几种中药活性成分对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease, AD)、帕金森病(Parkinson’sdisease, PD)、肌萎缩侧索硬化症(amyotrophic lateral sclerosis, ALS)等是严重危害人类健康的一类神经退行性疾病(neurodegenerative diseases,NDD),是由脑中特定区域神经元发生退变而引起的慢性进行性神经系统疾病。近年来,NDD发病率急剧上升,特别是在老龄化人口中。由于其发病机制复杂,因此迄今尚无理想的防治药物问世。导致NDD发生的确切的病理生理学机理尚未明确,目前认为由多种原因引起,并提出了多种假说,其中代表性的有神经递质失衡学说,氧化应激学说、线粒体功能障碍学说、兴奋性神经毒性学说、异常蛋白聚积学说、基因突变、炎症过程、免疫异常及细胞凋亡学说等。近年来越来越多的资料证明,线粒体功能障碍和氧化应激与其他几种机制相互作用,氧化应激和线粒体参与可能是主要的触发因素。细胞内的活性氧(reactive oxygen species,ROS)在各种细胞内不断产生和清除,当体内氧化水平超过了抗氧化作用时,氧化应激就会发生。ROS在细胞信号传导中扮演了重要角色,参与多种生理和病理过程。
     过氧化氢(H_2O_2)是体内代谢的产物,同时也是一种ROS,在诱导神经元细胞的损伤乃至死亡中起了关键作用。H_2O_2造成的细胞氧化损伤已成为研究神经细胞氧化损伤的重要工具之一。
     赤芍和土木香均为临床中常用的药物。赤芍为毛茛科植物芍药或川赤芍的干燥根,具有清热凉血、化瘀止痛、消肿通经等功效。土木香是菊科植物土木香Inula helenium L.或藏木香Inula racemosa Hook.f.的干燥根,广泛分布于欧洲中南部和亚洲的喜马拉雅山脉,具有多种药理作用,具有祛痰、止咳等作用,常被用于治疗多种呼吸系统和消化系统疾病。现代药理实验证实,赤芍对神经系统具有保护作用,文献报道赤芍对于PD、AD等NDD的治疗具有一定的作用,但涉及其中的分子机制有待深入系统的研究。ROS在许多疾病包括神经退行性疾病的发生、发展中扮演了重要角色,我们推断具有增加细胞抗氧化能力、具有抑制ROS对细胞损伤的药物可能有助于NDD的防治,所以探讨具有清除ROS和具有神经保护潜能的天然物质对细胞氧化损伤保护作用和机制的研究具有重要意义。赤芍和土木香具有抗氧化作用,体外实验证实赤芍和土木香具有清除DPPH自由基、羟自由基等活性,我们推断赤芍对神经系统的保护作用和赤芍的抗氧化特性有关,赤芍发挥神经保护作用的分子机制可能与清除ROS和阻断细胞凋亡的信号通路有关。目前认为线粒体通路、死亡受体通路和内质网通路是三个主要的凋亡信号通路,caspase3是这些凋亡信号通路的执行者。
     关于土木香总黄酮对SH-SY5Y氧化应激损伤的影响未见相关报道。黄酮类化合物是一类次生代谢产物广泛分布在不同植物中,具有各种生物活性如抗氧化、抗动脉粥样硬化、抗炎等;也有助于预防心血管疾病和抗血小板聚集。
     基于以上研究背景,本研究以H_2O_2诱导的神经细胞损伤和凋亡为模型,探讨赤芍相关的三种活性单体芍药苷(paeoniflorin,PF)、没食子酸(gallic acid,GA)和赤芍801(propyl gallate,PG)对H_2O_2引起的人神经母细胞瘤株(SH-SY5Y)细胞损伤和凋亡的影响及其机制。具体内容如下:
     1H_2O_2诱导SH-SY5Y细胞氧化损伤模型的建立
     目的:建立H_2O_2诱导SH-SY5Y细胞氧化损伤模型。
     方法:不同浓度H_2O_2(12.5、25.0、50.0、100、200、400、800、1600、3200、6400μmol·L~(-1))作用SH-SY5Y细胞不同时间(1、2、4、8、12、24小时)诱导SH-SY5Y细胞氧化损伤,通过相差显微镜观察SH-SY5Y细胞形态变化,利用CCK-8法测定细胞存活率,筛选H_2O_2致SH-SY5Y细胞氧化应激损伤模型的剂量;Heochest33258染色观察凋亡细胞的形态学特征;Annexin V-FITC/PI双染,流式检测细胞凋亡率;碘化丙啶(propidiumiodide,PI)染色流式细胞仪检测细胞周期构成比;硫辛酰胺脱氢酶(diaphorase)催化的INT (2-p-iodophenyl-3-nitrophenyl-tetrazoliumchloride)显色反应检测乳酸脱氢酶(lactic dehydrogenase,LDH)释放量,2',7'-Dichlorofluorescein diacetate(DCFH-DA)检测细胞内活性氧(ROS);ELISA (Enzyme-linked Immuno Sorbent Assay)方法检测8-羟基脱氧鸟苷(8-hydroxy deoxyguanosine,8-OHdG);JC-1染色检测细胞线粒体膜电位(mitochondrial membrane potential,MMP);Fura-2AM荧光探针检测细胞内钙离子浓度;利用caspase3可以催化底物acetyl-Asp-Glu-Val-Aspp-nitroanilide (Ac-DEVD-pNA)的反应检测caspase3活性;应用caspase9催化特异性底物acetyl-Leu-Glu-His-Asp p-nitroanilide (Ac-LEHD-pNA)检测caspase9活性。
     结果:过氧化氢组与正常对照组相比,H_2O_2剂量依赖、时间依赖地造成SH-SY5Y细胞氧化损伤。相对于正常组,终浓度为200μmol L~(-1)H_2O_2作用细胞24h后,细胞活力下降为65%,具有统计学差异(P<0.01),细胞凋亡率上升(P<0.01);明显出现了细胞凋亡的形态学特征;增殖指数(proliferation index, PI%)降低(P<0.05);8-OHdG含量上升(P<0.01);LDH释放量和细胞内ROS增加(P<0.01),线粒体膜电位下降(P<0.01),细胞内钙离子浓度上升(P<0.01),caspase3和caspase9活性增强(P<0.01)。
     结论:200μmol L~(-1)H_2O_2作用细胞24h,细胞活力显著下降,明显造成细胞氧化损伤,造模成功。
     2没食子酸对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制研究
     目的:以H_2O_2诱导SH-SY5Y细胞氧化损伤为模型,探讨没食子酸对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制。
     方法:筛选没食子酸(gallic acid,GA)对SH-SY5Y细胞无毒剂量范围,以此剂量范围研究没食子酸对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制。将细胞分为5组。正常对照组(Control), H_2O_2模型组(Model),GA5μmol L~(-1)组(GA1)、GA10μmol L~(-1)组(GA2)、GA25μmol L~(-1)组(GA3)。GA组先加入GA预处理1h后再加入终浓度为200μmol L~(-1)H_2O_2。Heochest33258染色观察凋亡细胞的形态学特征;Annexin V-FITC/PI双染,流式检测细胞凋亡率; PI染色流式细胞仪检测细胞周期构成比; diaphorase催化的INT显色反应检测LDH释放量;DCFH-DA检测细胞内ROS;ELISA法检测8-OHdG;JC-1染色检测细胞线粒体膜电位;Fura-2AM荧光探针检测细胞内钙离子浓度;利用caspase3可以催化底物Ac-DEVD-pNA的反应检测caspase3活性;应用caspase9催化特异性底物Ac-LEHD-pNA检测caspase9活性。
     结果:过氧化氢组与正常对照组相比,终浓度为200μmol L~(-1)H_2O_2作用细胞24h后,细胞活力下降为65%,具有统计学差异(P<0.01),细胞凋亡率上升(P<0.01);明显出现了细胞凋亡的形态学特征;增殖指数(proliferation index, PI%)降低(P<0.05);8-OHdG含量上升(P<0.01);LDH释放量和细胞内ROS增加(P<0.01),线粒体膜电位下降(P<0.01),细胞内钙离子浓度上升(P<0.01),caspase3和caspase9活性增强(P<0.01)。与H_2O_2损伤组相比,终浓度为5-25μmol·L~(-1)GA能显著改善上述指标的变化(P<0.05)。
     结论:GA在一定剂量范围内对H_2O_2诱导的SH-SYSY神经细胞损伤具有明显的保护作用,其保护效应可能与清除ROS,减轻DNA氧化损伤,抑制线粒体通路介导的细胞凋亡有关。
     3芍药苷对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制研究
     目的:以H_2O_2诱导SH-SY5Y细胞氧化损伤为模型,探讨芍药苷对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制。
     方法:筛选芍药苷(paeoniflorin,PF)对SH-SY5Y细胞无毒剂量范围,以此剂量范围研究芍药苷对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制。将细胞分为5组。正常对照组(Control), H_2O_2模型组(Model),PF10μmol·L~(-1)组(PF1)、PF20μmol·L~(-1)组(PF2)、PF40μmol·L~(-1)组(PF3)。PF组先加入PF预处理1h后再加入终浓度为200μmol·L~(-1)H_2O_2。Heochest33258染色观察凋亡细胞的形态学特征;Annexin V-FITC/PI双染,流式检测细胞凋亡率;PI染色流式细胞仪检测细胞周期构成比;diaphorase催化的INT显色反应检测LDH释放量;DCFH-DA检测细胞内ROS;ELISA法检测8-OHdG;JC-1染色检测细胞线粒体膜电位;Fura-2AM荧光探针检测细胞内钙离子浓度;利用caspase3可以催化底物Ac-DEVD-pNA的反应检测caspase3活性;应用caspase9催化特异性底物Ac-LEHD-pNA检测caspase9活性。
     结果:过氧化氢组与正常对照组相比,终浓度为200μmol·L~(-1)H_2O_2作用细胞24h后,细胞活力下降为65%,具有统计学差异(P<0.01),细胞凋亡率上升(P<0.01);明显出现了细胞凋亡的形态学特征;增殖指数(proliferation index, PI%)降低(P<0.05);8-OHdG含量上升(P<0.01);LDH释放量和细胞内ROS增加(P<0.01),线粒体膜电位下降(P<0.01),细胞内钙离子浓度上升(P<0.01),caspase3和caspase9活性增强(P<0.01)。与H_2O_2损伤组相比,20-40μmol·L~(-1)PF能显著改善过氧化氢诱导的上述指标的改变(P<0.05);终浓度10μmol·L~(-1)PF组与H_2O_2组相比PI%无显著变化(P>0.05),LDH和8-OHdG含量无显著变化(P>0.05),但能显著改善过氧化氢诱导的细胞凋亡的形态学特征,提高过氧化氢诱导的细胞活力下降(P<0.05),抑制H_2O_2诱导的ROS上升(P<0.05),抑制线粒体膜电位的下降(P<0.05),抑制细胞内钙离子浓度的升高(P<0.05),抑制caspase3和caspase9活性增强(P<0.05),减轻H_2O_2诱导的细胞凋亡率的上升(P<0.05)。
     结论:PF在一定剂量范围内对H_2O_2诱导的SH-SYSY神经细胞损伤具有明显的保护作用,其保护效应可能与清除ROS,减轻DNA氧化损伤,抑制线粒体通路介导的细胞凋亡有关。
     4赤芍801对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制研究
     目的:以H_2O_2诱导SH-SY5Y细胞氧化损伤为模型,探讨赤芍801对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制。
     方法:筛选赤芍801(propyl gallate,PG)对SH-SY5Y细胞无毒剂量范围,以此剂量范围研究赤芍801对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制。将细胞分为5组。正常对照组(Control), H_2O_2模型组(Model),PG20μmol·L~(-1)组(PG1)、PG40μmol·L~(-1)组(PG2)、PG80μmol·L~(-1)组(PG3)。PG组先加入PG预处理1h后再加入终浓度为200μmol·L~(-1)H_2O_2。Heochest33258染色观察凋亡细胞的形态学特征;Annexin V-FITC/PI双染,流式检测细胞凋亡率; PI染色流式细胞仪检测细胞周期构成比;diaphorase催化的INT显色反应检测LDH释放量;DCFH-DA检测细胞内ROS;ELISA法检测8-OHdG;JC-1染色检测细胞线粒体膜电位;Fura-2AM荧光探针检测细胞内钙离子浓度;利用caspase3可以催化底物Ac-DEVD-pNA的反应检测caspase3活性;应用caspase9催化特异性底物Ac-LEHD-pNA检测caspase9活性。
