白藜芦醇对酒精性周围神经损伤的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临床研究和动物实验证明,饮酒不仅可以导致中枢神经系统的损伤,而且还会引起周围神经病变。长期以来,酒精对中枢神经系统影响作用的研究较为深入,而对酒精性周围神经病变的研究不够深入,其神经病理作用机制目前仍不清楚。最近研究结果表明,酒精导致的神经元死亡与氧化应激反应增加和氧化酶的诱导相关。
     长期大量饮酒可导致酒精性周围神经病变(alcoholic peripheral neuropathy, APN)。APN是最常见的多发性周围神经病变之一。APN初期和主要症状为足部的疼痛,部分疼痛伴有烧灼感。部分患者亦可表现为手、小腿和足部的麻木或感觉缺失。APN的病理变化主要表现为轴突的病变,伴有节段性的脱髓鞘和髓鞘再生以及神经纤维的减少。虽然具体发病机制尚不清楚,但目前研究认为APN与氧化应激导致的自由基对神经的损伤、酒精对神经的直接毒性作用和长期饮酒导致的胶质细胞活化有关。
     施万细胞(Schwann cells, SCs)是周围神经系统的髓鞘形成细胞,对周围神经的发育、功能和再生具有重要作用。SCs在多种炎症性、代谢性和遗传性多发神经病变中也有着重要作用。在许多生理和病理状态下,尤其是在神经损伤后,SCs可以通过表达脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)、胶质细胞源性神经营养因子(glial cell line-derived neurotrophic factor, GDNF)、神经生长因子(nerve growth factor, NGF)等多种神经营养因子对轴突提供营养支持。SCs分泌的神经营养因子对于促进轴突生长、预防神经元凋亡具有重要作用。然而,在酒精处理的培养的SCs中,神经营养因子表达的变化尚不清楚。
     白藜芦醇(resveratrol, Res)是存在于红酒、葡萄、蓝莓、花生等多种植物中的多醇化合物,可以调节多种细胞进程,并显示出多种保护和治疗功效。在Neuro2a细胞,Res能够激活腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)并促进轴突的生长。Res能够激活沉默信息调节器T1(silencing information regulator T1, SIRT1),可能对以轴突病变和神经退行性变为特征的疾病具有治疗作用。Res能够增强细胞的抗氧化反应能力,对某些病理改变所致的背根神经节(dorsal root ganglia, DRG)神经元氧化应激损伤具有修复作用。
     为了进一步深入研究APN的病理发生机制,以及如何阻止APN的进程和研发APN的新的治疗手段,本课题利用体外培养的DRG神经元和SCs、以及APN大鼠动物模型,通过对多个分子生物学和生物化学指标的分析,以及动物的行为学观察,进一步探讨APN的病理发生机制及Res对APN的治疗作用。第一部分白藜芦醇对酒精损伤的背根神经节神经元的保护作用
     在发育过程中,神经嵴区的细胞迁移形成DRG。全胚胎培养研究证明酒精可导致神经嵴区的细胞减少。酒精还可导致培养的孕14d胚胎DRG神经干细胞凋亡增加。抗氧化治疗对酒精诱导的神经损伤具有保护作用,这也表明氧化应激参与酒精导致的神经损伤。但是,尚不清楚抗氧化剂能否有效减少在发育过程中酒精诱导的神经元减少。由于酒精对DRG神经元的损伤目前尚无有效的治疗方法,抗氧化剂有可能减轻酒精导致的神经损伤。本课题利用体外培养的DRG神经元,研究体外环境中Res对酒精损伤的DRG神经元的保护作用。基于以上研究背景,本课题实验设计如下:
     取第15d的胚胎大鼠DRG进行器官型培养和分散细胞培养。将酒精、Res、化合物C(Compound C,CC)以及尼克酰胺(nicotinamide,NCA)分别加入不同实验组DRG神经元培养基内。用微管相关蛋白2(microtubule-associatedprotein2,MAP2)标记神经元。计数由器官型培养的DRG组织块中生长出的神经纤维束和迁移出的神经元的数目。使用水溶性四唑盐-1(water soluble tetrazolium salt-1, WST-1)的方法检测DRG神经元的活性。使用Hoechst33342和末端脱氧核苷酸转移酶介导的脱氧尿苷三磷酸缺口末端标记(terminal deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate nick-end-labeling, TUNEL)染色技术观察神经元的凋亡。使用荧光探针2',7'-二氯双氢荧光素二乙酸酯(2',7'-dichlorodihydrofluorescein diacetate, DCFH-DA)检测活性氧的含量。检测神经元中丙二醛(malondialdehyde, MDA),谷胱甘肽(glutathione, GSH),亚硝酸盐和过氧化物歧化酶(superoxide dismutase, SOD)的水平来分析氧化应激的程度。结果显示:
