橄榄石LiFePO_4作为锂二次电池正极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了缓解石油危机和减少内燃机交通工具给城市环境带来的污染,电动车从上世纪末开始,取得了飞速的发展。随着电动车对比能量要求的不断提高,高能锂二次电池日渐吸引着电动车生产商的目光,但安全性和价格成为其实际应用的两大主要问题。橄榄石结构的LiFePO4,由于其原料丰富、成本低、无毒、优异的热稳定性和安全性、较好的电化学性能和高比容量等优点,被认为是最有希望应用于电动车电池的正极材料。但LiFePO4在电子导电率和锂离子扩散速率上的不足是其大规模实用化必须首先解决的问题。鉴于LiFePO4材料巨大的应用潜力,本文以其为研究对象,在优化合成方法的基础上,进一步对电化学性能进行了研究。主要研究工作总结如下:
     1.橄榄石结构LiMPO4的高温固相法合成及其电化学性能研究
     采用高温固相法,在350℃预烧5h,650℃煅烧8h的最优条件下,所合成的纯LiFePO4材料在室温下首周可以给出136.4mAh/g,的容量;尽管在60℃下放电容量达到160.8mAh/g,但循环性能较差;CV和EIS结果表明,随着循环进行,电极的反应活性降低,电化学反应极化增加。通过研究不同掺杂离子对LiFePO4材料性能的影响发现,采用Mg2+取代1%Fe2+可以有效提高材料的循环性能,而这一改善主要归结于取代后材料的电化学反应活性得到提高。在LiFePO4材料表面包覆碳也可以有效提高其电化学性能,但是碳含量的不同,将对LiFePO4性能产生不同的影响,当碳含量为4.39wt%时,LiFePO4/C材料具有最佳的综合电化学性能。与以上掺杂元素不同,由于LiMnPO4具有与LiFePO4相同的橄榄石结构,LiFe1-xMnxPO4/C在0     2.LiFePO4材料的水热法合成
     以LiOH·H2O、FeSO4·7H2O和H3P04为原料,添加抗坏血酸为抗氧化剂,采用水热法合成LiFePO4材料。在pH值7.01到9.53的范围内合成的样品均为纯相的LiFePO4,产物结晶度随水热温度的提高而增加,比较不同条件下得到的水热样品发现,当浓度是0.5M(以Fe2+浓度计)时,200℃下水热6h得到的样品具有较好的结晶度和电化学性能。TG结果表明水热合成的LiFePO4含有约0.72wt% H2O;高温煅烧可以有效除去水热样品中的吸附水和结晶水,并且能提高LiFePO4的结晶度和电化学活性;同时,若在高温煅烧时添加葡萄糖,可以进一步提高样品的电化学性能。在水热过程中,加入不同类型的表面活性剂对水热样品的形貌和电化学性能的影响不同,阳离子表面活性剂CTAB的添加效果较非离子表面活性剂PEG400或阴离子表面活性剂SDS好;随着CTAB浓度增加,合成的样品分散性变好,放电比容量提高,当CTAB浓度大于40mmol/L时,比容量基本不再增加;CTAB表面活性剂对材料性能的改善作用主要缘于它能够增加样品颗粒的分散性,并影响最终产物的形貌;通过改变水热原料发现,采用LiAc+NH4H2PO4+FeSO4为原料合成的样品中含有杂质;采用LiOH+H3PO4+FeSO4为原料所合成的LiFePO4样品首周比容量最高,而采用LiOH+NH4H2PO4+FeSO4为原料所合成的LiFePO4具有最好的循环性能。
     3. LiFePO4/C材料的微波法合成
     采用FePO4-4H2O与LiOH-H2O做原料,以葡萄糖做碳源和还原剂,微波加热2-7min即可以合成LiFePO4/C材料;合成样品的粒径随着微波时间的延长而烧结长大。其中微波加热4min的样品颗粒分布均一并具有最佳的电化学性能。与高温固相煅烧合成的样品相比,微波法合成的样品粒径更小,电化学反应电阻较低,并且容量更高;但由于微波加热时间短,包覆碳的石墨化程度低,导电性有所不足。微波法合成的LiFePO4/C材料中含有少量的三价铁杂质,随着微波加热时间的不同,杂质相也发生相应演变。微波加热时间2-4min得到的样品中杂质主要为三价铁反应中间物,随着微波加热时间延长到5min以上,三价铁中间体减少,而Li3Fe2(PO4)3杂质增多。进一步在650℃下煅烧1h可以有效除去这些三价铁杂质。采用Fe203与Li2CO3和NH4H2PO4为原料,以葡萄糖做为碳源和还原剂,微波加热5min可以合成LiFePO4/C材料,但是所得到的样品中含有一定的杂质,并且烧结成较大的颗粒,即使采用纳米Fe2O3前体也无法明显改善颗粒形貌;而以纳米FePO4为原料,可以得到纳米LiFePO4/C,但是性能并未显著提高。
     4. LiFePO4和LiFePO4/C的储存性能研究
     从结构和电化学两方面研究了包覆碳的LiFePO4/C和纯LiFePO4在不同条件下的储存性能。实验结果表明,环境的温度和湿度对LiFePO4/C样品存储后的物相和电化学性能起着关键作用。在50℃、Ar气或干燥空气,以及室温敞口存储时,LiFePO4/C样品的电化学性能变化不明显,而在50℃饱和蒸汽下存储12周后,样品在首周充放电中显示出较低的充电容量和异常的充放电效率。结构分析表明贮存后LiFePO4/C样品电化学行为的异常与杂质的生成有着直接联系。XRD和FTIR结果说明LiFePO4/C在50℃饱和蒸汽条件下存储时发生脱锂反应,LiFePO4脱锂生成橄榄石FePO4和Li3PO4杂质,并且杂质含量随着存储时间延长而增加。提高贮存温度,LiFePO4/C在存储时的脱锂反应速度加快,由此也带来了更多的负面影响,除杂质含量和首周效率进一步提升外,循环性也有所恶化。未包覆碳的LiFePO4与LiFePO4/C在贮存过程中的反应机理不同,尽管通过现有的结构分析,我们无法确认LiFePO4在湿热环境中贮存前后所发生的具体的结构变化,但是电化学测试的结果表明,80℃饱和蒸汽下的存储使LiFePO4的容量和循环性能均显著恶化,但这些电化学性质的衰退并非由橄榄石FePO4的生成而导致。结构和电化学表征都说明将存储后的样品在650℃下煅烧1h可以有效除去样品中的杂质,并使材料的结构和电化学性能基本得以恢复。在研究贮存稳定性的基础上,我们进一步研究了LiFePO4和LiFePO4/C的热稳定性,实验发现,两者的热稳定性明显不同,由于LiFePO4/C样品具有较高的比表面积和较小的原始颗粒,同样是300℃下、3h空气氛中的热处理,将使得LiFePO4/C的氧化程度更高,结构的破坏和电化学性能的衰退也更加显著。
The development of electric vehicle is recognized as one of the most effective way to alleviate the oil crisis and the urban air pollution originating from the internal-combustion engine. Because of its higher energy density, lithium ion battery is the preferred battery for the electric vehicle or hybrid electric vehicle, but the safety and cost are two main obstacles for its practical use. Because of the high abundance of raw materials and the low cost, non-toxicity, excellent thermal stability and safety, good electrochemical performance and high specific capacity, the olivine LiFePO4 is accepted as the most promising cathode material for the EV/HEV usage, but its shortcomings of low electric conductivity and slow lithium diffusion need to be overcome before its larger scale application. In view of its potential use in the near future, LiFePO4 material was chosen as our investigation object. The main results are summarized as follows:
     1. Synthesis of olivine LiMPO4 by high temperature solid-state reaction and the investigation on its electrochemical properties
     The phase-pure LiFePO4 was prepared by high temperature solid-state method. Presintering at 350℃for 5hrs followed by a final calcination at 650℃for 8hrs was revealed as the optimized preparation condition and thus-obtained sample can deliver 136.4mAh/g at the room temperature and 160.8mAh/g at 60℃in its first cycle. However, its capacity retentivity is poor; and the results from CV and EIS tests indicate that along with the repeated charge/discharge, the reactivity of the electrode decreases accompanied by the increased polarization. Substituting 1% Mg2+ for Fe2+ can effectively enhance the cycleability of LiFePO4 material because that doping improves the electrochemical reactivity of the material. Coating LiFePO4 with conductive carbon is another effective way to improve the electrochemical properties of LiFePO4, but the electrochemical property of LiFePO4/C is also greatly influenced by the content of carbon. Careful comparison indicates that the LiFePO4/C material with 4.39wt% carbon has the best performance. As LiMnPO4 has the same olivine structure as LiFePO4, it can form a homogeneous solid solution with LiFePO4 in a wide content range and the obtained sample shows increased cell parameters with increasing x value in the solid solution of LiMnxFe1-xP04. Electrochemical measurements show that the higher Mn content in the LiMnxFe1-xP04 phase results to a degraded electrochemical performance.