     结果:过氧化氢组与正常对照组相比,终浓度为200μmol·L~(-1)H_2O_2作用细胞24h后,细胞活力下降为65%,具有统计学差异(P<0.01),细胞凋亡率上升(P<0.01);明显出现了细胞凋亡的形态学特征;增殖指数(proliferation index, PI%)降低(P<0.05);8-OHdG含量上升(P<0.01);LDH释放量和细胞内ROS增加(P<0.01),线粒体膜电位下降(P<0.01),细胞内钙离子浓度上升(P<0.01),caspase3和caspase9活性增强(P<0.01)。与H_2O_2损伤组相比,40-80μmol L-PG均能显著改善过氧化氢诱导的上述指标的改变(P<0.05);终浓度20μmol·L~(-1)PG组与H_2O_2组相比PI%无显著变化(P>0.05),LDH和8-OHdG含量无显著变化(P>0.05),但能显著改善过氧化氢诱导的细胞凋亡的形态学特征,提高过氧化氢诱导的细胞活力下降(P<0.05),抑制H_2O_2诱导的ROS上升(P<0.05),抑制线粒体膜电位的下降(P<0.05),抑制细胞内钙离子浓度的升高(P<0.05),抑制caspase3和caspase9活性增强(P<0.05),减轻H_2O_2诱导的细胞凋亡率的上升(P<0.05)。
     结论:PG在一定剂量范围内对H_2O_2诱导的SH-SYSY神经细胞损伤具有明显的保护作用,其保护效应可能与清除ROS,减轻DNA氧化损伤,抑制线粒体通路介导的细胞凋亡有关。
     5土木香总黄酮对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制研究
     目的:以H_2O_2诱导SH-SY5Y细胞氧化损伤为模型,探讨土木香总黄酮对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响。
     方法:筛选土木香总黄酮(total flavonoids,TF)对SH-SY5Y细胞无毒剂量范围,以此剂量范围研究土木香总黄酮对H_2O_2诱导SH-SY5Y细胞氧化损伤的影响及其机制。将细胞分为5组。正常对照组(Control),H_2O_2模型组(Model),TF5mg·L~(-1)组(TF1)、TF10mg·L~(-1)组(TF2)、TF20mg·L~(-1)组(TF3)。TF组先加入TF预处理1h后再加入终浓度为200μmol·L~(-1)H_2O_2。DCFH-DA检测细胞内ROS。
     结果:过氧化氢组与正常对照组相比,终浓度为200μmol·L~(-1)H_2O_2作用细胞24h后,细胞活力显著下降(P<0.01);与H_2O_2损伤组相比,5-20mg·L~(-1)TF能显著抑制过氧化氢诱导的凋亡(P<0.05),抑制H_2O_2诱导的ROS上升(P<0.05)。
     结论:TF在一定剂量范围内对H_2O_2诱导的SH-SYSY神经细胞损伤具有明显的保护作用,其保护机制有待进一步研究。
Neurodegenerative disease (NDD) is chronic progressive diseases of thenervous system caused by the specific brain areas in degeneration, includingAlzheimer’s disease (AD), Parkinson’s disease (PD),amyotrophielateralselerosis (ALS), etc. The incidence of NDD surges,especially in the aging population. Because the pathogenesis of NDD iscomplicated, there is still no ideal drug for preventing and curing NDD tillnow. Although the definite etiology and pathogenesis are not very clear up tonow, many studies show that NDD is caused by many different things. Thereare many views and hypothesis about the cause of NDD, among them,imbalance in neurotransmitters, oxidative stress, mitochondrial dysfunction,excitatory neural toxicity, anomalous proteins accumulation, gene mutation,inflammatory process, dysimmunity and apoptosis theory, etc. Increasingamounts of data show that mitochondrial dysfunction and oxidative stress hasbeen implicated in many neurological diseases and interacted with otherseveral mechanisms. Intracellular reactive oxygen species are continuouslyproduced and cleared. When the level of oxidation exceeds these antioxidantdefenses, oxidative stress occurs. ROS plays an important role in cell signaltransduction, and involves in many pathologic and physiological processes.
     Hydrogen peroxide (H_2O_2) had been considered to be important signalingmolecules and natural products in the course of biological metabolism. H_2O_2plays an important role in neuron damage and even death. H_2O_2is one of themost important implements for studying neurons oxidative damage.
     Radix Paeoniae Rubra (R. paeoniae) and Inula helenium is clinicallywidely used. R. paeoniae (Family:Ranunculaceae) is the root of PaeoniaRadix or Paeonia Veitchii Lynch, which is widely applicable to heat-clearing and blood-cooling, dispersing blood stasis and relieving pain, detumescence,stimulating the menstrual flow. Inula helenium (elecampane), a member of thecomposite family, is widely distributed throughout central and southernEurope as far as the Himalayas, in Asia. In the Chinese Pharmacopoeia, I.helenium is described as an expectorant, diaphoretic, and antitussive that isoften used to treat a variety of respiratory and digestive diseases. Recentresearch has demonstrated that the extracts of I. helenium exhibit many effectsincluding antibacterial, antitumor, and antiproliferative. At present, effect ofthe total flavonoids of elecampane on H_2O_2-induced SH SY5Y oxidative stresshas not been described.Flavonoid compounds are diverse class of secondaryplant metabolites that are widely distributed throughout the plant kingdom andhave been reported to possess a variety of biological activities such asantioxidant, anti-atherosclerotic, anti-inflammatory, and antithrombogenic;they also aid in cardiovascular disease prevention and anti-platelet aggregation.It has been reported that Paeonia Lactifiora has a protective effect for nervoussystem, Paeonia Lactifiora has certain influence on treatmenting of AD, PD,and its mechanism is required to further study systematically. ROS plays animportant role in disease (including NDD) onset and progression. We deducedthat the drug with antioxidation and inhibiting ROS may be useful forpreventing NDD. It is important for studying the protective effects andmechanism of natural product on the cellular oxidative damage. There isevidence that Paeonia Lactifiora has antioxidant properties, PaeoniaLactifiora can eliminate DPPH and hydroxyl radicals in vitro. There are closeconnection between the antioxidant properties of Paeonia Lactifiora and itsneuroprotection. The molecular mechanism of the neuroprotective effects of R.paeoniae may be related to removing ROS and blocking the apoptosissignaling pathway. The basic apoptotic pathway includes mitochondrialpathway, death receptor pathway and endoplasmic reticulum pathway.Caspase-3is the executor of the apoptotic signaling pathways.
     Based on the above research background, this study was conducted todetermine the neuroprotective effects of three active monomers (gallic acid, paeoniflorin and propyl gallate) related to R. paeoniae on SH-SY5Y cellsinjured by H_2O_2and the molecular mechanisms underlying theseneuroprotective effects. The specific contents as follows:
     1Establishment of the model of oxidative damage in SH-SY5Y cells inducedby H_2O_2
     Objective:To establish the model of oxidative damage in SH-SY5Y cellsinduced by H_2O_2.