     (1)Res可促进酒精损伤的器官型培养的DRG组织块神经纤维束的生长和单个神经元向周围的迁移。AMPK抑制剂CC和SIRT1抑制剂NCA可以抑制Res的作用。
     (2)酒精孵育可降低分散培养的DRG神经元的活性,给予Res可提高酒精损伤的DRG神经元活性。AMPK抑制剂CC和SIRT1抑制剂NCA可以抑制Res的作用。
     (3)酒精孵育可诱发分散培养的DRG神经元凋亡,Res可改善酒精诱发的DRG神经元凋亡。AMPK抑制剂CC和SIRT1抑制剂NCA可以阻断Res的抗凋亡作用。
     (4)酒精孵育可增强分散培养的DRG神经元的氧化应激,应用Res可抑制酒精所致的氧化应激,降低MDA和亚硝酸盐的水平,增加GSH的含量和SOD的活性。
     以上结果表明,Res对酒精损伤的器官型培养的DRG神经元的生长和再生具有促进作用;Res可增强酒精损伤的分散培养的DRG神经元的活性;Res可改善酒精损伤所致的DRG神经元凋亡和氧化应激;Res的神经保护作用与其对AMPK和SIRT1的激活有关,也与其抗氧化作用有关。因此,增强AMPK和SIRT1的活性有可能成为酒精对初级感觉神经元损伤的一种新的治疗方法,Res对DRG神经元的保护作用很可能使Res成为通过这一途径治疗酒精所致感觉神经元损伤的一个重要候选因子
     第二部分白藜芦醇对酒精损伤的施万细胞的保护作用
     SCs对DRG神经元正常形态和功能的维持具有重要的作用,酒精所致的DRG神经元损伤,很可能不但直接作用于神经元,也可能对SCs造成损伤从而间接影响DRG神经元功能的发挥。有研究显示,酒精可抑制培养的SCs增殖和髓鞘的形成,孕期和哺乳期长期大量饮酒可导致胶质细胞BDNF和NGF表达的改变,可能会损伤细胞内与细胞成活、生长、分化相关的信号通路,增加脑发育过程中细胞的死亡。然而,酒精对SCs的损伤程度及Res是否对酒精损伤的SCs具有保护作用目前仍不清楚。因此,本课题设计如下实验,研究Res对酒精损伤的SCs细胞的保护作用。
     取新生大鼠双侧坐骨神经和臂丛神经进行SCs培养。培养的细胞分为6组:Res+酒精组;Res+CC+酒精组;Res+NCA+酒精组;Res+CC+NCA+酒精组;酒精组;对照组。用WST-1分析法检测Res对酒精引起的SCs细胞增殖和毒性的影响,用Hoechst33342和TUNEL染色技术观察SCs细胞的凋亡用实时荧光定量PCR技术检测BDNF.GDNF和NGF mRNA表达的变化,用Western blot技术检测BDNF.GDNF和NGF蛋白表达的变化。结果显示:
     (1)酒精可降低SCs细胞的活性,Res可改善酒精损伤的SCs细胞的活性。AMPK抑制剂CC和SIRT1抑制剂NCA可以阻断Res的作用。
     (2)酒精孵育可增加SCs细胞的凋亡,Res可抑制酒精引起的细胞凋亡。AMPK抑制剂CC和SIRT1抑制剂NCA可以阻断Res的抗凋亡作用。
     (3)酒精孵育可促进SCs细胞NGF mRNA的表达,而对BDNF mRNA和GDNF mRNA的表达无显著影响作用;Res孵育可促进SCs细胞BDNF mRNA和GDNF mRNA的表达,而对NGF mRNA的表达无显著影响作用。
     (4)酒精孵育可促进SCs细胞NGF、BDNF和GDNF蛋白的表达,而Res则可促进BDNF和GDNF的表达,对NGF的表达反而具有抑制作用。
     以上结果表明,Res对酒精损伤的SCs细胞具有保护作用,Res很可能通过调节神经营养因子的表达而减少细胞的凋亡,从而发挥保护作用。Res对不同的神经营养因子的表达具有不同的调节作用,这表明Res对神经营养因子的表达的调节作用是复杂的。酒精孵育对SCs细胞不同神经营养因子表达产生不同的影响,这表明SCs细胞对所用酒精剂量的反应性,很可能是细胞的一种自我保护机制。酒精对SCs细胞的毒性作用机制及Res对SCs细胞的保护作用及其机制尚有待于进一步探讨。
     第三部分白藜芦醇对大鼠酒精性周围神经病变的保护作用
     氧化应激是导致周围神经病变出现神经痛的重要因素之一。细胞因子可直接与伤害感受器作用并引起炎症反应,导致痛觉过敏。Res可通过清除ROS并作用于氧化还原调节蛋白产生神经保护作用。促炎症细胞因子可介导神经元凋亡和周围神经病理性疼痛,长期饮用大量酒精所致的神经病理性疼痛是否与促炎症细胞因子的产生有关以及Res对APN的治疗作用尚需要进一步探讨。