     2. Hydrothermal synthesis of LiFePO4 and its relative investigation
     The LiFePO4 material can be successfully synthesized by hydrothermal method using LiOH-H2O、FeSO4·7H2O and H3PO4 as the raw materials and the ascorbic acid as the antioxidant addition. The phase-pure LiFePO4 can be prepared when the pH value is between 7.01 and 9.53, and the crystallinity of the final product increases as the hydrothermal temperature increases. Comparison of the LiFePO4 samples prepared under different conditions shows that when the mixture solution with the Fe2+ concentration of 0.5M was hydrothermally heated at 200℃for 6h, the best electrochemical performance can be achieved. The TG analysis tells that LiFePO4 prepared by the hydrothermal method contains 0.72wt% H2O. A calcination of the hydrothermal sample can effectively remove the water, it also brings an increased crystallinity and improved electrochemical reactivity of LiFePO4. Further investigation shows that if the hydrothermal sample is calcined with glucose, the electrochemical performance of the final product can be greatly enhanced. Addition of the surfactants in the hydrothermal solution has some effects on the morphology and the electrochemical performance of the LiFePO4 sample. It is revealed that among different surfactants, such as CTAB, PEG400 or SDS, adding the cationic surfactant of CTAB in the hydrothermal solution leads to the most notable improvement in the particle morphology. It is found that the addition of CTAB helps to better disperse the particles, and with the increasing CTAB concentration, the discharge capacity of the final product gradually increases until the CTAB concentration reaches 40mmol/L. The influence of different starting material was also studied. It is shown that when choosing LiAc+NH4H2PO4+FeSO4 as the raw materials, impurities are generated in the final product; while using LiOH+H3PO4+FeSO4 or LiOH+NH4H2PO4+FeSO4 as the raw materials leads to the highest first discharge capacity or best cycleability, respectively.
     3. Microwave synthesis of LiFePO4/C materials and its relative investigation
     LiFePO4/C was synthesized by microwave heating for 2-7minutes, using the FePO4·4H2O and LiOH·H2O as the starting materials and the glucose as the reductant. A longer microwave heating time results to a larger particle size. SEM and particle size analysis tell that 4min-microwave heating leads to the formation of LiFePO4/C sample with narrowly distributed particle size and good electrochemical performance. Comparing with the LiFePO4/C prepared by solid-state reaction, the sample derived by the microwave method has a smaller particle size, smaller reactive resistance (Rct) and a larger discharge capacity. However, it is also found that the short microwave heating time also results to the relatively lower degree of graphitization and the obtaining of less conductive carbon. The LiFePO4/C synthesized by microwave method usually contains some ferric impurities, and the type of the impurity changes with the heating time. During a short microwave heating, the ferric intermediate is the major impurity phase; while the microwave heating longer than 5min favors the formation of Li3Fe2(PO4)3 impurity. These ferric impurities can be effectively removed by a further calcination at 650℃for 1h. Microwave heating the mixture of Fe2O3, Li2CO3, NH4H2PO4 and glucose also leads to the formation of LiFePOVC, but the product has large particle size and contains some impurities even starting from the nanosized precursor. Replacing nano-Fe2O3 by nano-FePO4 precursor results to the obtaining of nano-sized LiFePO4/C, but the electrochemical property does not greatly change.
     4. Investigation on the storage properties of LiFePO4/C and bare LiFePO4
     The storage properties of LiFePO4/C and bare LiFePO4 are investigated in detail. Storage tests under different conditions tell us that moisture and temperature in the storing environment has the most profound effect on the structure as well as the electrochemical property of LiFePO4/C. When storing LiFePO4/C in dry Ar or dry air, its structure or electrochemical almost remain unchanged; while exposing LiFePO4/C to saturated humidity air at 50℃for 12 weeks, its initial charging capacity decreases and the efficiency in the first cycle reaches 125%. This negative effect is found to be originated from the spontaneous delithiation and thus-resulted impurity formation. From FT-IR and XRD measurements, we directly observe the formation of olivine FePO4 and Li3PO4 during the storage in humid-hot air, and it is further confirmed that lithium extraction occurs in different degree depending on the storing time. Increasing temperature is found to favor the delithiation reaction. In the case that the LiFePO4/C sample is stored in saturated humidity air at 80℃, an 8-weeks storing will cause 18% delithiation, greatly shrunk initial charging capacity and degraded cycling stability. Storage tests of bare LiFePO4 indicate that unlike LiFePO4/C, exposing LiFePO4 to humid-hot air will not lead to the formation of olivine FePO4 and the aging mechanism for LiFePO4 differs from that of LiFePO4/C. XRD and FTIR measurements reveal no detectable structural changes in bare LiFePO4 after exposure to saturated humidity air at 80℃for 8 weeks; however, cycling tests show that the storage results in a notable degradation in the initial charging/discharging capacity and capacity retentivity. Although lithium extraction is unavoidable and significant once LiFePO4/C is stored in a humid-hot environment, thus-induced structure heterogeneity can be repaired by a re-calcination treatment. Re-calcining the stored LiFePO4/C sample at 650℃in H2/Ar for lhour, its structure and charging/discharging behavior both recover to the primitive state. Besides the storage behavior, we also investigated the thermal stability of LiFePO4 and LiFePO4/C. It is found that, comparing with bare LiFePO4 LiFePO4/C shows more serious structure damage and more notable deterioration in the electrochemical property after being heated at 300℃in air. These differences should be explained by different specific surface area.
引文
[1].吴宇平;万春荣;姜长印;李建军;李阳兴,金属锂二次电池的研究进展.功能材料,2000,31,(5),449-452.
    [2]. Armand, M. and Tarascon, J.M., Building better batteries. Nature 2008,451,(7179), 652-657.
    [3]. Tarascon, J. M. and Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature,2001,414, (6861),359-367.
    [4].戴永年;杨斌;马文会;李伟宏;胡成林,锂离子电池和轻型电动车的发展.新材料产业,2006,9,16-18.
    [5].其鲁,中国锂二次电池正极材料的发展趋势和产业特点.新材料产业,2004,1,23.
    [6]. Alper, J., Batteries-The battery:Not yet a terminal case. Science 2002,296,(5571), 1224-1226.
    [7]. Nishi, Y., The development of lithium ion secondary batteries. Chemical Record 2001, 1,(5),406-413.
    [8]. Wakihara, M., Recent developments in lithium ion batteries. Materials Science & Engineering R-Reports 2001,33,(4),109-134.
    [9].吴萌;栾和林;姚文,锂离子电池电解液的研究进展,矿冶,2004,13,(3)57.
    [10].廖红英;程宝英;郝志强,锂离子电池电解液,新材料产业,2003,9,34.
    [11]. Wu, Y.P.; Jiang, C.; Wan, C., and Holze, R., Modified natural graphite as anode material for lithium ion batteries. Journal of Power Sources 2002,111,(2),329-334.
    [12]. Wu, Y.P.; Fang, S.B.; Jiang, Y.Y, and Holze, R., Effects of doped sulfur on electrochemical performance of carbon anode. Journal of Power Sources 2002, 108,(1-2),245-249.
    [13]. Wu, Y.P.; Jiang, C.Y.; Wan, C.R., and Tsuchida, E., Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries. Electrochemistry Communications 2000,2,(4),272-275.
    [14]. Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E., and Ein-Eli, Y., On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta 1999,45,(1-2),67-86.
    [15]. Wang, G.P.; Zhang, B.L.; Yue, M.; Xu, X.L.; Qu, M.Z., and Yu, Z.L., A modified graphite anode with high initial efficiency and excellent cycle life expectation. Solid State Ionics 2005,176,(9-10),905-909.
    [16]. Wu, X.D.; Wang, Z.X.; Chen, L.Q., and Huang, X.J., Ag-deposited mesocarbon microbeads as an anode in a lithium ion battery with propylene carbonate electrolyte. Surface & Coatings Technology 2004,186,(3),412-415.
    [17]. Alcantara, R.; Madrigal, F.J.F.; Lavela, P.; Tirado, J.L.; Mateos, J.M.J.; de Salazar, C.G.; Stoyanova, R., and Zhecheva, E., Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells. Carbon 2000,38,(7), 1031-1041
    [18].唐致远;庄新国;翟玉梅,锂离子蓄电池负极材料的研究进展,电源技术,2000,24,108.
    [19]. Ui, K.; Kikuchi, S.; Kadoma, Y.; Kumagai, N., and Ito, S., Electrochemical characteristics of Sn film prepared by pulse electrode position method as negative electrode for lithium secondary batteries. Journal of Power Sources 2009,189,(1), 224-229.
    [20]. Li, Q.Y.; Hu, S.J.; Wang, H.Q.; Wang, F.P.; Zhong, X.X., and Wang, X.Y., Study of copper foam-supported Sn thin film as a high-capacity anode for lithium-ion batteries. Electrochimica Acta 2009,54,(24),5884-5888.
    [21]. Hamon, Y.; Brousse, T.; Jousse, F.; Topart, P.; Buvat, P., and Schleich, D.M., Aluminum negative electrode in lithium ion batteries. Journal of Power Sources 2001,97-8, 185-187.
    [22]. Chan, C.K.; Ruffo, R.; Hong, S.S.; Huggins, R.A., and Cui, Y, Structural and electrochemical study of the reaction of lithium with silicon nanowires. Journal of Power Sources 2009,189,(1),34-39.
    [23]. Larcher, D.; Beattie, S.; Morcrette, M.; Edstroem, K.; Jumas, J.C., and Tarascon, J.M., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. Journal of Materials Chemistry 2007,17,(36),3759-3772.
    [24]. Wang, G.; Lu, Z.W.; Gao, X.P.; Liu, X.J., and Wang, J.Q., Electrochemical performance of La-Co-Sn alloys as anode materials for Li-ion batteries. Journal of Power Sources 2009,189,(1),655-659.
    [25]. Tabuchi, T.; Hochgatterer, N.; Ogumi, Z., and Winter, M., Ternary Sn-Sb-Co alloy film as new negative electrode for lithium-ion cells. Journal of Power Sources 2009,188,(2), 552-557.
    [26].李明;刘昊; 邓龙征,尖晶石钛酸锂及其在锂离子动力电池中的应用.新材料产业,2009,3,15-18.