     Method: Cultured human neuroblastoma SH-SY5Y cells were subjectedto oxidative damage with H_2O_2at different concentrations (12.5,25.0,50.0,100,200,400,800,1600,3200,6400μmol·L~(-1)) and at different times (1,2,4,8,12,24h). The cell viability was analyzed by CCK-8assay. The cellmorphologic changes were observed by inverted optical microscope. Typicalmorphological features of apoptotic cells were detected using Hoechst33258staining, futher, flow cytometric (FCM) was used to analysis the cell apoptosisand cell cycle alteration using Annexin V-FITC/PI and propidium iodidestaining; the releasing rate of lactic dehydrogenase (LDH) was determined bythe colour reaction of diaphorase-INT. Reactive oxygen species (ROS)production was determined by2',7'-dichlorodihydrofluorescein diacetate(DCFH-DA) fluorescence.8-OHdG production was determined byenzyme-linked immunosorbent assay (ELISA). Mitochondria membranepotential was determined by JC-1staining; Intracellular Ca2+concentrationwas determined by Fura-2AM fluorescent probes. Caspase-3activity wasdetermined by caspase-3catalyze the substrate specificityacetyl-Asp-Glu-Val-Asp p-nitroanilide (Ac-DEVD-pNA). Caspase-9activitywas determined by caspase-9catalyze the substrate specificityacetyl-Leu-Glu-His-Asp p-nitroanilide (Ac-LEHD-pNA).
     Results: H_2O_2treatment produced dose-dependent and time-dependentcytotoxicity compared with that of the normal control. In comparison tocontrol cells, exposure of cells to200μmol·L~(-1)H_2O_2for24h resulted inapproximately65%cell viability of control (P<0.01), the typical change ofcell apoptosis occurred, proliferation index decreased (P<0.05), apoptosis index increased (P<0.01). H_2O_2induced significantly the increase of LDHrelease, intracellular ROS, Ca2+and8-OHdG (P<0.01), and the decrease ofmitochondrial membrane potential (P<0.01). H_2O_2-induced oxidative stressincreased caspase-3activity and caspase-9activity (P<0.01).
     Conclusion:200μmol·L~(-1)H_2O_2treatment produced cell activitydecreased remarkably. The model of oxidative damage in SH-SY5Y cellsinduced by H_2O_2is successfully established.
     2Effects of Gallic Acid on Hydrogen Peroxide-induced Oxidative Damage inSH-SY5Y Cells
     Objective:This study was conducted to determine the neuroprotectiveeffects of GA on SH-SY5Y cells injured by H_2O_2and the molecularmechanisms underlying these neuroprotective effects.
     Method: CCK-8assay was performed to select non-toxic dose of gallicacid in SH SY5Y cells in treating SH SY5Y cells. Cultured humanneuroblastoma SH-SY5Y cells were subjected to oxidative damage with H_2O_2in the presence and absence of non-toxic dose of GA. Cells can be divided into5groups: normal, model,5μmol·L~(-1)GA,10μmol·L~(-1)GA and25μmol·L~(-1)GAgroup. For group GA, GA was added to the cells1h before treatment withH_2O_2. The cell viability was analyzed by CCK-8assay. The cell morphologicchanges were observed by inverted optical microscope. Typical morphologicalfeatures of apoptotic cells were detected using Hoechst33258staining, futher,FCM was used to analysis the cell apoptosis and cell cycle alteration usingAnnexin V-FITC/PI and propidium iodide staining; the releasing rate of LDHwas determined by the colour reaction of diaphorase-INT. ROS productionwas determined by DCFH-DA fluorescence.8-OHdG production wasdetermined by ELISA. Mitochondria membrane potential was determined byJC-1staining; Intracellular Ca2+concentration was determined by Fura-2AMfluorescent probes. Caspase-3activity was determined by caspase-3catalyzethe substrate specificityAc-DEVD-pNA. Caspase-9activity was determinedby caspase-9catalyze the substrate specificity Ac-LEHD-pNA.
     Results: H_2O_2treatment produced dose-dependent and time-dependent cytotoxicity compared with that of the normal control. In comparison tocontrol cells, exposure of cells to200μmol·L~(-1)H_2O_2for24h resulted inapproximately65%cell viability of control (P<0.01), the typical change ofcell apoptosis occurred, proliferation index decreased (P<0.05), apoptosisindex increased (P<0.01). H_2O_2induced significantly the increase of LDHrelease, intracellular ROS, Ca2+and8-OHdG (P<0.01), and the decrease ofmitochondrial membrane potential (P<0.01). H_2O_2-induced oxidative stressincreased caspase-3activity and caspase-9activity (P<0.01). Finalconcentration of5-25μmol·L~(-1)GA significantly ameliorated the results ofmentioned indices as above markedly in comparison to model cells (P<0.05).
     Conclusion: Our study revealed that GA provided neuroprotectionagainst H_2O_2-induced oxidative damage under a moderate dose giving amoderate dose GA in advance,which was related with eliminating ROS,attenuating DNA oxidative damage and inhibiting mitochondria mediatedapoptosis.
     3Effects of Paeoniflorin on Hydrogen Peroxide-induced Oxidative Damage inSH-SY5Y Cells
     Objective:This study was conducted to determine the neuroprotectiveeffects of PF on SH-SY5Y cells injured by H_2O_2and the molecularmechanisms underlying these neuroprotective effects.
     Method: CCK-8assay was performed to select non-toxic dose of PF inSH SY5Y cells in treating SH SY5Y cells. Cultured human neuroblastomaSH-SY5Y cells were subjected to oxidative damage with H_2O_2in the presenceand absence of non-toxic dose of PF. Cells can be divided into5groups:normal, model,10μmol·L~(-1)PF,20μmol·L~(-1)PF and40μmol·L~(-1)PF group. Forgroup PF, PF was added to the cells1h before treatment with H_2O_2. The cellviability was analyzed by CCK-8assay. The cell morphologic changes wereobserved by inverted optical microscope. Typical morphological features ofapoptotic cells were detected using Hoechst33258staining, futher, FCM wasused to analysis the cell apoptosis and cell cycle alteration using AnnexinV-FITC/PI and propidium iodide staining; the releasing rate of LDH was determined by the colour reaction of diaphorase-INT. ROS production wasdetermined by DCFH-DA fluorescence.8-OHdG production was determinedby ELISA. Mitochondria membrane potential was determined by JC-1staining; Intracellular Ca2+concentration was determined by Fura-2AMfluorescent probes. Caspase-3activity was determined by caspase-3catalyzethe substrate specificityAc-DEVD-pNA. Caspase-9activity was determinedby caspase-9catalyze the substrate specificity Ac-LEHD-pNA.
     Results: H_2O_2treatment produced dose-dependent and time-dependentcytotoxicity compared with that of the normal control. In comparison tocontrol cells, exposure of cells to200μmol·L~(-1)H_2O_2for24h resulted inapproximately65%cell viability of control (P<0.01), the typical change ofcell apoptosis occurred, proliferation index decreased (P<0.05), apoptosisindex increased (P<0.01). H_2O_2induced significantly the increase of LDHrelease, intracellular ROS, Ca2+and8-OHdG (P<0.01), and the decrease ofmitochondrial membrane potential (P<0.01). H_2O_2-induced oxidative stressincreased caspase-3activity and caspase-9activity (P<0.01). Finalconcentration of20-40μmol·L~(-1)PF significantly ameliorated the results ofmentioned indices as above markedly in comparison to model cells. Finalconcentration of10μmol·L~(-1)PF did not significantly change proliferationindex, LDH and8-OHdG (P>0.05), while10μmol·L~(-1)PF, significantlyameliorated morphological features of apoptotic cells, enhanced cell vitality(P<0.05), inhibited the increase of ROS (P<0.05), inhibited the decrease ofmitochondrial membrane potential (P<0.05), restrained the increase ofintracellular Ca2+(P<0.05), down-regulated the caspase-3activity andcaspase-9activity and ameliorated apoptosis increased induced by H_2O_2incomparison to model cells(P<0.05).
     Conclusion: Our study revealed that PF provided neuroprotection againstH_2O_2-induced oxidative damage under a moderate dose giving a moderatedose PF in advance,which was related with eliminating ROS, attenuatingDNA oxidative damage and inhibiting mitochondria mediated apoptosis.4Effects of Propyl Gallate on Hydrogen Peroxide-induced Oxidative Damage in SH-SY5Y Cells
     Objective:This study was conducted to determine the neuroprotectiveeffects of PG on SH-SY5Y cells injured by H_2O_2and the molecularmechanisms underlying these neuroprotective effects.
     Method: CCK-8assay was performed to select non-toxic dose of PG inSH SY5Y cells in treating SH SY5Y cells. Cultured human neuroblastomaSH-SY5Y cells were subjected to oxidative damage with H_2O_2in the presenceand absence of non-toxic dose of PG. Cells can be divided into5groups:normal, model,20μmol·L~(-1)PG,40μmol·L~(-1)PG and80μmol·L~(-1)PG group. Forgroup PG, PG was added to the cells1h before treatment with H_2O_2. The cellviability was analyzed by CCK-8assay. The cell morphologic changes wereobserved by inverted optical microscope. Typical morphological features ofapoptotic cells were detected using Hoechst33258staining, futher, FCM wasused to analysis the cell apoptosis and cell cycle alteration using AnnexinV-FITC/PI and propidium iodide staining; the releasing rate of LDH wasdetermined by the colour reaction of diaphorase-INT. ROS production wasdetermined by DCFH-DA fluorescence.8-OHdG production was determinedby ELISA. Mitochondria membrane potential was determined by JC-1staining; Intracellular Ca2+concentration was determined by Fura-2AMfluorescent probes. Caspase-3activity was determined by caspase-3catalyzethe substrate specificityAc-DEVD-pNA. Caspase-9activity was determinedby caspase-9catalyze the substrate specificity Ac-LEHD-pNA.