     本课题利用酒精诱发的APN疼痛的动物模型,通过检测大鼠的痛觉行为学改变,观察坐骨神经光镜水平的形态学和电镜水平的超微结构改变,以及检测坐骨神经内MDA、GSH、亚硝酸盐、SOD、肿瘤坏死因子-α(tumor nectosis factor-α, TNF-α)和白细胞介素-6(interleukin-6, IL-6)水平的变化,综合分析酒精所致APN的病理发生机制及Res对酒精诱发的APN的治疗作用。结果显示:
     (1)大鼠经酒精灌胃6w后即可出现触觉异常性疼痛和热痛觉过敏,至第12w,触觉异常性疼痛和热痛觉过敏更加明显。
     (2)对于酒精诱发的APN疼痛大鼠,应用Res后可缓解酒精所致的触觉异常性疼痛和热痛觉过敏。
     (3)给APN大鼠应用Res后,坐骨神经光镜水平的形态学和电镜水平的超微结构均出现明显改善。
     (4)酒精诱发的APN大鼠,坐骨神经组织的氧化应激反应增强,应用Res可抑制酒精诱发的氧化应激反应。
     (5)酒精可引起坐骨神经组织内促炎症细胞因子的水平升高,应用Res可抑制这些促炎症细胞因子水平的上升。
     以上结果表明,给大鼠长期饮用酒精可对周围神经组织产生明显的损伤作用,并导致动物的痛觉行为学发生改变。酒精对周围神经组织的损伤作用是多方面的,不仅直接引起神经超微结构的改变,而且还增强氧化应激反应和促进促炎症细胞因子的表达,这些变化可能会进一步加重神经的形态学变化。应用Res可从多个方面或层次改善酒精所致的周围神经损伤。这些研究结果不仅对酒精所致的周围神经损伤研究提供了新的实验资料,而且对开发APN的新的治疗措施提供了具有指导意义的理论基础和实验依据。不可否认,本课题的研究结果对于将来采用Res和其衍生物预防或治疗APN具有实际指导意义。
Clinical studies and research in animals have established that ethanol (EtOH) consumption results in damage not only to the central nervous systems but also to the peripheral nervous systems. The effects of EtOH on the central nervous system have been well developed for a long time, while the research on the effects of EtOH on alcoholic peripheral neuropathy is not enough and the pathological mechanism is still unclear. Recently, many studies have demonstrated that EtOH-induced neuronal death is related to increases in oxidative stress that coincide with the induction of oxidative enzymes.
     Excessive drinking, usually over years, can lead to alcoholic peripheral neuropathy (APN). In the condition of high alcohol intake,36.8%drinkers fulfilled criteria of peripheral neuropathy. The APN is one of the most common polyneuropathies all over the world. The initial and major symptom of APN is pain with or without burning sensations in the feet, and there may be numbness or tingling in the hands, legs and feet. The pathologic change is an axonal neuropathy characterized by segmental de/remyelination and a reduction in nerve fibers. Although the exact mechanisms is remain unknown, several pathophysiological processes take responsibility for APN, including oxidative stress leading to free radical damage to nerves, direct toxic effect of alcohol and activation of spinal cord microglia after chronic alcohol consumption.
