corrosion lag cracking reduced with the increase of dynamic electrochemical charging current density 35CrMo steel grain size could be refined into 10.8μm and the grain grade was 10.0-10.5 at completely quenching and sub-temperature quenching and high temperature tempering process. Meanwhile, under the dynamic hydrogen charging and the dynamic electrochemical charging current density was 150mA/cm2 and 200mA/cm2,35CrMo steel is a very plastic and the fracture strength was 570MPa.580MPa, the elongation rate was 15.5%、15.0%, and reduction area of crosssection was 38.96%、33.27%. Fine and uniform tempering sorbite and undissolved ferrite micro structure will be derived from 35CrMo steel through sub-quenching temperature and high tempering tempering process. Under that condition, it will not only enchance the comprehensive mechanical performance of 35CrMo steel, but also increase the hydrogen traps'relative amount and enhance its uniformity, through which enhance the sussceptibility of 35CrMo steel resistance stress corrosion cracking. The susceptibility of 35CrMo steel resistance stress corrosion lag cracking was enhanced with the increasing refinement of grain size. Therefore, it can be seen that grain refinement is an effective way to enhance the susceptibility of 35CrMo steel resistance stress corrosion lag cracking.
引文
[1]冯星安,黄柏宗,高光第.对四川罗家寨气田高含C02/H2S腐蚀的分析及防腐设计初探[J].石油工程建设,2004,30(1):10-14;
    [2]A. N. Kuzyukov. How hydrogen effects operability of chemical and petrochemical equipment made of carbon and low alloy steel [J]. International Journal of Hydrogen Energy.2002,27(8):13-817;
    [3]R.A.Siddiqui.Hydrogen embrittlement in 0.31%carbon steel used for petrochmical applications [J].Journal of Materials Processing Technology.2005,170(4):430-435;
    [4]P K.麦列霍夫.钢的应力腐蚀开裂[M].北京:国防工业出版社,1983,96-101.;
    [5]《油气田腐蚀与防护技术手册》编委会.油气田腐蚀与防护技术手册(下册)[M].北京:石油工业出版社,1999.471-492;
    [6]林玉珍,杨德钧.腐蚀和腐蚀控制原理[M].北京:中国石化出版社,2007.160-179;
    [7]M.Beghini,G.Benamati,L.Bertini,I.Ricapito,R.Valentini. Effect of hydrogen on the ductility reduction of F82H martensitic steel after different heat treatments [J]. Journal of Nuclear Materials.2001,1-6;
    [8]M.Beghini,G.Benamati,L.Bertini,R.Valentini. Effect of hydrogen on tensile properties of martensitic steel for fusion application [J]. Journal of Nuclear Materials.1998,1295-1299;
    [9]J.P.Hirt. Effects of hydrogen on the properties of iron and steel [J]. Metallurgical Transactions.1980,861-890;
    [10]毕凤琴.典型石化用低合金钢湿H2S应力腐蚀行为研究[D].大庆:大庆石油学院,2008,1-13;
    [11]寇杰,梁法春,陈婧.油气管道腐蚀与防护[M].北京:中国石化出版社,2003,132-138;
    [12]邓洪达.高含H2S/CO2环境中套管钢氢脆行为及C02对其影响机制的研究[D].成都:西南石油大学,2008,1-19;
    [13]于青.35CrMo高强度钢在海洋大气中的氢渗透行为与环境致脆机理研究[D].青岛:中国科学院海洋研究所,2008,1-20;
    [14]何家胜,崔好选,朱晓明等.螺栓(35CrMoA)在湿H2S环境中应力腐蚀试验研究[J].压力容器,2007(02):19-23;