     Results: H_2O_2treatment produced dose-dependent and time-dependentcytotoxicity compared with that of the normal control. In comparison tocontrol cells, exposure of cells to200μmol·L~(-1)H_2O_2for24h resulted inapproximately65%cell viability of control (P<0.01), the typical change ofcell apoptosis occurred, proliferation index decreased (P<0.05), apoptosisindex increased (P<0.01). H_2O_2induced significantly the increase of LDHrelease, intracellular ROS, Ca2+and8-OHdG (P<0.01), and the decrease ofmitochondrial membrane potential (P<0.01). H_2O_2-induced oxidative stressincreased caspase-3activity and caspase-9activity (P<0.01). Final concentration of40-80μmol·L~(-1)PG significantly ameliorated the results ofmentioned indices as above markedly in comparison to model cells. Finalconcentration of20μmol·L~(-1)PG did not significantly change proliferationindex, LDH and8-OHdG (P>0.05), while20μmol·L~(-1)PG, significantlyameliorated morphological features of apoptotic cells, enhanced cell vitality(P<0.05), inhibited the increase of ROS (P<0.05), inhibited the decrease ofmitochondrial membrane potential (P<0.05), restrained the increase ofintracellular Ca2+(P<0.05), down-regulated the caspase-3activity andcaspase-9activity and ameliorated apoptosis increased induced by H_2O_2incomparison to model cells(P<0.05).
     Conclusion: Our study revealed that PG provided neuroprotectionagainst H_2O_2-induced oxidative damage under a moderate dose giving amoderate dose PG in advance,which was related with eliminating ROS,attenuating DNA oxidative damage and inhibiting mitochondria mediatedapoptosis.
     5Effects of total flavonoids from Inula helenium on HydrogenPeroxide-induced Oxidative Damage in SH-SY5Y Cells
     Objective:This study was conducted to determine the neuroprotectiveeffects of total flavonoids (TF) from Inula helenium on SH-SY5Y cells injuredby H_2O_2.
     Method: CCK-8assay was performed to select non-toxic dose of TF inSH-SY5Y cells in treating SH SY5Y cells. Cultured human neuroblastomaSH-SY5Y cells were subjected to oxidative damage with H_2O_2in the presenceand absence of non-toxic dose of TF. Cells can be divided into5groups:normal, model,5mg·L~(-1)TF,10mg·L~(-1)TF and20mg·L~(-1)TF group. For groupTF, TF was added to the cells1h before treatment with H_2O_2. The cell viabilitywas analyzed by CCK-8assay. ROS production was further determined byDCFH-DA fluorescence.
     Results: H_2O_2treatment produced dose-dependent and time-dependentcytotoxicity compared with that of the normal control; and in comparison tocontrol group, cell viability was evidently declined(P<0.01). H_2O_2induced significantly the increase of intracellular ROS (P<0.01). Final concentration of5-20mg·L~(-1)PG significantly inhibited the increase of ROS induced by H_2O_2(P<0.05).
     Conclusion: Our study revealed that TF provided neuroprotection againstH_2O_2-induced oxidative damage under a moderate dose giving a moderatedose TF in advance,which may be related with eliminating ROS. Furtherstudies will be needed to explore the mechanism of action for the protectiveeffects of TF.
引文
1Friedlander RM. Apoptosis and caspases in neurodegenerative diseases [J].The New England Journal of Medicine,2003,348(14):1365-1375
    2Puddifoot C, Martel MA, Soriano FX, et al. PGC-1α negatively regulatesextrasynaptic NMDAR activity and excitotoxicity [J]. J Neurosci.2012,32(20):6995-7000
    3Jensen LT, M ller TH, Larsen SA, et al. A new role for laminins asmodulators of protein toxicity in Caenorhabditis elegans [J]. Aging Cell.2012,11(1):82-92.
    4Aquilano K, Baldelli S, Ciriolo MR. Glutathione is a crucial guardian ofprotein integrity in the brain upon nitric oxide imbalance [J]. CommunIntegr Biol.2011,4(4):477-479
    5Chen KH, Reese EA, Kim HW, et al. Disturbed neurotransmittertransporter expression in Alzheimer's disease brain [J]. J Alzheimers Dis.2011,26(4):755-766
    6Wetmore DZ, Garner CC. Emerging pharmacotherapies for neurodevelop-mental disorders [J]. J Dev Behav Pediatr.2010,31(7):564-581
    7Gutowski M, Kowalczyk S. A study of free radical chemistry: their roleand pathophysiological significance [J].Acta Biochim Pol.2013,60(1):1-16
    8Torr o AS, Café-Mendes CC, Real CC, et al. Different approaches, onetarget: understanding cellular mechanisms of Parkinson's and Alzheimer'sdiseases [J]. Rev Bras Psiquiatr.2012,34Suppl2:S194-205
    9Xu S, Zhang R, Niu J, et al. Oxidative Stress Mediated-Alterations of theMicroRNA Expression Profile in Mouse Hippocampal Neurons [J]. Int JMol Sci.2012,13(12):16945-60
    10Di Penta A, Moreno B, Reix S, et al. Oxidative stress and proinflammatorycytokines contribute to demyelination and axonal damage in a cerebellarculture model of neuroinflammation. PLoS One.2013,8(2):e54722
    11Suttkus A, Rohn S, J ger C, et al. Neuroprotection against iron-inducedcell death by perineuronal nets-an in vivo analysis of oxidative stress [J].Am J Neurodegener Dis.2012,1(2):122-129
    12Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation ofglutathione homeostasis in neurodegenerative diseases [J]. Nutrients.2012,4(10):1399-1440
    13Fiorini A, Sultana R, Barone E, et al. Lack of p53affects the expression ofseveral brain mitochondrial proteins: insights from proteomics intoimportant pathways regulated by p53. PLoS One.2012,7(11):e49846
    14Nisticò R, Mango D, Mandolesi G, et al. Inflammation subvertshippocampal synaptic plasticity in experimental multiple sclerosis. PLoSOne.2013,8(1):e54666
    15宋群,隋秉东,许天齐,等.脑线粒体铁代谢紊乱与神经退行性疾病[J].山东医药,52(25):93-95
    16潘静,陈生弟.氧化应激与神经退行性疾病[J].国际神经病学神经外科学杂志,2008,35(2):143-145
    17赵亚硕,石振华,常彦忠.线粒体铁蛋白与铁相关的神经退行性疾病.[J]生物物理学报,2012,28(4):317-323
    18Crunkhorn S. Neurodegenerative disorders: Restoring the balance [J]. NatRev Drug Discov.2011,10(8):576
    19Sas K, Robotka H, Toldi J, et al. Mitochondria, metabolic disturbances,oxidative stress and the kynurenine system, with focus onneurodegenerative disorders [J]. J Neurol Sci.2007,257(1-2):221-39
    20Abeliovich A. Parkinson's disease: Mitochondrial damage control [J].Nature,2010,463(7282):744-745
    21Zhang HA, Gao M, Zhang L, et al. Salvianolic acid A protects humanSH-SY5Y neuroblastoma cells against H2O2-induced injury by increasingstress tolerance ability [J]. Biochemical and Biophysical ResearchCommunications2012,(421)479-483
    22Rhee. SG. H2O2, a necessary evil for cell signaling [J]. Science,2006,312(5782):1882-1883
    23Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases [J]. Nature2006,443(7113):787-95
    24冯波,王蓉,盛树力.神经退行性疾病研究中拟神经细胞模型:人神经母细胞瘤株SH-SY5Y的来源特性及应用[J].临床康复,2006,10(6):121-123
    25Cao BY, Yang YP, Luo WF, et al. Paeoniflorin, a potent natural compound,protects PC12cells from MPP+and acidic damage via autophagicpathway.Journal of Ethnopharmacology.2010,(131)122–129
    26陈红艳,耿淼,胡亚卓.过氧化氢对SH-SY5Y细胞线粒体膜电位的影响
    [J].国际检验医学杂志.2011,32(15):1665-1667
    1Friedlander RM. Apoptosis and caspases in neurodegenerative diseases [J].The New England Journal of Medicine,2003,348(14):1365-1375
    2Puddifoot C, Martel MA, Soriano FX, et al. PGC-1α negatively regulatesextrasynaptic NMDAR activity and excitotoxicity [J]. J Neurosci.2012,32(20):6995-7000
    3Jensen LT, M ller TH, Larsen SA, et al. A new role for laminins asmodulators of protein toxicity in Caenorhabditis elegans [J]. Aging Cell.2012,11(1):82-92.
    4Aquilano K, Baldelli S, Ciriolo MR. Glutathione is a crucial guardian ofprotein integrity in the brain upon nitric oxide imbalance [J]. CommunIntegr Biol.2011,4(4):477-479
    5Chen KH, Reese EA, Kim HW, et al. Disturbed neurotransmittertransporter expression in Alzheimer's disease brain [J]. J Alzheimers Dis.2011,26(4):755-766
    6Wetmore DZ, Garner CC. Emerging pharmacotherapies forneurodevelopmental disorders [J]. J Dev Behav Pediatr.2010,31(7):564-581
    7Gutowski M, Kowalczyk S. A study of free radical chemistry: their roleand pathophysiological significance [J]. Acta Biochim Pol.2013,60(1):1-16
    8Torr o AS, Café-Mendes CC, Real CC, et al. Different approaches, onetarget: understanding cellular mechanisms of Parkinson's and Alzheimer'sdiseases [J]. Rev Bras Psiquiatr.2012,34Suppl2:S194-205
    9Xu S, Zhang R, Niu J, et al. Oxidative Stress Mediated-Alterations of theMicroRNA Expression Profile in Mouse Hippocampal Neurons [J]. Int JMol Sci.2012,13(12):16945-60
    10di Penta A, Moreno B, Reix S, et al. Oxidative stress and proinflammatorycytokines contribute to demyelination and axonal damage in a cerebellarculture model of neuroinflammation. PLoS One.2013,8(2):e54722
    11Suttkus A, Rohn S, J ger C, et al. Neuroprotection against iron-inducedcell death by perineuronal nets-an in vivo analysis of oxidative stress [J].Am J Neurodegener Dis.2012,1(2):122-129
    12Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation ofglutathione homeostasis in neurodegenerative diseases [J]. Nutrients.2012,4(10):1399-1440
    13Fiorini A, Sultana R, Barone E, et al. Lack of p53affects the expression ofseveral brain mitochondrial proteins: insights from proteomics intoimportant pathways regulated by p53. PLoS One.2012,7(11):e49846
    14Nisticò R, Mango D, Mandolesi G, et al. Inflammation subvertshippocampal synaptic plasticity in experimental multiple sclerosis. PLoSOne.2013,8(1):e54666.