     Schwann cells (SCs) are the myelin forming cells in the peripheral nervous system and contribute to the development, function and regeneration of peripheral nerves. They play a key role in the pathology of various inflammatory, metabolic and hereditary polyneuropathies. SCs provide trophic support to axons via expression of various neurotrophic factors, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), especially after nerve injury. Ethanol (EtOH) adversely affected both SCs proliferation and myelin formation in culture. The secretion of neurotrophic factors by SCs is necessary to promote axon growth and prevent neurons from initiating apoptosis. However, the alterations of neurotrophic factors in EtOH treated SCs are still unknown.
     Resveratrol (Res), a polyphenolic compound found in grapes, red wine, berries, peanuts and other plants, has been shown to regulate many cellular processes and to display multiple protective and therapeutic effects. Res has been shown to activate AMP-activated protein kinase (AMPK) and promote robust neurite outgrowth in Neuro2a cells. Res also may be effective for the treatment of diseases characterized by axonopathy and neurodegeneration due to its ability to activate sirtuin1(SIRT1). Res has been shown to activate the antioxidant response and prevent hyperglycemic oxidative stress in dorsal root ganglia (DRG) neurons.
     In order to study the pathogenesis of APN, prevent the progression of APN and find new therapeutic strategy, in this study, using the cultured DRG neurons, SCs and the animal model of APN, we estimated the therapeutic effect of Res on APN and discussed the pathological mechanism of APN by analyzing the molecular biology/biochemistry index and observing the animal behaviors.
     Part I Neuroprotective effects of resveratrol on dorsal root ganglion neurons with neurotoxicity induced by ethanol
     EtOH treatment caused the loss of cells in the neural crest region, which migration leading to DRG formation, in whole embryo culture study and leading to increased apoptosis in embryonic day14(E14) DRG neural stem cells. The beneficial effects of antioxidant therapy during EtOH exposure also support the role of oxidative stress in EtOH-induced neurotoxicity. However, whether antioxidants are effective in attenuating the EtOH-induced loss of neurons during development is still unknown. While EtOH-induced injury to DRG neurons is marginally relieved by the available therapies, antioxidants seem to be effective for alleviating EtOH-induced nerve injury. In this study, we investigated the neuroprotective efficacy of Res in EtOH treated DRG neurons in vitro. We hypothesized that Res administration in embryonic DRG culture model would improve neuronal survival by suppressing oxidative stress. The present study focused on the effects of Res on neurite outgrowth, neuronal migration, apoptosis and oxidative stress of embryonic DRG neurons with EtOH-induced toxicity in vitro. The experiments were designed as follows:
     The embryonic day15rats were used for dissociated and organotypic DRG culture preparations. EtOH, Res, Compound C (CC) or nicotinamide (NCA) was applied as a single bolus directly to the culture media. Microtubule-associated protein2(MAP2) fluorescent label and observe the cultured cells. The number of nerve fiber bundles extending and the neurons migrating from the DRG explants was counted. The viability of the DRG neurons was detected using a water soluble tetrazolium salt-1(WST-1) method. Hoechst33342and terminal deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate nick-end-labeling (TUNEL) staining was used to observe apoptotic neuronal cell death. The production of intracellular ROS was measured with2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The malondialdehyde (MDA), glutathione (GSH), nitrite level and superoxide dismutase (SOD) activity were measured to assay the oxidative stress. The results are as follows:
     (1) Res significantly promoted the outgrowth of neuron fibers and the migration of neurons compared to that of the EtOH group, whereas the AMPK inhibitor CC and the SIRT1inhibitor NCA inhibited the promoting effect of Res.
     (2) EtOH decreased cell viability, the administration of Res improved cell viability significantly. This effect of Res was inhibited by the AMPK inhibitor CC and the SIRT1inhibitor NCA.
     (3) EtOH exposure increased the number of apoptotic neurons compared with the control group. Res reduced the percentage of apoptotic cells compared to the cells treated with EtOH alone. Treatment with AMPK inhibitor CC and the SIRT1reversed the protective effect of Res.