    [27].司宏君;李宁,以Li4Ti5012作负极的聚合物锂离子电池的性能.电源技术2009,133(6),497-501.
    [28].其鲁;吴宁宁,材料化学技术的进步与今后的电动汽车.新材料产业,2009,2,12-15.
    [29]. Yang, J.; Wang, K., and Xie, J.Y., Ballmilling synthesis and electrochemical characterization of ternary lithium nitrides. Journal of the Electrochemical Society 2003, 150,(1), A140-A142.
    [30]. Whittingham, M.S., Lithium batteries and cathode materials. Chemical Reviews 2004, 104,(10),4271-4301.
    [31]. Gabrisch, H.; Yazami, R., and Fultz, B., Hexagonal to cubic spinel transformation in lithiated cobalt oxide-TEM investigation. Journal of the Electrochemical Society 2004, 151,(6), A891-A897.
    [32]. Rougier, A.; Gravereau, P.; Delams, C., Optimization of the composition of the Li1-zNi1+zO2 electrode materials:structural, magnetic and electrochemical studies, Journal of the Electrochemical Society 1996,143,1168.
    [33]. Ammundsen, B. and Paulsen, J., Novel lithium-ion cathode materials based on layered manganese oxides. Advanced Materials 2001,13,(12-13),943.
    [34]. Saadoune, I.; Menetrier, M.; Delmas,C., Redox processes in LixNi1-yCoyO2 cobalt-rich phases, Journal of material chemistry 1997,7,2505.
    [35]. Delmas, C.; Menetrier, M.; Croguennec, L.; Saadoune, I.; Rougier, A.; Pouillerie, C.; Prado, G.; Grune, M., and Fournes, L., An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties. Electrochimica Acta 1999,45,(1-2),243-253.
    [36]. Rougier, A.; Saasoune, I,; Gravereau, P.; Willmann, P.; Delmas, C., Effect of cobalt subsitution on cationic distribution in LiNi1-yCoyO2 electrode materials. Solid State Ionics 1996,90,83-90.
    [37]. Saadoune, Land Delmas, C., On the LixNi0.8Co0.2O2 system. Journal of Solid State Chemistry 1998,136,8.
    [38]. Saadoune, I.and Delmas, C., LiNi1-yCoyO2 positive electrode materials:relationships between the structure, physical properties and electrochemical behavior. Journal of Material Chemistry 1996,6,193.
    [39]. Zhang, F. and Whittingham, M.S., Electrochemistry of the layered manganese dioxides: AxMn1-y(Co,Ni,Fe)yO2 (A= Li, K) rate effects. Electrochemical and Solid State Letters 2000,3,(7),309-311.
    [40]. Dahbi, M.; Wikberg, J.M.; Saadoune, I.; Gustafsson, T.; Svedlindh, P., and Edstrom, K., A delithiated LiNi0.65Co0.25Mn0.10O2 electrode material:A structural, magnetic and electrochemical study. Electrochimica Acta 2009,54,(11),3211-3217.
    [41]. Ohzuku, T. and Makimura, Y, Layered lithium insertion material of LiNi1/2Mn1/2O2:A possible alternative to LiCoO2 for advanced lithium-ion batteries. Chemistry Letters 2001,(8),744-745.
    [42].甘朝伦,武汉大学博士论文,2006.
    [43]. Ohzuku, T. and Makimura, Y., Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters 2001,(7),642-643.
    [44]. Oh, S.W.; Park, S.H.; Park, C.W., and Sun, Y.K., Structural and electrochemical properties of layered Li[Nio.5Mno.5](1-X)CoxO2 positive materials synthesized by ultrasonic spray pyrolysis method. Solid State Ionics 2004,171,(3-4),167-172.
    [45]. Jouanneau, S.; MacNeil, D.D.; Lu, Z.; Beattie, S.D.; Murphy, G, and Dahn, J.R., Morphology and Safety of Li[NixCo1-2XMnx]O2 (0≤x≤1/2). Journal of the Electrochemical Society 2003,150,(10), A1299-A1304.
    [46]. Sun, Y.K.; Myung, S.T.; Park, B.C., and Amine, K., Synthesis of spherical nano-to microscale core-shell particles Li[(Ni0.8Co0.1Mn0.1)(1-x)(Ni0.5Mn0.5)(x)]O-2 and their applications to lithium batteries. Chemistry of Materials 2006,18,(22),5159-5163.
    [47]. Sun, Y.K.; Myung, S.T.; Park, B.C.; Prakash, J.; Belharouak, I., and Amine, K., High-energy cathode material for long-life and safe lithium batteries. Nature Materials 2009,8,(4),320-324.
    [48]. Xia, Y.Y. and Yoshio, M., An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds. Journal of the Electrochemical Society 1996,143,825.
    [49]. Xia, Y.Y.; Zhou, Y.H.; Yoshio, M., Capacity fading on cycling of 4V Li/LiMn2O4 cells. Journal of the Electrochemical Society 1997,144,2593.
    [50].黄可龙;王兆翔;刘素琴,锂离子电池原理与关键技术.2007,化学工业出版社,P69-75.
    [51]. Zhong, Q.M.; Bonakdarpour, A.; Zhang, M., Synthesis and Electrochemistry of LiNixMn2-xO4. Journal of the Electrochemical Society 1997,144,205.
    [52]. Arora, P.; Popov, N.; White, R.E., Electrochemical investigations of cobalt-dopped LiMn2O4 as cathode material for lithium-ion batteries. Journal of the Electrochemical Society 1998,145,807.
    [53]. Sigala, C.; Guyomard, D.; Verbaere, A., Positive electrode materials with high operating voltage for lithium batteries:LiCryMn2-yO4(0≤y≤1). Solid State Ionics,1995, 81,167.
    [54]. Aklalouch, M.; Amarilla, J.M.; Rojas, R.M.; Saadoune, I., and Rojo, J.M., Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi0.5Mn1.5O4-based positive electrode. Journal of Power Sources 2008,185,(1), 501-511.
    [55]. Padhi, A.K.; Nanjundaswamy, K.S., and Goodenough, J.B., Phospho-Olive as Positive Electrode Materials for Rechargable Lithium Batteries. Journal of the Electrochemical Society 1997,144,1188-1194
    [56]. Wolfenstine, J., Electrical conductivity of doped LiCoPO4.Journal of Power Sources 2006,158,(2),1431-1435.
    [57]. Wolfenstine, J. and Allen, J., LiNiPO4-LiCoPO4 solid solutions as cathodes. Journal of Power Sources 2004,136,(1),150-153.
    [58]. Osorio-Guillen, J.M.; Holm, B.; Ahuja, R., and Johansson, B., A theoretical study of olivine LiMPO4 cathodes. Solid State Ionics 2004,167,(3-4),221-227.
    [59]. Molenda, J.; Ojczyk, W.; Swierczek, K.; Zajac, W.; Krok, F.; Dygas, J., and Liu, R.S., Diffusional mechanism of deintercalation in LiFe1-yMnyPO4 cathode material. Solid State Ionics 2006,177,(26-32),2617-2624.
    [60]. Nyten, A. and Thomas, J.O., A neutron powder diffraction study of LiCoxFe1-xPO4 for x=0,0.25,0.40,0.60 and 0.75. Solid State Ionics 2006,177,(15-16),1327-1330.
    [61]. Wang, X.J.; Yu, X.Q.; Li, H.; Yang, X.Q.; McBreen, J., and Huang, X.J., Li-storage in LiFe1/4Mn1/4Co1/4Ni1/4PO4 solid solution. Electrochemistry Communications 2008, 10,(9),1347-1350.
    [62]. Wang, Y.G.; Wang, Y.R.; Hosono, E.J.; Wang, K.X., and Zhou, H.S., The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angewandte Chemie-International Edition 2008, 47,(39),7461-7465.
    [63].Prosini, P.P.; Lisi, M.; Zane, D., and Pasquali, M., Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 2002,148,(1-2),45-51.
    [64]. Chen, J.J.; Vacchio, M.J.; Wang, S.J.; Chernova, N.; Zavalij, P.Y., and Whittingham, M.S., The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics 2008,178,(31-32), 1676-1693.
    [65]. Yang, S.F.; Song, Y.N.; Zavalij, P.Y., and Whittingham, M.S., Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochemistry Communications 2002,4,(3),239-244.
    [66]. Song, Y.N.; Zavalij, P.Y.; Suzuki, M., and Whittingham, M.S., New iron(Ⅲ) phosphate phases:Crystal structure and electrochemical and magnetic properties. Inorganic Chemistry 2002,41,(22),5778-5786.
    [67]. Song, Y.N.; Yang, S.F.; Zavalij, P.Y., and Whittingham, M.S., Temperature-dependent properties of FePO4 cathode materials. Materials Research Bulletin 2002,37,(7), 1249-1257.
    [68]. Iyer, R.G.; Delacourt, C.; Masquelier, C.; Tarascon, J.M., and Navrotsky, A., Energetics of LiFePO4 and polymorphs of its delithiated form, FePO4. Electrochemical and Solid State Letters 2006,9,(2), A46-A48.
    [69]. Morgan, D.; Van der Ven, A., and Ceder, G, Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochemical and Solid State Letters 2004,7,(2), A30-A32.
    [70]. Ouyang, C.Y.; Shi, S.Q.; Wang, Z.X.; Huang, X.J., and Chen, L.Q., First-principles study of Li ion diffusion in LiFePO4. Physical Review B 2004,69,(10),
    [71]. Fisher, C.A.J.; Prieto, V.M.H., and Islam, M.S., Lithium battery materials LiMPO4 (M =Mn, Fe, Co, and Ni):Insights into defect association, transport mechanisms, and doping behavior. Chemistry of Materials 2008,20,(18),5907-5915.