    15宋群,隋秉东,许天齐,等.脑线粒体铁代谢紊乱与神经退行性疾病[J].山东医药,52(25):93-95
    16潘静,陈生弟.氧化应激与神经退行性疾病[J].国际神经病学神经外科学杂志,2008,35(2):143-145
    17赵亚硕,石振华,常彦忠.线粒体铁蛋白与铁相关的神经退行性疾病[J].生物物理学报,2012,28(4):317-323
    18Crunkhorn S. Neurodegenerative disorders: Restoring the balance [J]. NatRev Drug Discov.2011,10(8):576
    19Sas K, Robotka H, Toldi J, et al. Mitochondria, metabolic disturbances,oxidative stress and the kynurenine system, with focus onneurodegenerative disorders [J]. J Neurol Sci.2007,257(1-2):221-39
    20Abeliovich A. Parkinson's disease: Mitochondrial damage control [J].Nature,2010,463(7282):744-745
    21Momb J, Lewandowski JP, Bryant JD, et al. Deletion of Mthfd1l causesembryonic lethality and neural tube and craniofacial defects in mice [J].Proc Natl Acad Sci USA,2013,110(2):549-554
    22Alleyne T, Mohan N, Adogwa A. Elevated ferric, calcium and magnesiumions in the brain induce protein aggregation in brain mitochondria [J].West Indian Med J2012,61(2):122-127
    23Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases [J]. Nature2006,443(7113):787-95
    24Zhang HA, Gao M, Zhang L, et al. Salvianolic acid A protects humanSH-SY5Y neuroblastoma cells against H2O2-induced injury by increasingstress tolerance ability [J]. Biochemical and Biophysical ResearchCommunications2012,(421)479-483
    25Rhee SG. H2O2, a necessary evil for cell signaling [J]. Science,2006,312(5782):1882-1883
    26冯波,王蓉,盛树力.神经退行性疾病研究中拟神经细胞模型:人神经母细胞瘤株SH-SY5Y的来源特性及应用[J].临床康复,2006,10(6):121-123.
    27Cao BY, Yang YP, Luo WF, et al. Paeoniflorin, a potent natural compound,protects PC12cells from MPP+and acidic damage via autophagicpathway.Journal of Ethnopharmacology.2010,(131)122–129
    28陈红艳,耿淼,胡亚卓.过氧化氢对SH-SY5Y细胞线粒体膜电位的影响[J].国际检验医学杂志.2011,32(15):1665-1667
    29Ruffels J, Griffin M, Dickenson JM. Activation of ERK1/2, JNK and PKBby hydrogen peroxide in human SH-SY5Y neuroblastoma cells: Role ofERK1/2in H2O2-induced cell death [J]. Eur. J. Clin. Pharmacol.2004,483,163-173
    30Kwon SH, Kim JA, Hong SI, et al. Loganin protects against hydrogenperoxide-induced apoptosis by inhibiting phosphorylation of JNK, p38,and ERK1/2MAPKs in SH-SY5Y cells[J]. Neurochem. Int.2011,58,533-541
    1Friedlander RM. Apoptosis and caspases in neurodegenera-tive diseases[J]. The New England Journal of Medicine,2003,348(14):1365-1375
    2Beal MF. Mitochondria take center stage in aging and neurodegeneration[J]. Ann. Neurol.2005,58:495-505
    3Li CR, Zhou Z, Zhu D, et al. Protective effect of paeoniflorin onirradiation-induced cell damage involved in modulation of reactive oxygenspecies and the mitogen-activated pro-tein kinases [J]. InternationalJournal of Biochemistry and Cell Biology,2007,39,426-438.
    4郭宏举,史宁,陈乾,等.褐藻多糖硫酸酯对H2O2诱导皮层神经元氧化应激损伤保护作用[J].中草药,2012,(5):962-964
    5宋丽,张宁,徐德生.芍药苷在Caco-2细胞模型中吸收机制的研究[J].中草药;2008,39(1):41-44
    6Mao QQ, Tsai SH, Ip SP, et al. Antidepressant-like effects of peonyglycosides in mice [J]. J Ethnopharmacol,2008,119:272-275
    7Cui GZ. Study on the antidepressant-like effect of paeoniflorin [J]. ModPharm Clin,2009,24:231-233
    8Xiao L, Wang YZ, Liu J, et al. Effects of paeoniflorin on the cerebralinfarction, behavioral and cognitive impairments at the chronic stage oftransient middle cerebral artery occlusion in rats [J]. Life Sci,2005,78:413-420
    9Zhong SZ, Ge QH, Li Q, et al. Peoniflorin attentuates Abeta(1-42)-mediated neurotoxicity by regulating calcium homeostasis andameliorating oxidative stress in hippocampus of rats [J]. J Neurol Sci,2009,280:71-78
    10朱叶芳,党姗姗,华子瑜.芍药苷神经保护机制的研究进展[J].中国中药杂志2010,35(11):1490-1493
    11Abeliovich A. Parkinson's disease: Mitochondrial damage control [J].Nature,2010,463(7282):744-745
    12Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases [J]. Nature2006,443(7113):787-95
    13Crunkhorn S. Neurodegenerative disorders: Restoring the balance [J]. NatRev Drug Discov.2011,10(8):576
    14陈红艳,耿淼,胡亚卓.过氧化氢对SH-SY5Y细胞线粒体膜电位的影响[J].国际检验医学杂志.2011,32(15):1665-1667
    15冯波,王蓉,盛树力.神经退行性疾病研究中拟神经细胞模型:人神经母细胞瘤株SH-SY5Y的来源特性及应用[J].临床康复,2006,10(6):121-123
    16Zhang HA, Gao M, Zhang L, et al. Salvianolic acid A protects humanSH-SY5Y neuroblastoma cells against H2O2-induced injury by increasingstress tolerance ability [J]. Biochemical and Biophysical ResearchCommunications2012,(421)479-483
    17Rhee SG. H2O2, a necessary evil for cell signaling.[J] Science,2006,312(5782):1882-188
    18Bao XQ, Liu GT. Bicyclol protects HepG2cells againstD-galactosamine-induced apoptosis through inducing heat shock protein
    27and mitochondria associated pathway.Acta Pharmacol Sin.2010;31(2):219-226
    19Yao Y, Zhang YW, Sun LG, et al. Juglanthraquinone C, a novel naturalcompound derived from Juglans mandshurica Maxim, induces S phasearrest and apoptosis in HepG2cells. Apoptosis.2012,17(8):832-841
    20Rasul A, Khan M, Yu B, et al. Xanthoxyletin, a coumarin induces S phasearrest and apoptosis in human gastric adenocarcinomaSGC-7901cells.Asian Pac J Cancer Prev.2011;12(5):1219-1223
    21Cao BY, Yang YP, Luo WF, et al. Paeoniflorin, a potent natural compound,protects PC12cells from MPP+and acidic damage via autophagicpathway [J]. Journal of Ethnopharmacology.2010,(131)122-129
    22Ye J, Li J, Yu Y, et al. L-carnitine attenuates oxidant injury in HK-2cellsvia ROS-mitochondria pathway. Regul Pept.2010;161(1-3):58-66
    23Lin CJ, Huang HC, Liu WJ, et al. Biomedical Imaging and VisualizationModel of Mitochondrial Dysfunction and Oxidative Stress in AlzheimerDisease Applied Mechanics and Materials,2012,1179-1182
    24Grossini E,Avanzi G,Gallicchio M,et al. Regulation of Ca2+movementsby cyclovirobuxine D in ECV304endothelial cells [J]. PharmocologicalResearch,2005,52(2):154-161
    25Li ZL, Liu JC, Hu J, et al. Protective effects of hyperoside against humanumbilical vein endothelial cell damage induced byhydrogen peroxide.JEthnopharmacol.2012,139(2):388-394
    26Feng Y, Zhang C, Luo Q, et al. A novel WD-repeat protein, WDR26,inhibits apoptosis of cardiomyocytes induced by oxidativestress. FreeRadic Res.2012,46(6):777-784
    27Ruffels J, Griffin M, Dickenson JM. Activation of ERK1/2, JNK and PKBby hydrogen peroxide in human SH-SY5Y neuroblastoma cells: Role ofERK1/2in H2O2-induced cell death [J]. Eur. J. Clin. Pharmacol.2004,483,163-173
    1Friedlander RM. Apoptosis and caspases in neurodegenera-tive diseases[J]. The New England Journal of Medicine,2003,348(14):1365-1375
    2Beal MF. Mitochondria take center stage in aging and neurodegeneration[J]. Ann. Neurol.2005,58:495-505
    3Li CR, Zhou Z, Zhu D, et al. Protective effect of paeoniflorin onirradiation-induced cell damage involved in modulation of reactive oxygenspecies and the mitogen-activated protein kinases [J]. International Journalof Biochemistry and Cell Biology,2007,39,426-438.