    [15]Wang M.Q, E.Akiyama,K.Tsuzaki.Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test[J].Corrosion Science,49,(2007),4081-4097;
    [16]G.F.Li,R.G.Wu and T.C.Lei.Effect of prior austenitic grain size on stress corrosion cracking of a high-strength steel[J].Metallurgical and Materials Transactions A,1990,Volume21,Number 1,503-505;
    [17]T.C.Tsai and T.H.Chuang. Atmospheric Stress Corrosion Cracking of a Superplastic 7475 Aluminum Alloy[J]. Metallurgical and Materials Transactions A,1996, Volume 27,Number 9,2617-2627;
    [18]H. Fuchigami, H. Minami, M. Nagumo. Effect of grain size on the susccptibility of markensitic steel to hydrogen-related failure[J]. Philosophical Magazine Letters, Volume 86, Number 1, Number 1/January 2006,21-29 (9);
    [19]何建宏,唐祥云,陈南平.晶粒大小对双相不锈钢的强度和氢致开裂的影响[J].金属学报,1990,(04).A257-A261;
    [20]刘孝红,王毛球,时捷等.热处理对25CrNi2MoVNb钢氢脆敏感性的影响[J].金属热处理,2009,(12),9-13;
    [21]翁庆宇.超细晶钢-钢的组织细化理论与控制技术[M].北京:冶金工业出版社,2003,(9),9-20;
    [22]尹志新,于维成,姚戈等.循环淬火细化对42CrMo钢组织及疲劳性能的影响[J].钢铁,2002,(10),52-56;
    [23]吴玉萍,徐庆莘,肖昌利.低合金钢亚温淬火强韧化研究[J].理化检验-物理分册,Vol.33 No.2(1997),11-12(46);
    [24]宋锦福.亚温淬火对35CrMo钢抗氢脆性能的影响[J].福州大学学报(自然科学版),1989(03),39-44;
    [25]王冀恒,李惠,谢春生等.35CrMo钢亚温淬火强韧化组织与性能研究[J].材料热处理技术,2009,(06).144-146;
    [26]褚武扬,于广华,程以环等.钢的氢致沿晶断裂理论[J].中国科学(E辑),1996,(10),411-416;
    [27]潘川,褚武扬,李正邦等.氢和氢致马氏体导致不锈钢氢脆的定量研究[J].中国科学(E辑),2002,(6),343-349
    [28]李娟.管线钢应力腐蚀慢应变速率拉伸试验研究[D].中国石油大学,2007(2-5,7)
    [29]扬州.硫化氢对石油管线钢应力腐蚀开裂和氢渗透行为的影响[D].中国科学院,2004,1-13;
    [30]乔利杰.应力腐蚀机理[M].科学出版社,1993
    [31]褚武扬,谷飚,高克玮.应力腐蚀机理研究的新进展[J].腐蚀科学与防护技术,1995,(02)97-101;
    [32]褚武扬,乔利杰,高克玮.阳极溶解型应力腐蚀[J].科学通报,2000,(24),2581-2586:
    [33]褚武扬,乔利杰,陈奇志.断裂与环境断裂[M].科学出版社,2000,(133-153,159,211-232);
    [34]褚武扬.氢损伤和滞后断裂[M].冶金工业出版社,1988.18-363 134
    [35]褚武扬,乔利杰,肖纪美.应力腐蚀机理研究[J].北京科技大学学报:1992,(03) 212-219;
    [36]Galvele J R.A stress corrosion cracking mechamism based on surface mobility[J].Corros Sci,1987,(27),1-33;
    [37]Jones D A.A united mechanism of stress corrosion and corrosion fatigue cracking[J].MetallTrans,1985,(16A),1133-1141;
    [38]陈奇志,褚武扬,肖纪美.韧断微裂纹的原位观察与研究[J].中国科学A辑:1994,(03)291-297;
    [39]高克玮、陈奇志,褚武扬等.纳米级解理微裂纹的形核和扩展[J].中国科学A辑:1994,(09)993-1000:
    [40]Magnin T,Chieragatti R,Oltra R.Mechanism of brittle fracture in a ductile 310 alloy during stress corrosion [J]. Acta Metall Mater,,1990,(38)1313-1319;
    [41]Kaufman M J,Fink J I.Evidence for localized ductile fracture in the brittle transgranular SCC of ductile FCC alloys [J]. Acta Metall,1985,(36),2213-2228;
    [42]Flanagan W F,Bastias P,Lichter B D. A theory of transgranular stress-corrosion cracking [J]. Acta Metall Mater,1991,(39),695-705;
    [43]Flanagan W F,Zhong L,Lichter B D. A mechanism for transgranular stress-corrosion cracking[J]. Metall Mate,1993,(24A),553-559;