    [72]. Islam, M.S.; Driscoll, D.J.; Fisher, C.A.J., and Slater, P.R., Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chemistry of Materials 2005,17,(20),5085-5092.
    [73]. Chen, G.Y.; Song, X.Y., and Richardson, T.J., Electron microscopy study of the LiFePOu to FePO4 phase transition. Electrochemical and Solid State Letters 2006,9,(6), A295-A298.
    [74]. Nishimura, S.; Kobayashi, G.; Ohoyama, K.; Kanno, R.; Yashima, M., and Yamada, A., Experimental visualization of lithium diffusion in LixFePO4. Nature Materials 2008, 7,(9),707-711.
    [75]. Dell'Era, A. and Pasquali, M., Comparison between different ways to determine diffusion coefficient and by solving Fick's equation for spherical coordinates. Journal of Solid State Electrochemistry 2009,13,(6),849-859.
    [76]. Li, Z.H.; Zhang, D.M., and Yang, F.X., Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. Journal of Materials Science 2009,44,(10),2435-2443.
    [77]. Padhi, A.K.; Nanjundaswamy, K.S.; Masquelier, C.; Okada, S., and Goodenough, J.B., Effect of Structure on the Fe3+/F2+Redox Couple in Iron Phosphate. Journal of The Electrochemical Society 1997,144,(5),1609-1613.
    [78]. Burba, C.M. and Frech, R., In situ transmission FTIR spectroelectrochemistry:A new technique for studying lithium batteries. Electrochimica Acta 2006,52,(3),780-785.
    [79]. Burba, C.M. and Frech, R., Raman and FTIR spectroscopic study of LixFePO4 (0≤x≤1). Journal of the Electrochemical Society 2004,151,(7), A1032-A1038.
    [80]. Wang, Q.; Evans, N.; Zakeeruddin, S.M.; Exnar, I., and Gratzel, M., Molecular wiring of insulators:Charging and discharging electrode materials for high-energy lithium-ion batteries by molecular charge transport layers. Journal of the American Chemical Society 2007,129,(11),3163-3167.
    [81]. Andersson, A.S. and Thomas, J.O., The source of first-cycle capacity loss in LiFePO4. Journal of Power Sources 2001,97-8,498-502.
    [82]. Srinivasan, V. and Newman, J., Design and optimization of a natural graphite/iron phosphate lithium-ion cell. Journal of the Electrochemical Society 2004,151,(10), A1530-A1538.
    [83]. Srinivasan, V. and Newman, J., Discharge model for the lithium iron-phosphate electrode. Journal of the Electrochemical Society 2004,151,(10), A1517-A1529.
    [84]. Srinivasan, V. and Newman, J., Existence of path-dependence in the LiFePO4 electrode. Electrochemical and Solid State Letters 2006,9,(3), A110-A114.
    [85]. Yamada, A.; Koizumi, H.; Nishimura, S.I.; Sonoyama, N.; Kanno, R.; Yonemura, M.; Nakamura, T., and Kobayashi, Y, Room-temperature miscibility gap in LixFePO4. Nature Materials 2006,5,(5),357-360.
    [86]. Yamada, A.; Koizumi, H.; Sonoyama, N., and Kanno, R., Phase change in LixFePO4. Electrochemical and Solid State Letters 2005,8,(8), A409-A413.
    [87]. Wang, C.S.; Kasavajjula, U.S., and Arce, P.E., A discharge model for phase transformation electrodes:Formulation, experimental validation, and analysis. Journal of Physical Chemistry C 2007,111,(44),16656-16663.
    [88]. Kasavajjula, U.S.; Wang, C.S., and Arce, P.E., Discharge model for LiFePO4 accounting for the solid solution range. Journal of the Electrochemical Society 2008, 155,(11), A866-A874.
    [89]. Delacourt, C.; Poizot, P.; Tarascon, J.M., and Masquelier, C., The existence of a temperature-driven solid solution in LixFePO4 for 0≤x≤1. Nature Materials 2005,4,(3), 254-260.
    [90]. Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.; Carlach, P.; Hamelet, S.; Tarascon, J.M., and Masquelier, C., Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nature Materials 2008,7,(9),741-747.
    [91]. Meethong, N.; Kao, Y.H.; Tang, M.; Huang, H.Y.; Carter, W.C., and Chiang, Y.M., Electrochemically Induced Phase Transformation in Nanoscale Olivines Li1-xMPO4 (M = Fe, Mn). Chemistry of Materials 2008,20,(19),6189-6198.
    [92]. Meethong, N.; Huang, H.Y.S.; Speakman, S.A.; Carter, W.C., and Chiang, Y.M., Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Advanced Functional Materials 2007,17,(7),1115-1123.
    [93]. Meethong, N.; Huang, H.Y.S.; Carter, W.C., and Chiang, Y.M., Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4. Electrochemical and Solid State Letters 2007, 10,(5), A134-A138.
    [94]. Laffont, L.; Delacourt, C.; Gibot, P.; Wu, M.Y.; Kooyman, P.; Masquelier, C., and Tarascon, J.M., Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chemistry of Materials 2006,18,(23),5520-5529.
    [95]. Allen, J.L.; Jow, T.R., and Wolfenstine, J., Analysis of the FePO4 to LiFePO4 phase transition. Journal of Solid State Electrochemistry 2008,12,(7-8),1031-1033.
    [96]. Allen, J.L.; Jow, T.R., and Wolfenstine, J., Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition. Chemistry of Materials 2007,19,(8),2108-2111.
    [97]. Delmas, C.; Maccario, M.; Croguennec, L.; Le Cras, F., and Weill, F., Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature Materials 2008,7,(8),665-671.
    [98]. Jugovic, D. and Uskokovic, D., A review of recent developments in the synthesis procedures of lithium iron phosphate powders. Journal of Power Sources 2009,190,(2), 538-544.
    [99]. Franger, S.; Le Cras, F.; Bourbon, C., and Rouault, H., Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. Journal of Power Sources 2003,119,252-257.
    [100].Yamada, A.; Chung, S.C., and Hinokuma, K., Optimized LiFePO4 for lithium battery cathodes. Journal of the Electrochemical Society 2001,148,(3), A224-A229.
    [101]. Wang, D.Y.; Wu, X.D.; Wang, Z.X., and Chen, L.Q., Cracking causing cyclic instability of LiFePO4 cathode material. Journal of Power Sources 2005,140,(1), 125-128.
    [102].Koltypin, M.; Aurbach, D.; Nazar, L., and Ellis, B., More on the performance of LiFePO4 electrodes-The effect of synthesis route, solution composition, aging, and temperature. Journal of Power Sources 2007,174,(2),1241-1250.
    [103]. Yun, N.J.; Ha, H.W.; Jeong, K.H.; Park, H.Y., and Kim, K., Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor. Journal of Power Sources 2006,160,(2),1361-1368.
    [104].Takahashi, M.; Tobishima, S.; Takei, K., and Sakurai, Y, Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. Journal of Power Sources 2001,97-8,508-511.
    [105]. Chen, Z.Y.; Zhu, H.L.; Ji, S.; Fakir, R., and Linkov, V., Influence of carbon sources on electrochemical performances of LiFePO4/C composites. Solid State Ionics 2008, 179,(27-32),1810-1815.
    [106].Julien, C.M.; Manger, A.; it-Salah, A.; Massot, M.; Gendron, F., and Zaghib, K., Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application. Ionics 2007,13,(6),395-411.
    [107]. Shin, J.H.; Henderson, W.A.; Scaccia, S.; Prosini, P.P., and Passerini, S., Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40 degrees C. Journal of Power Sources 2006,156,(2),560-566.
    [108].Kwon, S.J.; Kim, C.W.; Jeong, W.T., and Lee, K.S., Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying. Journal of Power Sources 2004,137,(1),93-99.
    [109].Kosova, N. and Devyatkina, E., On mechanochemical preparation of materials with enhanced characteristics for lithium batteries. Solid State Ionics 2004,172,(1-4), 181-184.
    [110]. Kim, C.W.; Lee, M.H.; Jeong, W.T., and Lee, K.S., Synthesis of olivine LiFePO4 cathode materials by mechanical alloying using iron(III) raw material. Journal of Power Sources 2005,146,(1-2),534-538.
    [111]. Shin, H.C.; Cho, W.I., and Jang, H., Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochimica Acta 2006,52,(4),1472-1476.
    [112]. Kim, C.W.; Park, J.S., and Lee, K.S., Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material. Journal of Power Sources 2006,163,(1),144-150.
    [113].Ojczyk, W.; Marzec, J.; Swierczek, K.; Zajac, W.; Molenda, M.; Dziembaj, R., and Molenda, J., Studies of selected synthesis procedures of the conducting LiFePO4-based composite cathode materials for Li-ion batteries. Journal of Power Sources 2007, 173,(2),700-706.
    [114]. Kim, J.K.; Cheruvally, G.; Ahn, J.H.; Hwang, G.C., and Choi, J.B., Electrochemical properties of carbon-coated LiFePO4 synthesized by a modified mechanical activation process. Journal of Physics and Chemistry of Solids 2008,69,(10),2371-2377.
    [115].Ravet, N.; Gauthier, M.; Zaghib, K.; Goodenough, J.B.; Mauger, A.; Gendron, F., and Julien, C.M., Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chemistry of Materials 2007,19,(10),2595-2602.