    4郭宏举,史宁,陈乾,等.褐藻多糖硫酸酯对H2O2诱导皮层神经元氧化应激损伤保护作用[J].中草药,2012,(5):962-964
    5左晓莉,庄华彦.赤芍801治疗冠心病心绞痛的临床观察.齐齐哈尔医学院学报2002,23(1):37-38
    6蒋跃绒,殷惠军,李立志,等.赤芍801治疗非ST段抬高急性冠状动脉综合征的临床观察.中国中西医结合杂志,2008,28(9):839-842
    7蒋跃绒,殷惠,陈可冀.赤芍801研究现状.中国中西医结合杂志,2004,24(8):760-763
    8郑建明,陈晓春,林敏,等.赤芍801通过抑制NF-κB抗脑缺血-再灌注损伤的机制.药学学报,2011,46(2):158-164
    9郑建明,陈晓春,林敏,等.赤芍801通过抗氧化作用减轻脑缺血/再灌注损伤.中国药理学通报,2008,24(7):942-946
    10蒋跃绒,殷惠军,陈可冀.赤芍801对小鼠巨噬细胞COX-1和COX-2活性、 mRNA及蛋白表达的影响.中国药理学通报,2006,22(10):1188-1194
    11Abeliovich A. Parkinson's disease: Mitochondrial damage control [J].Nature,2010,463(7282):744-745
    12Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases [J]. Nature2006,443(7113):787-95
    13Crunkhorn S. Neurodegenerative disorders: Restoring the balance [J]. NatRev Drug Discov.2011,10(8):576
    14陈红艳,耿淼,胡亚卓.过氧化氢对SH-SY5Y细胞线粒体膜电位的影响[J].国际检验医学杂志.2011,32(15):1665-1667
    15Abeliovich A. Parkinson's disease: Mitochondrial damage control [J].Nature2010,463(7282):744-745
    16冯波,王蓉,盛树力.神经退行性疾病研究中拟神经细胞模型:人神经母细胞瘤株SH-SY5Y的来源特性及应用[J].临床康复,2006,10(6):121-123
    17Zhang HA, Gao M, Zhang L, et al. Salvianolic acid A protects humanSH-SY5Y neuroblastoma cells against H2O2-induced injury by increasingstress tolerance ability[J]. Biochemical and Biophysical ResearchCommunications2012,(421)479-483
    18Rhee SG. H2O2, a necessary evil for cell signaling [J]. Science,2006,312(5782):1882-188
    19Cao BY, Yang YP, Luo WF, et al. Paeoniflorin, a potent natural compound,protects PC12cells from MPP+and acidic damage via autophagicpathway [J]. Journal of Ethnopharmacology.2010,(131)122-129
    20Ruffels J, Griffin M, Dickenson JM. Activation of ERK1/2, JNK and PKBby hydrogen peroxide in human SH-SY5Y neuroblastoma cells: Role ofERK1/2in H2O2-induced cell death [J]. Eur. J. Clin. Pharmacol.2004,483,163-173.
    1Deriu A, Zanetti S, Sechi LA, Marongiu B, Piras A, Porcedda S,et al.Antimicrobial activity of Inula helenium L. essential oil againstGram-positive and Gram-negative bacteria and Candida spp. Int JAntimicrob Agents2008,31:588-590
    2Chaadaeva AV, Tenkeeva II, Moiseeva EV, Svirshchevskaia EV,Demushkin VP. Antitumor activity of the plant remedy peptide extractPE-PM in a new mouse T-lymphoma/eukemia model. Biomed Khim2009,55:81-88
    3Konishi T, Shimada Y, Nagao T, Okabe H, Konoshima T. Antiproliferativesesquiterpene lactones from the roots of Inula helenium. Biol Pharm Bull2002,25:1370-1372
    4Babu PV, Liu D. Green tea catechins and cardiovascular health: an update.Curr Med Chem2008,15:1840-1850
    5Yu HY, Park SW, Chung IM, Jung YS. Anti-platelet effects of yuzu extractand its component. Food Chem Toxicol2011,49:3018-3024
    6Nagarajan S. Mechanisms of anti-atherosclerotic functions of soy-baseddiets. J Nutr Biochem2010,21:255-26
    7Wang J, Zhao Y, Guo C, Zhang S, Liu C, Zhang D, et al.Ultrasound-assisted extraction of total flavonoids from Inula helenium.Phcog Mag2012,8:166-170
    8Friedlander RM. Apoptosis and caspases in neurodegenerative diseases [J].The New England Journal of Medicine,2003,348(14):1365-1375
    9Ruffels J, Griffin M, Dickenson JM. Activation of ERK1/2, JNK and PKBby hydrogen peroxide in human SH-SY5Y neuroblastoma cells: Role ofERK1/2in H2O2-induced cell death [J]. Eur. J. Clin. Pharmacol.2004,483,163-173
    10Kwon SH, Kim JA, Hong SI, et al. Loganin protects against hydrogenperoxide-induced apoptosis by inhibiting phosphorylation of JNK, p38,and ERK1/2MAPKs in SH-SY5Y cells[J]. Neurochem. Int.2011,58,533-541
    11Gulati V, Harding IH, Palombo EA. Enzyme inhibitory and antioxidantactivities of traditional medicinal plants: potential application in themanagement of hyperglycemia.BMC Complement Altern Med.2012,12:77
    12Holt EM, Steffen LM, Moran A, et al. Fruit and vegetable consumptionand its relation to markers of inflammation and oxidative stress inadolescents. J Am Diet Assoc.2009,109(3):414-421
    1Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases. Nature.2006Oct19;443(7113):787-795
    2Martin LJ. Mitochondrial and Cell Death Mechanisms inNeurodegenerative Diseases. Pharmaceuticals (Basel).2010;3(4):839-915
    3Crunkhorn S. Neurodegenerative disorders: Restoring the balance. NatRev Drug Discov.2011Aug1;10(8):576
    4Sas K, Robotka H, Toldi J, et al. Mitochondria, metabolic disturbances,oxidative stress and the kynurenine system, with focus onneurodegenerative disorders. J Neurol Sci.2007Jun15;257(1-2):221-239
    5Douarre C, Sourbier C, Dalla Rosa I, et al. Mitochondrial topoisomerase Iis critical for mitochondrial integrity and cellular energy metabolism.PLoS One.2012;7(7):e41094
    6Hollensworth SB, Shen C, Sim JE, et al. Glial cell type-specific responsesto menadione-induced oxidative stress. Free Radic Biol Med.2000Apr15;28(8):1161-1174
    7Chen JQ, Yager JD, Russo J. Regulation of mitochondrial respiratory chainstructure and function by estrogens/estrogen receptors and potentialphysiological/pathophysiological implications. Biochim Biophys Acta.2005,1746(1):1-17
    8Ghezzi D, Zeviani M. Assembly factors of human mitochondrialrespiratory chain complexes: physiology and pathophysiology. Adv ExpMed Biol.2012,748:65-106
    9Shoubridge EA, Wai T. Mitochondrial DNA and the mammalian oocyte.Curr Top Dev Biol.2007,77:87-111.
    10Porter RK, Brand MD.Mitochondrial proton conductance and H+/O ratioare independent of electron transport rate in isolated hepatocytes.BiochemJ.1995,310(2):379-82
    11Zhang Y, Wang M, Li H, et al. Accumulation of nuclear and mitochondrialDNA damage in the frontal cortex cells of patients with HIV-associatedneurocognitive disorders. Brain Res.2012,1458(6):1-11
    12Wei YH, Lu CY, Wei CY, et al. Oxidative Stress in Human Aging andMitochondrial Disease-Consequences of Defective MitochondrialRespiration and Impaired Antioxidant Enzyme System. Chin J Physiol.
    2001Mar31;44(1):1-11
    13Selivanov VA, Votyakova TV, Pivtoraiko VN, et al. Reactive oxygenspecies production by forward and reverse electron fluxes in themitochondrial respiratory chain. PLoS Comput Biol.2011,7(3):e1001115
    14Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology ofageing. Nature.2000,408(6809):239-247
    15Van Houten B, Woshner V, Santos JH. Role of mitochondrial DNA in toxicresponses to oxidative stress. DNA Repair (Amst).2006,5(2):145-152
    16Voets AM, Huigsloot M, Lindsey PJ, et al. Transcriptional changes inOXPHOS complex I deficiency are related to anti-oxidant pathways andcould explain the disturbed calcium homeostasis.Biochim Biophys Acta.2012,1822(7):1161-1168
    17Castro Mdel R, Suarez E, Kraiselburd E, et al. Aging increasesmitochondrial DNA damage and oxidative stress in liver of rhesusmonkeys.Exp Gerontol.2012,47(1):29-37
    18Alexeyev MF. Is there more to aging than mitochondrial DNA andreactive oxygen species? FEBS J.2009,276(20):5768-5787
    19Andreazza AC, Shao L, Wang JF, et al. Mitochondrial complex I activityand oxidative damage to mitochondrial proteins in the prefrontal cortex ofpatients with bipolar disorder. Arch Gen Psychiatry.2010,67(4):360-368
    20Vajrala V, Claycomb JR, Sanabria H, et al. Effects of Oscillatory ElectricFields on Internal Membranes: An Analytical Model. Biophys J.2008,94(6):2043-2052
    21Kirkinezos IG, Bacman SR, Hernandez D, et al. Cytochrome c associationwith the inner mitochondrial membrane is impaired in the CNS ofG93A-SOD1mice.J Neurosci.2005,25(1):164-172
    22Stewart VC, Heales SJ. Nitric oxide-induced mitochondrial dysfunctionimplications for neurodegeneration. Free Radic Biol Med.2003,34(3):287-303
    23Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants innormal physiological functions and human disease. Int J Biochem CellBiol.2007,39(1):44-84
    24Sultana R, Poon HF, Cai J, et al. Identification of nitrated proteins inAlzheimer's disease brain using a redox proteomics approach. NeurobiolDis.2006,22(1):76-87
    25Beal MF. Energetics in the pathogenesis of neurodegenerativediseases.Trends Neurosci.2000,23(7):298-304
    26傅继东,杨黄恬.心肌细胞发育过程中胞浆内钙稳态的调控.生理学报,2006,58(2):95-103.