    [44]Rios R, Magmin T,Noel D et al.Critical analysis of alloy 600 SCC mechanism in primary water [J]. Metall Mater Trans,1995,(26A),925-939;
    [45]褚武扬,乔利杰,高克玮.阳极溶解型应力腐蚀[J].科学通报2000,(24)2581-2586;
    [46]胡小丽,黄震中,乔利杰等.氢和应力对阳极溶解的影响[J].中国腐蚀与防护学报,1996,(03)187-194;
    [47]姚远,乔利杰,孙冬柏等.氢对不锈钢钝化膜破裂应力的影响[J].金属学报,2003,(08)855-858;
    [48]李会录,余竹焕,李颖等.高强钢氢脆敏感性和氢致附加应力的相关性[J].腐蚀与防护,2009,(10)678-683;
    [49]乔利杰,缪辉俊,褚武扬等.氢、应力和介质三者对奥氏体不锈钢的协同作用[J].中国科学(A辑),1991,(11);
    [50]谷飚,高克玮,黄一中等.腐蚀促进位错的发出和运动导致应力腐蚀裂纹的形核[J].中国科学E辑,1996,(06)481-487;
    [51]蒋兴钢,褚武扬,肖纪美.氢促进空洞形核的机理[J].中国科学A辑,1994,(06)668-672;
    [52]刘伟,蒲晓琳,白小东等.油田硫化氢腐蚀机理及防护的研究现状及进展[J].石油钻探技术,2008,36(1):83-86;
    [53]褚武扬。氢致开裂和应力腐蚀机理的前沿问题[J].腐蚀科学与防护技术,1993, (03),151-156;
    [54]张统一,褚武扬,肖纪美.氢致表观屈服应力下降的原因——氢促进塑性变形机理[J].中国科学A辑,1986,(3):316-326;
    [55]HuangH H, TsaiW T, Lee J T. Electrochemical behavior ofA516 carbon steel solutions containing hydrogen sulfide[J]. Corrosion,1996,52(9):708-713;
    [56]ShoesmithDW,TaylorP, BalleyM G, eta.l The formation of ferrous monosulfide polymorphs during the corrosion of iron by aqueous hy-drogen sulfide at21℃[J].Electrochem. Soc.,1980,127(5):1007-1009;
    [57]YangH Y,Chen J J,Cao C N, et a.l Study on corrosion and inhibi-tionmechanism inH2S aqueous solutionsV. The inhibition charac-teristics of imidazoline derivates inH2S solutions[J]. J. Chin. Soc.Corros. Prot.,2001,21(6):321-32;
    [58]李密丹,张天成,吕宏等.氢促进位错发射和运动导致裂纹形核的研究[J].中国科学E辑,1997,(06):481-487;
    [59]黄建中,左禹.材料的耐蚀性和腐蚀数据.北京:化学工业出版社工业装备与信息工程出版中心,2003.108-111;
    [60]R.温斯顿.里维,杨武(译).尤利格腐蚀手册[M].北京:化学工业出版社,2005.149
    [61]R. N. Parkins. Predictive approaches to stress corrosion cracking failure[J]. Corrosion Science,1980:147-166;
    [62]G.F.LI,R.G.WU,and T.C.LEI.Carbide-Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels[J]. Metallurgical Transactions A Volume 23 A,October.1992.2879-2885;
    [63]G.F.Li,R.G.Wu and T.C.Lei.Effect of prior austenitic grain size on stress corrosion cracking of a high-strength steel[J].Metallurgical and Materials Transactions A,1990,Volume 21,Number 1,503-505;
    [64]T.C.Tsai and T.H.Chuang. Atmospheric Stress Corrosion Cracking of a Superplastic 7475 Aluminum Alloy[J]. Metallurgical and Materials Transactions A,1996,Volume 27,Number 9,2617-2627;
    [65]H. Fuchigami, H. Minami, M. Nagumo. Effect of grain size on the susccptibility of markensitic steel to hydrogen-related failure[J]. Philosophical Magazine Letters, Volume 86, Number 1, Number 1/January 2006,21-29(9);
    [66]T.G.Nieh and J.Wadsworth. Hall-Petch relation in nanocrystaline solids[J].Scripta Metall Mater,1991,25:955-958;
    [67]Katarina Sulleiova, Michal Besterci, Tibor Kvackaj.Verification of Hall-Petch equation of nanocrystalline copper[J].Metal.2009,5,1-6;
    [68]Lawrence H. Friedman and D. C. Chrzan.Scaling Theory of the Hall-Petch Relation for Multilayers[J].Physical Review Letters.1998,28,2715-2718;