    [116]. Zhu, B.Q.; Li, X.H.; Wang, Z.X., and Guo, H.J., Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction.Materials Chemistry and Physics 2006,98,(2-3),373-376.
    [117]. Mi, C.H.; Cao, G.S., and Zhao, X.B., Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode. Materials Letters 2005,59,(1),127-130.
    [118]. Barker, J.; Saidi, M.Y., and Swoyer, J.L., Lithium iron(Ⅱ) phospho-olivines prepared by a novel carbothermal reduction method. Electrochemical and Solid State Letters 2003,6,(3), A53-A55.
    [119]. Wang, L.N.; Zhan, X.C.; Zhang, Z.G., and Zhang, K.L., A soft chemistry synthesis routine for LiFePO4-C using a novel carbon source. Journal of Alloys and Compounds 2008,456,(1-2),461-465.
    [120]. Wang, L.; Liang, G.C.; Ou, X.Q.; Zhi, X.K.; Zhang, J.P., and Cui, J.Y., Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction. Journal of Power Sources 2009,189,(1),423-428.
    [121]. Liu, H.P.; Wang, Z.X.; Li, X.H.; Guo, H.J.; Peng, W.J.; Zhang, Y.H., and Hu, Q.Y., Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method Journal of Power Sources 2008,184,(2),469-472.
    [122]. Zhi, X.K.; Liang, G.C.; Wang, L.; Ou, X.Q.; Zhang, J.P., and Cui, J.Y., The cycling performance of LiFePO4/C cathode materials. Journal of Power Sources 2009,189,(1), 779-782.
    [123].Higuchi, M.; Katayama, K.; Azuma, Y.; Yukawa, M., and Suhara, M., Synthesis of LiFePO4 cathode material by microwave processing. Journal of Power Sources 2003, 119,258-261.
    [124]. Park, K.S.; Son, J.T.; Chung, H.T.; Kim, S.J.; Lee, C.H., and Kim, H.G., Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochemistry Communications 2003,5,(10),839-842.
    [125]. Song, M.S.; Kang, Y.M.; Kim, J.H.; Kim, H.S.; Kim, D.Y.; Kwon, H.S., and Lee, J.Y., Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating. Journal of Power Sources 2007,166,(1), 260-265.
    [126]. Wang, L.; Huang, Y.D.; Jiang, R.R., and Jia, D.Z., Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating. Electrochimica Acta 2007,52,(24),6778-6783.
    [127]. Li, W.;Ying, J.R.; Wan, C.R.; Jiang, C.Y.; Gao, J., and Tang, C.P., Preparation and characterization of LiFePO4 from NH4FePO4·H2O under different microwave heating conditions. Journal of Solid State Electrochemistry 2007,11,(6),799-803.
    [128].Beninati, S.; Damen, L., and Mastragostino, M., MW-assisted synthesis of LiFePO4 for high power applications. Journal of Power Sources 2008,180,(2),875-879.
    [129].Murugan, A.V.; Muraliganth, T., and Manthiram, A., Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. Electrochemistry Communications 2008,10,(6), 903-906.
    [130]. Yang, S.F.; Zavalij, P.Y., and Whittingham, M.S., Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochemistry Communications 2001,3,(9),505-508.
    [131].Franger, S.; Le Cras, F.; Bourbon, C., and Rouault, H., LiFePO4 synthesis routes for enhanced electrochemical performance. Electrochemical and Solid State Letters 2002, 5,(10), A231-A233.
    [132].Kanamura, K.; Koizumi, S.H., and Dokko, K.R., Hydrothermal synthesis of LiFePO4 as a cathode material for lithium batteries. Journal of Materials Science 2008,43,(7), 2138-2142.
    [133]. Lee, J. and Teja, A.S., Characteristics of lithium iron phosphate (LiFePO4)particles synthesized in subcritical and supercritical water. Journal of Supercritical Fluids 2005, 35,(1),83-90.
    [134]. Dokko, K.; Koizumi, S.; Sharaishi, K., and Kanamura, K., Electrochemical properties of LiFePO4 prepared via hydrothermal route. Journal of Power Sources 2007,165,(2), 656-659.
    [135]. Dokko, K.; Koizumi, S.; Nakano, H., and Kanamura, K., Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. Journal of Materials Chemistry 2007,17,(45),4803-4810.
    [136]. Wang, Z.L.; Su, S.R.; Yu, C.Y.; Chen, Y, and Xia, D.G., Synthesises, characterizations and electrochemical properties of spherical-like LiFePO4 by hydrothermal method. Journal of Power Sources 2008,184,(2),633-636.
    [137]. Ellis, B.; Kan, W.H.; Makahnouk, W.R.M., and Nazar, L.F., Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. Journal of Materials Chemistry 2007,17,(30),3248-3254.
    [138]. Yang, S.F.; Song, Y.N.; Ngala, K.; Zavalij, P.Y., and Whittingham, M.S., Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides. Journal of Power Sources 2003,119,239-246.
    [139]. Chen, J.; Wang, S., and Whittingham, M.S., Hydrothermal synthesis of cathode materials. Journal of Power Sources 2007,174,(2),442-448.
    [140]. Jin, B. and Gu, H.B., Preparation and characterization of LiFePO4 cathode materials by hydrothermal method. Solid State Ionics 2008,178,(37-38),1907-1914.
    [141]. Chen, J.J. and Whittingham, M.S., Hydrothermal synthesis of lithium iron phosphate. Electrochemistry Communications 2006,8,(5),855-858.
    [142]. Wang, G.; Shen, X., and Yao, J., One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance. Journal of Power Sources 2009,189,(1),543-546.
    [143].Meligrana, G.; Gerbaldi, C.; Tuel, A.; Bodoardo, S., and Penazzi, N., Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. Journal of Power Sources 2006,160,(1),516-522.
    [144].Tajimi, S.; Ikeda, Y.; Uematsu, K.; Toda, K., and Sato, M., Enhanced electrochemical performance of LiFePO4 prepared by hydrothermal reaction Solid State Ionics 2004, 175,(1-4),287-290.
    [145].Kuwahara, A.; Suzuki, S., and Miyayama, M., High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries. Ceramics International 2008, 34,(4),863-866.
    [146]. Liang, G.C.; Wang, L.; Ou, X.Q.; Zhao, X., and Xu, S.Z., Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution Journal of Power Sources 2008,184,(2),538-542.
    [147]. Kim, D.H. and Kim, J., Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochemical and Solid State Letters 2006,9,(9), A439-A442.
    [148].Murugan, A.V.; Muraliganth, T., and Manthiram, A., One-Pot Microwave-Hydrothermal Synthesis and Characterization of Carbon-Coated LiMPO4 (M=Mn, Fe, and Co) Cathodes. Journal of the Electrochemical Society 2009,156,(2), A79-A83.
    [149].Murugan, A.V.; Muraliganth, T., and Manthiram, A., Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries. Journal of Physical Chemistry C 2008,112,(37), 14665-14671.
    [150]. Yang, H.; Wu, X.L.; Cao, M.H., and Guo, Y.G, Solvothermal Synthesis of LiFePO4 Hierarchically Dumbbell-Like Microstructures by Nanoplate Self-Assembly and Their Application as a Cathode Material in Lithium-Ion Batteries. Journal of Physical Chemistry C 2009,113,(8),3345-3351.
    [151]. Xu, C.B.; Lee, J., and Teja, A.S., Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water. Journal of Supercritical Fluids 2008,44,(1),92-97.
    [152].Iltchev, N.; Chen, Y.K.; Okada, S., and Yamaki, J., LiFePO4 storage at room and elevated temperatures. Journal of Power Sources 2003,119,749-754.
    [153]. Salah, A.A.; Mauger, A.; Julien, C.M., and Gendron, F., Nano-sized impurity phases in relation to the mode of preparation of LiFePO4. Materials Science and Engineering B-Solid State Materials for Advanced Technology 2006,129,(1-3),232-244.
    [154]. Hsu, K.F.; Tsay, S.Y., and Hwang, B.J., Physical and electrochemical properties of LiFePO4/carbon composite synthesized at various pyrolysis periods. Journal of Power Sources 2005,146,(1-2),529-533.
    [155], Kim, J.K.; Choi, J.W.; Chauhan, G.S.; Ahn, J.H.; Hwang, G.C.; Choi, J.B., and Ahn, H.J., Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis. Electrochimica Acta 2008,53,(28),8258-8264.
    [156].Sundarayya, Y.; Swamy, K.C.K., and Sunandana, C.S., Oxalate based non-aqueous sol-gel synthesis of phase pure sub-micron LiFePO4. Materials Research Bulletin 2007, 42,(11),1942-1948.
    [157].Dominko, R.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; Goupil, J.M.; Pejovnik, S., and Jamnik, J., Porous olivine composites synthesized by sol-gel technique. Journal of Power Sources 2006,153,(2),274-280.
    [158].Dominko, R.; Bele, M.; Goupil, J.M.; Gaberscek, M.; Hanzel, D.; Arcon, I., and Jamnik, J., Wired porous cathode materials:A novel concept for synthesis of LiFePO4. Chemistry of Materials 2007,19,(12),2960-2969.
    [159]. Lin, Y.; Gao, M.X.; Zhu, D.; Liu, Y.F., and Pan, H.G., Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C. Journal of Power Sources 2008,184,(2),444-448.
    [160]. Arnold, G.; Garche, J.; Hemmer, R.; Strobele, S.; Vogler, C., and Wohlfahrt-Mehrens, A., Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. Journal of Power Sources 2003,119,247-251.
    [161].Zheng, J.C.; Li, X.H.; Wang, Z.X.; Guo, H.J., and Zhou, S.Y., LiFePO4 with enhanced performance synthesized by a novel synthetic route. Journal of Power Sources 2008, 184,(2),574-577.