    27Martín M, Macías M, Escames G, et al. Melatonin-induced increasedactivity of the respiratory chain complexes I and IV can preventmitochondrial damage induced by ruthenium red in vivo. J Pineal Res.2000,28(4):242-248
    28Chang Y, Huang SK, Wang SJ. Coenzyme Q10inhibits the release ofglutamate in rat cerebrocortical nerve terminals by suppression ofvoltage-dependent calcium influx and mitogen-activated protein kinasesignaling pathway. J Agric Food Chem.2012,60(48):11909-11918
    29Martel MA, Soriano FX, Baxter P, et al. Inhibiting pro-death NMDAreceptor signaling dependent on the NR2PDZ ligand may not affectsynaptic function or synaptic NMDA receptor signaling to gene expression.Channels (Austin).2009,3(1):12-15
    30Mattson MP. Calcium and neurodegeneration. Aging Cell,2007,6(3):337-350
    31Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat RevNeurosci.2006,7(4):278-294
    32Toescu EC. Normal brain ageing: models and mechanisms. Philos Trans RSoc Lond B Biol Sci.2005Dec29;360(1464):2347-2354
    33Van der Vliet A, Hoen PA, Wong PS, Bast A, Cross CE. Formation ofS-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitritewith elimination of hydrogen peroxide.J Biol Chem.1998Nov13;273(46):30255-30262
    34Joshi G, Sultana R, Perluigi M, Butterfield DA. In vivo protection ofsynaptosomes from oxidative stress mediated by Fe2+/H2O2or2,2-azobis-(2-amidinopropane) dihydrochloride by the glutathione mimetictricyclodecan-9-yl-xanthogenate. Free Radic Biol Med.2005,38(8):1023-1031
    35Ross WN.Understanding calcium waves and sparks in central neurons. NatRev Neurosci.2012,13(3):157-168
    36Martin LJ. The mitochondrial permeability transition pore: A moleculartarget for amyotrophic lateral sclerosis therapy. Biochim BiophysActa.2010,1802(1):186-197
    37Szeto HH. Mitochondria-Targeted Peptide Antioxidants: NovelNeuroprotective Agents. AAPS J.2006,8(3):E521-531
    38Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, PakayJL, Parker N. Mitochondrial superoxide: production, biological effects,and activation of uncoupling proteins. Free Radic Biol Med.2004,37(6):755-767
    39Zeviani M, Simonati A, Bindoff LA. Ataxia in mitochondrial disorders.Handb Clin Neurol.2012,103:359-372
    40Sas K, Robotka H, Toldi J, Vécsei L. Mitochondria, metabolicdisturbances, oxidative stress and the kynurenine system, with focus onneurodegenerative disorders. J Neurol Sci.2007,257(1-2):221-239
    41Wilson DF, Harrison DK, Vinogradov SA. Oxygen, pH, and mitochondrialoxidative phosphorylation. J Appl Physiol.2012,13(12):1838-1845
    42Hansford RG. Physiological role of mitochondrial Ca2+transport. JBioenerg Biomembr.1994,26(5):495-508
    43Nicholls DG, Budd SL. Mitochondria and Neuronal Survival. Physiol Rev.2000,80(1):315-360
    44Chinnery PF, Elliott HR, Hudson G, Samuels DC, Relton CL. Int JEpidemiol.2012,41(1):177-187
    45Schon EA, Manfredi G.Neuronal degeneration and mitochondrialdysfunction. J Clin Invest.2003,111(3):303-312
    46Kasote DM, Hegde MV, Katyare SS. Mitochondrial dysfunction inpsychiatric and neurological diseases: Cause(s), consequence(s), andimplications of antioxidant therapy. Biofactors.2013Mar5. doi:10.1002/biof.1093.[Epub ahead of print] PMID:23460132
    47Wojda U, Salinska E, Kuznicki J. Calcium ions in neuronal degeneration.IUBMB Life.2008,60(9):575-590
    48Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases. Nature.2006,443(7113):787-795
    49Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG.Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’samyloid precursor protein impairs mitochondrial function in neuronal cells.J Cell Biol.2003,161(1):41-54
    50Giasson BI, Ischiropoulos H, Lee VM, Trojanowski JQ. The relationshipbetween oxidative/nitrative stress and pathological inclusions inAlzheimer’s and Parkinson’s diseases. Free Radic Biol Med.2002,32(12):1264-1275
    51Andersen JK. Oxidative stress in neurodegeneration: cause or consequence?Nat Med.2004,10Suppl: S18-25
    52Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C,Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF,Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H.ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’sdisease. Science.2004,304(5669):448-452
    53Dumont M, Ho DJ, Calingasan NY, et al. Mitochondrial dihydrolipoylsuccinyltransferase deficiency accelerates amyloid pathology and memorydeficit in a transgenic mouse model of amyloid deposition. Free RadicBiol Med.2009,47(7):1019-1027
    54Shi Q, Xu H, Yu H, Zhang N, Ye Y, Estevez AG, Deng H, Gibson GE.Inactivation and reactivation of the mitochondrial α-ketoglutaratedehydrogenase complex. J Biol Chem.201,286(20):17640-17648
    55Coskun PE, Beal MF, Wallace DC. Alzheimer’s brains harbor somaticmtDNA control-region mutations that suppress mitochondrial transcriptionand replication. Proc Natl Acad Sci U S A.2004,101(29):10726-10731
    56Reddy PH. Mitochondrial Oxidative Damage in Aging and Alzheimer’sdisease: Implications for Mitochondrially Targeted AntioxidantTherapeutics. J Biomed Biotechnol.2006,2006(3):31372
    57Tranah GJ, Nalls MA, Katzman SM, et al. Mitochondrial DNA sequencevariation associated with dementia and cognitive function in the elderly. JAlzheimers Dis.2012,32(2):357-372
    58Estrada LD, Zanlungo SM, Alvarez AR. C-Abl tyrosine kinase signaling: anew player in AD tau pathology. Curr Alzheimer Res.2011,8(6):643-51
    59Cancino GI, Perez de Arce K, Castro PU, et al. c-Abl tyrosine kinasemodulates tau pathology and Cdk5phosphorylation in AD transgenicmice.Neurobiol Aging.2011,32(7):1249-1261
    60Jing Z, Caltagarone J, Bowser R. Altered subcellular distribution of c-Ablin Alzheimer's disease.J Alzheimers Dis.2009,17(2):409-422
    61Zivkovi L, Spremo-Potparevi B, Siedlak SL, et al. DNA Damage inAlzheimer Disease Lymphocytes and Its Relation to PrematureCentromere Division. Neurodegener Dis.2013Feb13.[Epub ahead ofprint] PMID:23406622
    62López-Erauskin J, Galino J, Bianchi P, et al. Oxidative stress modulatesmitochondrial failure and cyclophilin D function in X-linkedadrenoleukodystrophy.Brain.2012,135(12):3584-3598
    63Akhtar MW, Sunico CR, Nakamura T, et al. Redox Regulation of ProteinFunction via Cysteine S-Nitrosylation and Its Relevance toNeurodegenerative Diseases. Int J Cell Biol.2012,2012:463756
    64Bemporad F, Chiti F. Protein misfolded oligomers: experimentalapproaches, mechanism of formation, and structure-toxicity relationships.Chem Biol.2012,19(3):315-327
    65Gonfloni S, Maiani E, Di Bartolomeo C, Diederich M, Cesareni G.Oxidative Stress, DNA Damage, and c-Abl Signaling: At the Crossroad inNeurodegenerative Diseases? Int J Cell Biol.2012,2012:683097.
    66Cho DH, Nakamura T, Fang J, et al. S-nitrosylation of Drp1mediatesbeta-amyloid-related mitochondrial fission and neuronal injury.Science.2009,324(5923):102-105
    67齐孟和,胡金凤,宁娜,等.蛋白质巯基亚硝基化与神经退行性疾病.中国药理学通报,2012,28(1):1-4
    68Nakamura T, Cho DH, Lipton SA. Redox regulation of protein misfolding,mitochondrial dysfunction, synaptic damage, and cell death inneurodegenerative diseases. Exp Neurol.2012Nov;238(1):12-21. doi:10.1016/j.expneurol.2012.06.032. Epub2012Jul5. PMID:22771760
    69Feeney CJ, Frantseva MV, Carlen PL, Pennefather PS, Shulyakova N,Shniffer C, Mills LR. Vulnerability of glial cells to hydrogen peroxide incultured hippocampal slices. Brain Res.2008Mar10;1198:1-15. doi:10.1016/j.brainres.2007.12.049. Epub2008Jan3.PMID:18261717
    70Giasson BI, Lee VM. A new link between pesticides and Parkinson'sdisease. Nat Neurosci.2000,3(12):1227-1228
    71乔森,罗建红,金静华. α-Synuclein诱发的小胶质细胞激活在帕金森病发生发展中的作用.浙江大学学报(医学版)2012,41(2):210-214
    72Abeliovich A. Parkinson's disease: Mitochondrial damage control.Nature.2010,463(7282):744-745
    73Matsui H, Gavinio R, Asano T, Uemura N, Ito H, Taniguchi Y, KobayashiY, Maki T, Shen J, Takeda S, Uemura K, Yamakado H, Takahashi R.PINK1and Parkin complementarily protect dopaminergic neurons invertebrates. Hum Mol Genet.2013Mar6.[Epub ahead of print] PMID:23449626
    74Momb J, Lewandowski JP, Bryant JD, et al. Deletion of Mthfd1l causesembryonic lethality and neural tube and craniofacial defects in mice. ProcNatl Acad Sci U S A.2013,110(2):549-554
    75Alleyne T, Mohan N, Adogwa A. Elevated ferric, calcium and magnesiumions in the brain induce protein aggregation in brain mitochondria. WestIndian Med J.2012,61(2):122-127
    76Chaturvedi RK, Beal MF. Mitochondria targeted therapeutic approaches inParkinson's and Huntington's diseases. Mol Cell Neurosci.2013,55(7):101-114
    77Puschmann A. Monogenic Parkinson's disease and Parkinsonism: Clinicalphenotypes and frequencies of known mutations. Parkinsonism RelatDisord.2013,19(4):407-415
    78Plaitakis A, Zaganas I, Spanaki C. Deregulation of glutamatedehydrogenase in human neurologic disorders. J Neurosci Res.2013Mar6.doi:10.1002/jnr.23176.[Epub ahead of print] PMID:23463419
    79Ciccone S, Maiani E, Bellusci G, Diederich M, Gonfloni S. Parkinson’sDisease: a complex interplay of mitochondrial DNA alterations andoxidative stress. Int J Mol Sci.2013,4(2):2388-2409
    80Duplan E, Giaime E, Viotti J, et al. ER-stress-associated functional linkbetween Parkin and DJ-1via a transcriptional cascade involving the tumorsuppressor p53and the spliced X-box binding protein XBP-1. J Cell Sci.