    [69]宿彦京,王燕斌,褚武扬.吸附促进位错发射、运动导致脆性裂纹形核[J].中国科学E辑,1997,(05):397-403;
    [70]Kargol J A,Albrighy D L. The effect of relative crystal orientation on the liquid metal induced grain boundary fracture of aluminum bicrystals [J]. Metall Trans A,1977,8:27;
    [71]Bond G M, Robertson I M, Birnbaum H K. Environmentally assisted and fracture processes in high-purity aluminum [J]. Acta Metall,1988,36:2193;
    [72]Gu B, Zhang J W, Chu W Y. The in-situ TEM observation of corrosion facilitating dislocation emission and motion for brass [J]. Scripta Metall Mater,1995,32:637;
    [73]黄一中,王燕斌,褚武扬.重轨钢中氢促进位错的发出和运动以及氢致裂纹形核[J].金属学报,1998,(02)134-140;
    [74]高克玮,褚武扬.环境断裂的位错层次研究[J]. 材料研究学报,1999,(04)337-342;
    [75]刘晓敏,乔利杰,褚武扬.7075铝合金在液体金属GA中的脆断行为[J].金属学报,1998,(34)615-620;
    [76]P. Sofronis, Y Liang, N.Aravas. Hydrogen induced shear localization of the plastic flow in metals and alloys[J].Eur. J. Mech. A/Solids 2001 (20) 857-872;
    [77]李柏林,罗堪昌,孙曙明.氢对裂尖断裂过程影响的透射电镜原位观察[J].电子显微学报,1994(04)281-286;
    [78]Bond,G.M.,I.M.Robertson,and H.K.Birnbaum,On the determination of the hydrogen fugacity in an enbironmental cell TEM Facility [J]. Scripta Metallurgica,1986,20(5),653-658;
    [79]I.M.Robertson,and H.K.Birnbaum,HVEM study of hydrogen effects on plastic instabilities in metals[J]. Acta Mater.,1986,34(3),353-366;
    [80]陈奇志,李成华,褚武扬等.氢致开裂的TEM原位拉伸观察与研究[J].北京科技大学学报,1996,(02)168-173;
    [81]谷飚,聂一凡,高克玮等.Fe3Al氢致开裂和应力腐蚀的TEM原位观察[J].金属学报,1997,(07)709-717;
    [82]李仁顺,田耘,陈廉.氢对2091合金力学性能及断裂行为的影响[J].金属热处理,1998, (1),16-18;
    [83]万晓景,杨柯,曹名洲.氢对Ti-15Mo合金弹性模量及原子间结合能的影响[J].金属学报,1986, (03),189-194;
    [84]曹名洲,万晓景,.氢对钛合金中位错速度应力指数的影响[J].金属学报,1987,(01),92-94;
    [85]杨柯,万晓景,曹名洲.氢对Ti-15Mo合金形变行为的影响[J].金属学报,1986,(03),189-194;
    [86]Greco E. C., Wright W. B. Corrosion,1962,18:119-124;[]Sardisco J.B., Wrigh W. B. t, Greco E. C. Corrosion,1963,19:354-359;
    [87]Greer, J. B., Materials Performance,1975,14(3):11;
    [88]Sridhar N., Dunn D. S., Anderko A. M., el at. Effects of water and gas compositions on the internal corrosion of gas pipelines-modeling and experimental studies [J]. Corrosion, 2001,57:221-235;
    [89]Videm K., Kvarekval I. Corrosion,1995,51(4):260-269;
    [90]周计明.油管钢在含CO2/H2S高温高压水介质中的腐蚀行为及防护技术的作用[D].西安:西北工业大学,2002;
    [91]Videm K., Kvarekval I. Corrosion,1995,51(4):260-269;
    [92]Ramanarayanan T. A., Smith S. N. Corrosion of iron in gaseous environments and in gas-saturated aqueous environments [J]. Corrosion,1996,46:66-75;
    [93]褚武扬,吕荣邦,乔利杰等.油井管钢氢致开裂门槛值研究[J].金属学报,1998,(34)1077-1083:
    [94]NACE MR0175/ISO 15156标准,Materials for use in H2S-containing environments in oil and gas production;
    [95]马伯龙,工建林.实用热处理技术及应用[M].北京:机械工业出版社,2009,26-28;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700