    [162].Jugovic, D.; Mitric, M.; Cvjeticanin, N.; Jancar, B.; Mentus, S., and Uskokovic, D., Synthesis and characterization of LiFePO4/C composite obtained by sonochemical method. Solid State Ionics 2008,179,(11-12),415-419.
    [163]. Yang, M.R.; Teng, T.H., and Wu, S.H., LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis. Journal of Power Sources 2006,159,(1),307-311.
    [164].Konarova, M. and Taniguchi, I., Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties. Materials Research Bulletin 2008,43,(12),3305-3317.
    [165].Teng, T.H.; Yang, M.R.; Wu, S.H., and Chiang, Y.P., Electrochemical properties of LiFe0.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis. Solid State Communications 2007,142,(7),389-392.
    [166].Palomares, V.; Goni, A.; de Muro, L.G.; de Meatza, I.; Bengoechea, M.; Miguel, O., and Rojo, T., New freeze-drying method for LiFePO4 synthesis. Journal of Power Sources 2007,171,(2),879-885.
    [167]. Wang, Y.Q.; Wang, B.L.; Yang, J., and Nuli, Y.N., High-rate LiFePO4 electrode material synthesized by a novel route from FePO4·4H2O. Advanced Functional Materials 2006,16,(16),2135-2140.
    [168].Ni, J.F.; Zhou, H.H.; Chen, J.T., and Zhang, X.X., Molten salt synthesis and electrochemical properties of spherical LiFePO4 particles. Materials Letters 2007, 61,(4-5),1260-1264.
    [169]. Wang, L.N.; Zhang, Z.G., and Zhang, K.L., A simple, cheap soft synthesis routine for LiFePO4 using iron(Ⅲ) raw material. Journal of Power Sources 2007,167,(1), 200-205.
    [170].Myung, S.T.; Komaba, S.; Hirosaki, N.; Yashiro, H., and Kumagai, N., Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochimica Acta 2004,49,(24),4213-4222.
    [171].Sauvage, F.; Baudrin, E.; Gengembre, L., and Tarascon, J.M., Effect of texture on the electrochemical properties of LiFePO4 thin films. Solid State Ionics 2005,176,(23-24), 1869-1876.
    [172]. Lim, S.Y.; Yoon, C.S., and Cho, J.P., Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries. Chemistry of Materials 2008,20,(14), 4560-4564.
    [173].Ravet, N.; Chouinard, Y.; Magnan, J.F.; Besner, S.; Gauthier, M., and Armand, M., Electroactivity of natural and synthetic tripylite. Journal of Power Sources 2001,97-8, 503-507.
    [174]. Huang, H.;Yin, S.C., and Nazar, L.F., Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid State Letters 2001,4,(10), A170-A172.
    [175]. Liu, H.; Fu, L.J.; Zhang, H.P.; Gao, J.; Li, C.; Wu, Y.P., and Wu, H.Q., Effects of carbon coatings on nanocomposite electrodes for lithium-ion batteries. Electrochemical and Solid State Letters 2006,9,(12), A529-A533.
    [176].Thorat, I.V.; Mathur, V.; Harb, J.N., and Wheeler, D.R., Performance of carbon-fiber-containing LiFePO4 cathodes for high-power applications. Journal of Power Sources 2006,162,(1),673-678.
    [177]. Jin, B.; Gu, H.B.; Zhang, W.X.; Park, K.H., and Sun, G.P., Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries. Journal of Solid State Electrochemistry 2008,12,(12),1549-1554.
    [178].Muraliganth, T.; Murugan, A.V., and Manthiram, A., Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries. Journal of Materials Chemistry 2008,18,(46),5661-5668.
    [179]. Kim, J.K.; Cheruvally, G., and Ahn, J.H., Electrochemical properties of LiFePO4/C synthesized by mechanical activation using sucrose as carbon source. Journal of Solid State Electrochemistry 2008,12,(7-8),799-805.
    [180]. Nan Ji Yun, H.-W.H.K.H.J.H.-Y.P.K.K., Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor. Journal of Power Sources 2006,160,1361-1368.
    [181]. Zhao, B.; Jiang, Y.; Zhang, H.J.; Tao, H.H.; Zhong, M.Y., and Jiao, Z., Morphology and electrical properties of carbon coated LiFePO4 cathode materials. Journal of Power Sources 2009,189,(1),462-466.
    [182]. Chen, S.Y.; Gao, B.; Su, L.H.; Mi, C.H., and Zhang, X.G., Electrochemical properties of LiFePO4/C synthesized using polypyrrole as carbon source. Journal of Solid State Electrochemistry 2009,13,(9),1361-1366.
    [183]. Kim, K.; Jeong, J.H.; Kim, I.J., and Kim, H.S., Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO4. Journal of Power Sources 2007,167,(2),524-528.
    [184].Doeff, M.M.; Wilcox, J.D.; Yu, R.; Aumeritado, A.; Marcinek, M., and Kostecki, R., Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites. Journal of Solid State Electrochemistry 2008,12,(7-8), 995-1001.
    [185]. Wilcox, J.D.; Doeff, M.M.; Marcinek, M., and Kostecki, R., Factors influencing the quality of carbon coatings on LiFePO4.Journal of the Electrochemical Society 2007, 154,(5), A389-A395.
    [186]. Doeff, M.M.; Hu, Y.Q.; McLarnon, F., and Kostecki, R., Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochemical and Solid State Letters 2003,6,(10), A207-A209.
    [187].Dominko, R.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; Pejovnik, S., and Jamnik, J., Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. Journal of the Electrochemical Society 2005,152,(3), A607-A610.
    [188]. Wang, G.X.; Yang, L.; Chen, Y.; Wang, J.Z.; Bewlay, S., and Liu, H.K., An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochimica Acta 2005,50,(24),4649-4654.
    [189]. Park, K.S.; Schougaard, S.B., and Goodenough, J.B., Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Advanced Materials 2007,19,(6),848-+.
    [190]. Huang, Y.H.; Park, K.S., and Goodenough, J.B., Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole. Journal of the Electrochemical Society 2006,153,(12), A2282-A2286.
    [191]. Huang, Y.H. and Goodenough, J.B., High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers. Chemistry of Materials 2008,20,(23), 7237-7241.
    [192].Sisbandini, C.; Brandell, D.; Gustafsson, T., and Thomas, J.O., Effect of Short-Chain Amine Coatings on the Performance of LiFePO4 Li-Ion Battery Cathodes. Electrochemical and Solid State Letters 2009,12,(5), A99-A101.
    [193].Kavan, L.; Exnar, I., and Gratzel, M., Molecular wiring of LiFePO4 (Olivine). Chemistry of Materials 2008,20,(9),3163-3168.
    [194].Kavan, L.; Exnar, I.; Zakeeruddin, S.M., and Gratzel, M., Molecular wiring of olivine LiFePO4 by ruthenium(Ⅱ)-bipyridine complexes and by their assemblies with single-walled carbon nanotubes. Journal of Physical Chemistry C 2008,112,(23), 8708-8714.
    [195]. Wang, Q.; Evans, N.; Zakeeruddin, S.M.; Pechy, P.; Exnar, I., and Gratzel, M., High energy lithium batteries by molecular wiring and targeting approaches. Journal of Power Sources 2007,174,(2),408-413.
    [196]. Wang, Q.; Zakeeruddin, S.M.; Wang, D.Y.; Exnar, I., and Gratzel, M., Redox targeting of insulating electrode materials:A new approach to high-energy-density batteries. Angewandte Chemie-International Edition 2006,45,(48),8197-8200.
    [197].Croce, F.; Epifanio, A.D.; Hassoun, J.; Deptula, A.; Olczac, T., and Scrosati, B., A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid State Letters 2002,5,(3), A47-A50.
    [198]. Morales, J.; Trocoli, R.; Rodriguez-Castellon, E.; Franger, S., and Santos-Pena, J., Effect of C and Au additives produced by simple coaters on the surface and the electrochemical properties of nanosized LiFePO4. Journal of Electroanalytical Chemistry 2009,631,(1-2),29-35.
    [199]. Morales, J.; Santos-Pena, J.; Rodriguez-Castellon, E., and Franger, S., Antagonistic effects of copper on the electrochemical performance of LiFePO4. Electrochimica Acta 2007,53,(2),920-926.
    [200].张雨婷,武汉大学硕士毕业论文.2009.
    [201]. Hu, Y.S.; Guo, Y.G.; Dominko, R.; Gaberscek, M.; Jamnik, J., and Maier, J., Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Advanced Materials 2007,19,(15),1963-+.
    [202]. Liu, Y.; Mi, C.H.; Yuan, C.Z., and Zhang, X.G., Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2. Journal of Electroanalytical Chemistry 2009,628,(1-2),73-80.
    [203]. Chung, S.Y.; Bloking, J.T., and Chiang, Y.M., Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials 2002,1,(2),123-128.
    [204]. Ravet, N.; Abouimrane, A., and Armand, M., From our readers. Nature Materials 2003, 2,(11),702-703.
    [205].Delacourt, C.; Wurm, C.; Laffont, L.; Leriche, J.B., and Masquelier, C., Electrochemical and electrical properties of Nb-and/or C-containing LiFePO4 composites. Solid State Ionics 2006,177,(3-4),333-341.
    [206]. Wagemaker, M.; Ellis, B.L.; Luetzenkirchen-Hecht, D.; Mulder, F.M., and Nazar, L.F., Proof of Supervalent Doping in Olivine LiFePO4. Chemistry of Materials 2008,20,(20), 6313-6315.