    2013Feb27.[Epub ahead of print] PMID:23447676
    81Song S, Jang S, Park J, et al. Characterization of PINK1(PTEN-inducedPutative Kinase1) Mutations Associated with Parkinson Disease inMammalian Cells and Drosophila. J Biol Chem.2013,288(8):5660-5672
    82Lenzi P, Marongiu R, Falleni A, Gelmetti V, Busceti CL, Michiorri S,Valente EM, Fornai F. A subcellular analysis of genetic modulation ofPINK1on mitochondrial alterations, autophagy and cell death. Arch ItalBiol.2012,150(2-3):194-217
    83Cartier AE, Ubhi K, Spencer B, Vazquez-Roque RA, Kosberg KA,Fourgeaud L, Kanayson P, Patrick C, Rockenstein E, Patrick GN, MasliahE. Differential effects of UCHL1modulation on alpha-synuclein inPD-like models of alpha-synucleinopathy. PLoS One.2012;7(4):e34713
    84Shimshek DR, Schweizer T, Schmid P, van der Putten PH. Excessα-synuclein worsens disease in mice lacking ubiquitin carboxy-terminalhydrolase L1. Sci Rep.2012,2:262
    85姜宇,曾水林,鲁佑瑜,等.GDNF促进帕金森病大鼠模型脑内移植的中脑源神经干细胞表达Pitx3、Nurr1和TH.神经解剖学杂志,2011,27(1):92-97
    86Federoff HJ. Nur (R1) turing a notion on the etiopathogenesis ofParkinson's disease. Neurotox Res.2009,16(3):261-270
    87Lin X, Parisiadou L, Sgobio C, et al. Conditional expression of Parkinson'sdisease-related mutant α-synuclein in the midbrain dopaminergic neuronscauses progressive neurodegeneration and degradation of transcriptionfactor nuclear receptor related1. J Neurosci.2012,32(27):9248-9264
    88Lin CH, Chen ML, Chen GS, et al. Novel variant Pro143Ala in HTRA2contributes to Parkinson's disease by inducing hyperpho-sphorylation ofHTRA2protein in mitochondria. Hum Genet.2011,130(6):817-827
    89Aasly JO, Shi M, Sossi V, et al. Cerebrospinal fluid amyloid β and tau inLRRK2mutation carriers. Neurology.2012,78(1):55-61
    90Vandrovcova J, Anaya F, Kay V, et al. Disentangling the role of the taugene locus in sporadic tauopathies. Curr Alzheimer Res.2010,7(8):726-734
    91Coskun P, Wyrembak J, Schriner SE, et al. A mitochondrial etiology ofAlzheimer and Parkinson disease. Biochim Biophys Acta.2012,1820(5):553-564
    92Obeso JA, Rodriguez-Oroz MC, Goetz CG, et al. Missing pieces in theParkinson's disease puzzle. Nat Med.2010,6(6):653-661
    93Choong CJ, Say YH. Neuroprotection of α-synuclein under acute andchronic rotenone and maneb treatment is abolished by its familialParkinson's disease mutations A30P, A53T and E46K.Neurotoxicology.2011,32(6):857-863
    94Vila M, Ramonet D, Perier C. Mitochondrial alterations in Parkinson'sdisease: new clues. J Neurochem.2008,107(2):317-328
    95Horowitz MP, Greenamyre JT. Clin Pharmacol Ther. Gene-environmentinteractions in Parkinson's disease: the importance of animal modeling.2010,88(4):467-474
    96Clark LN, Haamer E, Mejia-Santana H, et al. Construction and validationof a Parkinson's disease mutation genotyping array for the Parkin gene.Mov Disord.2007,22(7):932-937
    97Lee HJ, Patel S, Lee SJ. Intravesicular localization and exocytosis ofalpha-synuclein and its aggregates. J Neurosci.2005,25(25):6016-6024
    98Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, L?mmermann K,Brunner B, Kurz-Drexler A, Vogel F, Reichert AS, Bouman L,Vogt-Weisenhorn D, Wurst W, Tatzelt J, Haass C, Winklhofer KF. Lossof parkin or PINK1function increases Drp1-dependent mitochondrialfragmentation. J Biol Chem.2009,284(34):22938-22951
    99Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin-induced mitophagy inthe pathogenesis of Parkinson disease. Autophagy.2009,5(5):706-708
    100Var in M, Bentea E, Michotte Y, Sarre S. Oxidative Stress in GeneticMouse Models of Parkinson’s Disease. Oxid Med Cell Longev.2012,2012:624925
    101Manfredi G, Xu Z. Mitochondrial dysfunction and its role in motor neurondegeneration in ALS. Mitochondrion.2005,5(2):77-87
    102Cacciatore I, Baldassarre L, Fornasari E, Mollica A, Pinnen F. Recentadvances in the treatment of neurodegenerative diseases based on GSHdelivery systems. Oxid Med Cell Longev.2012,2012:240146
    103Kumar H, Lim HW, More SV, Kim BW, Koppula S, Kim IS, Choi DK.The role of free radicals in the aging brain and Parkinson's disease:convergence and parallelism. Int J Mol Sci.2012,13(8):10478-10504
    104Lin TK, Cheng CH, Chen SD, Liou CW, Huang CR, Chuang YC.Mitochondrial Dysfunction and Oxidative Stress Promote Apoptotic CellDeath in the Striatum via Cytochrome c/Caspase-3Signaling CascadeFollowing Chronic Rotenone Intoxication in Rats. Int J Mol Sci.2012,13(7):8722-8739
    105Schapira, AH. Mitochondria in the aetiology and pathogenesis ofParkinson’s disease. Lancet Neurol.2008,7(1):97-109
    106Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A,Donaldson D, Goto J, O'Regan JP, Deng HX, et al. Mutations in Cu/Znsuperoxide dismutase gene are associated with familial amyotrophic lateralsclerosis. Nature.1993,364(6435):362
    107Ferri A, Cozzolino M, Crosio C, Nencini M, Casciati A, Gralla EB, RotilioG, Valentine JS, Carrì MT. Familial ALS-superoxide dismutasesassociate with mitochondria and shift their redox potentials. Proc NatlAcad Sci U S A.2006,3(37):13860-13865
    108Sasaki S, Iwata M.. Mitochondrial alterations in the spinal cord of patientswith sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol.2007,66(1):10-16
    109Sasaki S, Warita H, Murakami T, Shibata N, Komori T, Abe K, KobayashiM, Iwata M. Ultrastructural study of aggregates in the spinal cord oftransgenic mice with a G93A mutant SOD1gene. Acta Neuropathol.2005,109(3):247-55
    110Israelson A, Arbel N, Da Cruz S, Ilieva H, Yamanaka K, Shoshan-BarmatzV, Cleveland DW. Misfolded mutant SOD1directly inhibits VDAC1conductance in a mouse model of inherited ALS. Neuron.2010,67(4):575-587
    111Magrané J, Manfredi G.. Mitochondrial function, morphology, and axonaltransport in amyotrophic lateral sclerosis. Antioxid Redox Signal.2009,11(7):1615-1626
    112Kawamata H, Manfredi G. Mitochondrial dysfunction and intracellularcalcium dysregulation in ALS. Mech Ageing Dev.2010,131(7-8):517-526
    113Corti S, Donadoni C, Ronchi D, Bordoni A, Fortunato F, Santoro D, DelBo R, Lucchini V, Crugnola V, Papadimitriou D, Salani S, Moggio M,Bresolin N, Comi GP. Amyotrophic lateral sclerosis linked to a novelSOD1mutation with muscle mitochondrial dysfunction. J Neurol Sci.2009,276(1-2):170-174
    114Menzies FM, Ince PG, Shaw PJ. Mitochondrial involvement inamyotrophic lateral sclerosis, Neurochem. Int.2002,40(6):543-551
    115Sasaki S, Horie Y, Iwata M. Mitochondrial alterations in dorsal rootganglion cells in sporadic amyotrophic lateral sclerosis. ActaNeuropathol.2007,114(6):633-639
    116Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis ofAlzheimer’s disease? Brain Res Brain Res Rev.2005,49(3):618-632
    117Helguera P, Seiglie J, Rodriguez J, et al. Adaptive downregulation ofmitochondrial function in down syndrome. Cell Metab.2013,17(1):132-140
    118Siddiqui A, Rivera-Sánchez S, Castro Mdel R, Acevedo-Torres K, Rane A,Torres-Ramos CA, Nicholls DG, Andersen JK, Ayala-TorresS.Mitochondrial DNA damage is associated with reduced mitochondrialbioenergetics in Huntington's disease.Free Radic Biol Med.2012,53(7):1478-1488
    119Marobbio CM, Pisano I, Porcelli V, Lasorsa FM, Palmieri L. Rapamycinreduces oxidative stress in frataxin-deficient yeast cells. Mitochondrion.2012,12(1):156-161
    120Xia H, Cao Y, Dai X, Marelja Z, Zhou D, Mo R, Al-Mahdawi S, PookMA, Leimkühler S, Rouault TA, Li K. Novel frataxin isoforms maycontribute to the pathological mechanism of friedreich ataxia. PLoS One.2012,7(10):e47847
    121Santos R, Lefevre S, Sliwa D, et al. Friedreich ataxia: molecularmechanisms, redox considerations, and therapeutic opportunities.AntioxidRedox Signal.2010,13(5):651-690
    122Cooper JM, Korlipara LV, Hart PE, Bradley JL, Schapira AH. CoenzymeQ10and vitamin E deficiency in Friedreich's ataxia: predictor of efficacyof vitamin E and coenzyme Q10therapy. Eur J Neurol.2008,15(12):1371-1379
    123Murphy MP. Targeting lipophilic cations to mitochondria.BiochimBiophys Acta.2008,1777(7-8):1028-1031
    124Moreira PI, Zhu X, Wang X, Lee HG, Nunomura A, Petersen RB, Perry G,Smith MA. Mitochondria: a therapeutic target in neurodegenera-tion.Biochim Biophys Acta.2010,1802(1):212-220
    125Herrero MT, Pagonabarraga J, Linazasoro G. Neuroprotective role ofdopamine agonists: evidence from animal models and clinical studies.Neurologist.2011,17(6Suppl1):S54-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700