    [207].Meethong, N.; Kao, Y.H.; Speakman, S.A., and Chiang, Y.M., Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties. Advanced Functional Materials 2009,19,(7),1060-1070.
    [208]. Roberts, M.R.; Vitins, G, and Owen, J.R., High-throughput studies of Li1-xMgx/2FePO4 and LiFe1-yMgyPO4 and the effect of carbon coating. Journal of Power Sources 2008, 179,(2),754-762.
    [209]. Wang, Z.L.; Sun, S.R.; Xia, D.G.; Chu, W.S.; Zhang, S., and Wu, Z.Y, Investigation of Electronic Conductivity and Occupancy Sites of Mo Doped into LiFePO4 by ab Initio Calculation and X-ray Absorption Spectroscopy. Journal of Physical Chemistry C 2008, 112,(44),17450-17455.
    [210]. Chung, S.Y. and Chiang, Y.M., Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochemical and Solid State Letters 2003,6,(12), A278-A281.
    [211].Herle, P.S.; Ellis, B.; Coombs, N., and Nazar, L.F., Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials 2004,3,(3), 147-152.
    [212]. Shi, S.Q.; Liu, L.J.; Ouyang, C.Y.; Wang, D.S.; Wang, Z.X.; Chen, L.Q., and Huang, X.J., Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Physical Review B 2003,68,(19),195108.
    [213]. Ouyang, C.Y.; Shi, S.Q.; Wang, Z.X.; Li, H.; Huang, X.J., and Chen, L.Q., The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. Journal of Physics-Condensed Matter 2004,16,(13), 2265-2272.
    [214]. Chung, S.Y.; Choi, S.Y.; Yamamoto, T., and Ikuhara, Y, Orientation-Dependent Arrangement of Antisite Defects in Lithium Iron(Ⅱ) Phosphate Crystals. Angewandte Chemie-International Edition 2009,48,(3),543-546.
    [1]. Paques-Ledent, M.T. and Tarte, P., Vibrational studies of olivine-type compounds-Ⅱ Orthophosphates,-arsenates and-vanadates AⅠBⅡXⅤO4. Spectrochimica Acta Part A 1974,30,673-689.
    [2]. Padhi, A. K.; Nanjundaswamy, K. S. and Goodenough, J. B., Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of Electrochemical Society 1997,144,1188-1194.
    [3]. Morgan, D.; Van der Ven, A. and Ceder, G., Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochemical and Solid State Letters 2004,7, A30-32.
    [4]. Prosini, P.P.; Lisi, M.; Zane, D. and Pasquali, M., Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 2002,148,45-51.
    [5]. Chung, S.Y.; Bloking, J.T. and Chiang, Y.M., Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials 2002,1,123-128.
    [6]. Ravet N.T., etc. In Abstracts of the Electroehemical Society Fall Meeting, The 1999 Joint International Meeting, Honolulu,Hawaii,1999, Abstract No.127,pp.17-22
    [7]. Andersson, A.S. and Thomas, J.O., The source of first-cycle capacity loss in LiFePO4. Journal of Power Sources 2001,97/98,498-502.
    [8]. Wagemaker, M.; Ellis, B.L.; Luetzenkirchen-Hecht, D.; Mulder, F.M. and Nazar, L.F., Proof of Supervalent Doping in Olivine LiFePO4. Chemistry of Materials 2008,20, 6313.
    [9]. Burba, C.M. and Freeh, R. Raman and FTIR spectroscopic study of LixFePO4(0≤x≤1). Journal of the Electrochemical Society 2004,151, A1032-A1038.
    [10]. Salah, A. Ait; Jozwiak, P.; Zaghib, K.; Garbarczyk, J.; Gendron, F.; Mauger, A.and Julien, C.M., FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochimica Acta Part A 2006,65,1007-1013.
    [11].白莹;吴锋;吴川,新型锂离子电池正极材料LiMPO4(M=Fe, Mn)的谱学和电化学研究。光散射学报2004,15,231.
    [12]. Belharouak, I.; Johnson, C. and Amine, K., Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochemistry Communications 2005,7, 983-988.
    [13]. Takahashi, M; Tobishima, S; Takei, K. and Sakurai, Y., Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 2002,148,283-289.
    [14]. Wang, D.Y.; Wu, X.D.; Wang, Z.X. and Chen, L.Q., Cracking causing cyclic instability of LiFePO4 cathode material. Journal of Power Sources 2005,140,125-128.
    [15]. Aurbach, D.; Markovsky, B.; Salitra, G.; Markevich, E.; Talyossef, Y.; Koltypin, M.; Nazar, L.F..; Ellis, B.and Kovacheva, D., Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources 2007,165,491-499.
    [16].黄可龙;王兆翔;刘素琴,锂离子电池原理与关键技术.2007,化学工业出版社,P69-75.
    [17]. Zane, D.; Carewska, M.; Scaccia, S.; Cardellini, F. and Prosini, P.P., Factor affecting rate performance of undoped LiFePO4. Electrochimica Acta 2004,49,4259-4271.
    [18]. Herle, P.S.; Ellis, B.; Coombs, N. and Nazar, L.F., Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials 2004,3,147-152.
    [19]. Ouyang, C.Y.; Shi, S.Q.; Wang, Z.X.; Li, H.; Huang, X.J.and Chen, L.Q., The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. Journal of Physics:Condensed Matter 2004,16,2265-2272.
    [20]. Nakamura, T.; Sakumoto, K.; Seki, S.; Kobayashi, Y.; Tabuchi, M. and Yamada, Y., Apparent diffusion constant and electrochemical reaction in LiFe1-xMn XPO4 olivine cathodes. Journal of the Electrochemical Society 2007,154, Al 118-1123.
    [21]. David R. Lide, ed., "Ionic Radii in Crystals", in CRC Handbook of Chemistry and Physics, Internet Version 2006, Taylor and Francis, Boca Raton, FL,2006.
    [22]. Dominko, R.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; Pejovnik, S., and Jamnik, J., Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. Journal of the Electrochemical Society 2005,152,(3), A607-A610.
    [23]. Burba, C.A. and Frech, R., Local structure in the Li-ion battery cathode material Lix(MnyFe1-y)PO4 for 0≤x≤1and y=0.0,0.5 and 1.0. Journal of Power Sources 2007, 172,(2),870-876.
    [1]Byrappa, K.; Yoshimura, M. Handbook of Hydrothermal Technology——A Technology for Crystal Growth and Materials Processing,2001, William Andrew Publishing, LLC Norwich, New York, U.S.A., Chapter 1.
    [2]施尔畏等.水热结晶学,2004年9月第一版,科学出版社,36
    [3]李会林,锂二次电池正极材料LiFePO4的水热法制备和性能研究,硕士毕业论文,2006年6月。
    [4]Yang, S.F.; Zavalij, P.Y. and Whittingham, M.S., Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochemistry Eommuniciation 2001,3,505-508.
    [5]Chen, J.J.; Vacchio, M.J.; Wang, S.J.; Chernova, N.; Zavalij, P.Y.and Whittingham, M.S., The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics 2008,178,1676-1693.
    [6]Franger, S.; Le Cras, F.; Bourbon, C. and Rouault, H., Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. Journal of Power Sources 2003,119-121,252-257.
    [7]Meligrana, G.; Gerbaldi, C.; Tuel, A.; Bodoardo, S. and Penazzi, N., Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. Journal of Power Sources 2006,160,516-522.
    [8]Tajimi, S.; Ikeda, Y.; Uematsu, K.; Toda, K. and Sato M., Enhanced electrochemical performance of LiFePO4 prepared by hydrothermal reaction. Solid State Ionics 2004, 175,287-290.
    [9]Chen, J.J. and Whittingham, M.S., Hydrothermal synthesis of lithium iron phosphate. Electrochemistry Communications 2006,8,855-858.
    [10]Porcher, W.; Moreau, P.; Lestriez, B.; Jouanneau, S. and Guyomard, D., Is LiFePO4 stable in water?—Toward greener li-ion batteries. Electrochemical and Solid State Letters 2008,11,A4-A8.
    [11]Kanamura, K.; Koizumi, S.H. and Dokko, K.R. Hydrothermal synthesis of LiFePO4 as a cathode material for lithium batteries. Journal of Material Science 2008,43, 2138-2142.
    [12]Lee, J. and Teja, A.S., Characteristics of lithium iron phosphate (LiFePO4) particles synthesized in subcritical and supercritical water. Journal of Supercritical Fluids 2005, 35,83-90.
    [13]Dokko, K.; Koizumi, S.; Nakano, H. and Kanamura, K., Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. Journal of Materials Chemistry 2007,17,4803-4810.
    [14]Yu, D.Y.W.; Donoue, K.; Kadohata, T.; Murata, T.; Matsuta, S. and Fujitani, S., Impurities in LiFePO4 and their influence on material characteristics. Journal of the Electrochemical Society 2008,155, A526-A530.
    [15]Ravet, N.; Gauthier, M.; Zaghib, K.; Goodenough, J.B.; Mauger, A.; Gendron, F. and Julien, C.M., Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chemistry of Materials 2007,19,2595-2602.
    [16]Chen, J.J.; Wang, S.J. and Whittingham, M.S., Hydrothermal synthesis of cathode materials. Journal of Power Sources 2007,174,442-448.
    [17]Andersson, A.S. and Thomas, J.O., The source of first-cycle capacity loss in LiFePO4,Journal of Power Sources 2001,97/98,498-502.
    [18]Paques-Ledent, M.T. and Tarte, P., Vibrational studies of olivine-type compounds-II Orthophosphates,-arsenates and-vanadates AⅠBⅡXⅤO4. Spectrochimica Acta Part A 1974,30,673-689.
    [19]Burba, C.M. and Frech, R., Raman and FTIR spectroscopic study of LixFePO4 (0≤x≤1). Journal of the Electrochemical Society 2004,151, A1032-A1038.
    [20]Salah, A. Ait; Jozwiak, P.; Zaghib, K.; Garbarczyk, J.; Gendron, F.; Mauger, A. and Julien, C.M., FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochimica Acta Part A 2006,65,1007-1013.
    [1]Higuchi, M.; Katayama, K.; Azuma, Y.; Yukawa, M. and Suhara,M., Synthesis of LiFePO4 cathode material by microwave processing. Journal of Power Sources 2003, 119-121,258-261.
    [2]Park, K.S.; Son, J.T.; Chung, H.T.; Kim, S.J.; Lee, C.H. and Kim, H.G., Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochemistry Communications 2003,5,839-842.
    [3]Wang, L.; Huang, Y.D.; Jiang, R.R. and Jia, D.Z., Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating. Electrochimica Acta 2007,52,6778-6783.
    [4]Beninati,S.; Damen,L. and Mastragostino,M., MW-assisted synthesis of LiFePO4 for high power applications. Journal of Power Sources 2008,180,875-879.
    [5]Song, M.S.; Kang, Y.M.; Kim, J.H.; Kim, H.S.; Kim, D.Y.; Kwon, H.S. and Lee, J.Y., Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating. Journal of Power Sources 2007,166,260-265.
    [6]Li, W.; Ying, J.R.; Wan, C.R.; Jiang, C.Y.; Gao, J.and Tang, C.P., Preparation and characterization of LiFePO4 from NH4FePO4 center dot H2O under different microwave heating conditions. Journal of Solid State Electrochemistry 2007,11,799-803.
    [7]李于华;金头男;杨丽娟;毛建伟,锂离子电池正极材料LiFePO4的微波合成及结构表征.分子科学学报2005,V21(5),14-18.
    [8]Mi, C.H.; Cao, G.S. and Zhao, X.B., Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode. Materials Letters 2005,29,127-130.
    [9]Ravet, N.; Gauthier, M.; Zaghib, K.; Goodenough, J.B.; Mauger, A.; Gendron, F. and Julien, C.M., Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chemistry of Materials 2007,19,2595-2602.
    [10]Hu, G.R.; Gao, X.G.; Peng, Z.D.; Du, K. and Liu, Y.J., Synthetic LiFePO4/C without using inert gas,Chinese Chemical Letters 2007,18,337-340.
    [11]Prosini, P.P.; Carewska, M.; Scaccia, S.; Wisniewski, P.; Passerini, S. and Pasquali, M.A., new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. Journal of the Electrochemical Society 2002,149, A886-A890.
    [12]Zhang, H.; Wang, W.W.; Li, H.F.; Meng, S.L. and Li, D.Q., A strategy to prepare ultrafine dispersed Fe2O3 nanoparticles. Materials Letters 2008,62,1230-1233.
    [13]Andersson, A.S. and Thomas, J.O., The source of first-cycle capacity loss in LiFePO4. Journal of Power Sources 2001,97/98,498-502.
    [14]Myung, S.T.; Komaba, S.; Hirosaki, N.; Yashiro, H.and Kumagai, N., Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochimica Acta 2004,49,4213-4222.
    [15]Wilcox, J.D.; Doeff, M.M.; Marcinek, M.and Kostecki, R., Factors influencing the quality of carbon coatings on LiFePO4. Journal of the Electrochemical Society 2007, 154,A389-A395.
    [16]Doeff, M.M.; Hu, Y.Q.; McLarnon, F.and Kostecki, R., Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochemical and Solid State Letters 2003,6, A207-A209.
    [17]Hu, Y.Q.; Doeff, M.M.; Kostecki, R. and Finones, R., Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries. Journal of the Electrochemical Society 2004,151, A1279-A1285.
    [18]Teng, T.H.; Yang, M.R.; Wu, S.H.and Chiang, Y.P., Electrochemical properties of LiFeo.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis. Solid State Communications 2007,142,389-392.
    [19]Maccario, M.; Croguennec, L.; Wattiaux, A.; Suard, E.; Le Cras, F.and Delmas, C., C-containing LiFePO4 materials-Part I:Mechano-chemical synthesis and structural characterization. Solid State Ionics 2008,179,2020-2026.
    [20]Song, S.W.; Reade, R.P.; Kostecki, R.and Striebel, K.A., Electrochemical studies of the LiFePO4 thin films prepared with pulsed laser deposition. Journal of the Electrochemical Society 2006,153, A12-A19.
    [21]Paclhi, A.K.; Nanjunclaswamy, K.S.; Masquelier, C.; Okada, S. and Gooclenough, J.B., Effect of Structure on the Fe3+/Fe2+Redox Couple in Iron Phosphate. Journal of the Electrochemical Society 1997,144,1609-1613.
    [22]Paclhi, A.K.; Nanjunclaswamy, K.S.; Masquelier, C. and Gooclenough, J.B., Mapping of Transition Metal Reclox Energies in Phosphates with NASICON Structure by Lithium Intercalation. Journal of the Electrochemical Society 1997,144,2581-2586.
    [23]Shiraishi, K.; Dokko, K. and Kanamura, K., Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis. Journal of Power Sources 2005,146,555-558.
    [24]Xia, X.; Wang, Z.X. and Chen, L.Q., Regeneration and characterization of air-oxidized LiFePO4. Electrochemistry Communications 2008,10,1442-1444.
    [25]Chen, J.; Xu, L.N.; Li, W.Y. and Gou, X.L., alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Advanced Materials 2005,17,582.
    [26]Jayaprakash, N. and Kalaiselvi,N., On the electrochemical behavior of LiMxFe1-xPO4 (M=Cu, Sn; X=0.02) anodes-An approach to enhance the anode performance of LiFePO4. Electrochemistry Communications 2007,9,620-628.
    [27]Morcrette, M.;Wurm, C. and Masquelier, C., On the way to the optimization of Li3Fe2(PO4)3 positive electrode materials. Solid State Sciences 2002,4,239-246.
    [28]Yu, D.Y.W.; Donoue, K.; Kadohata, T.; Murata, T.; Matsuta, S. and Fujitani, S., Impurities in LiFePO4 and their influence on material characteristics. Journal of the Electrochemical Society 2008,155, A526-A530.
    [1]. Paclhi, A.K.; Nanjunclaswamy, K.S.; Masquelier, C.; Okada, S. and Gooclenough, J.B., Effect of Structure on the Fe3+/Fe2+Redox Couple in Iron Phosphate. Journal of The Electrochemical Society 1997,144,1609-1613.
    [2]. Morgan, D.; Van der Ven, A.and Ceder, G., Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochemical and Solid State Letters 2004,7, A30-32.
    [3]. Prosini, P.P.; Lisi, M.; Zane, D.and Pasquali, M., Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 2002,148,45-51.
    [4]. Moshtev, R.; Zlatilova, P.; Vasilev, S.; Bakalova, Land Kozawa, A. Synthesis, XRD characterization and electrochemical performance of overlithiated LiNiO2. Journal of Power Sources 1999,81-82,434-441.
    [5]. Zhu, X.J.; Chen, H.H.; Zhan, Yang, D.L.and Zhou, Y.H., Storage characteristics of LiNi0.85Co0.15O2 in air as cathode material for lithium-ion batteries. Journal of Material Science 2005,40,2995-2997.
    [6]. Matsumoto, K.; Kuzuo, R.; Takeya, K.and Yamanaka, A.Effects of CO2 in air on Li deintercalation from LiNi1-x-yCoxAlyO2. Journal of Power Sources 1999,1-82,558-561.
    [7]. Martin, J.F.; Yamada, A.; Kobayashi, G.; Nishimura, S.I.; Kanno, R.; Guyomard, D.and Dupre, N., Air exposure effect on LiFePO4. Electrochemical and Solid State Letters 2008,11,A12-A16.
    [8]. Porcher,W.; Moreau,P.; Lestriez,B.; Jouanneau,S.and Guyomard, D., Is LiFePO4 stable in water? Toward greener li-ion batteries. Electrochemical and Solid State Letters 2008,11,A4-A8.
    [9]. Zaghib, K.; Dontigny, M.; Charest, P.; Labrecque, J.F.; Guerfi, A.; Kopec, M.; Mauger, A.; Gendron, F.and Julien, C.M., Aging of LiFePO4 upon exposure to H2O. Journal of Power Sources 2008,185,698-710.
    [10]. Wagemaker, M.; Ellis, B.L.; Luetzenkirchen-Hecht, D.; Mulder, F.M.and Nazar, L.F., Proof of Supervalent Doping in Olivine LiFePO4, Chemistry of Materials 2008,20, 6313.
    [11]. Belharouak, I.; Johnson, C.and Amine, K., Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochemistry Communications 2005,7, 983-988.
    [12]. Xia, X.; Wang, Z.X.and Chen, L.Q., Regeneration and characterization of air-oxidized LiFePO4. Electrochemistry Communications 2008,10,1442-1444.
    [13]. Burba, C.M.and Frech, R. Raman and FTIR spectroscopic study of LixFePO4 (0≤x≤1). Journal of the Electrochemical Society 2004,151, A1032-A1038.
    [14]. Andersson, A.S.; Kalska, B.; Haggstrom, L. and Thomas, J.O.,Lithium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics 2005,130,41-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700