     (4) Res inhibited the oxi dative stress that induced by EtOH, decreased the levels of MDA and nitrite, and increased the level of GSH and SOD activity.
     The data in this study indicate that:Res promoted the outgrowth of neuron fibers and the migration of neurons from the organotypic culture of DRG; Res inhibited the death and apoptosis of DRG neurons that induced by EtOH. These neuroprotective effects are associated with the activation of AMPK and SIRT1by Res as well as its antioxidative effect. These findings suggest that novel therapeutic strategies designed to increase the activation of AMPK and SIRT1may be effective for reducing EtOH induced neurotoxicity of embryonic primary sensory neurons. Res and its derivative may be good candidates for the prevention and/or treatment of these diseases.
     Part II The protective effects of resveratrol on Schwann cells with toxicity induced by ethanol in vitro
     SCs contribute to the maintenance of peripheral nerve morphology and function. Besides the direct neurotoxicity of EtOH, EtOH may also induce cell injury to SCs and influence the function of DRG neurons indirectly. EtOH adversely affected both SCs proliferation and myelin formation in culture. Chronic EtOH intake during gestation and lactation induced alterations in the expression of BDNF and NGF levels might impair intracellular signaling pathways involved in cell survival, growth and differentiation, leading to enhanced natural cell death during brain development. Several researches have demonstrated that Res is capable to regulate the expression of neurotrophic factors. In the present study, we hypothesized that Res administration would improve cell survival and affect expression of neurotrophic factors (BDNF, GDNF, and NGFF) of SCs with EtOH treatment in vitro. The experiments were designed as follows:
     The bilateral sciatic nerves and brachial plexus were removed from neonatal rats to isolation and culture SCs. The cultured cells were divided into6groups:EtOH+Res; EtOH+Res+CC;:EtOH+Res+NCA; EtOH+Res+CC+NCA; EtOH; control. Using the WST-1to assay the effects of Res on cell proliferation and cytotoxicity that induced by EtOH. Hoechst33342and TUNEL staining was used to observe apoptotic SCs death. The expression of BDNF, GDNF, and NGF mRNAs were analyzed by real time-PCR. The protein levels of BDNF, GDNF, and NGF were detected by western blotting. The results are as follows:
     (1) Compared to the control group, treatment with EtOH possessed decreased cell viability. Administration of Res improved cell viability significantly. The effect of Res was inhibited by AMPK inhibitor CC and SIRT1inhibitor NCA.
     (2) EtOH exposure increased the number of apoptotic cells compared with the control group. Res reduced the percentage of apoptotic cells, treatment with CC and NCA reversed the protective effect of Res on the EtOH-induced apoptosis in SCs.
     (3) NGF mRNA expression significantly increased in EtOH-treated SCs. The expression of BDNF and GDNF mRNA increased significantly after Res administration as compared to that of the control group.
     (4) BDNF, GDNF, and NGF protein levels increased significantly in EtOH treated SCs. Administration of Res increased the protein levels of BDNF and GDNF significantly but inhibited the increase of NGF protein levels.
     The data in the present study indicate that Res protects SCs from EtOH-induced cell death and alters the expression of neurotrophic factors in EtOH-treated SCs. The regulating effects of Res on three neurotrophic factors are different, which indicates that the effects of Res on neurotrophic factors expression are complicated.
     The effects of Res on cell survival and the regulation of neurotrophic factors expression in EtOH-treated SCs suggest that Res and its derivative may play a beneficial role in ameliorating the EtOH-induced pathologic changes in the peripheral and/or central nervous system. As the protective effect is associated with the activation of AMPK-SIRT1pathway, novel therapeutic strategies designed to increase the activation of AMPK and SIRT1may be effective for the treatment of diseases characterized by myelin and axon lesion that induced by EtOH. The different expression of the neurotrophic factors after EtOH incubation suggests that the reaction of SCs is likely to be a protective action of cells. The mechanisms of the toxic effects of EtOH and the protective effects of Res on SCs remain to be further studied.
     Part Ⅲ Resveratrol relieves alcoholic peripheral neuropathy in rats
     Oxidative stress is one of the most significant factors in the development and maintenance of neuropathic pain in peripheral neuropathy. Cytokines show a direct activation of nociceptors and potentiate the inflammatory response which causes pain hypersensitivity. Studies indicate that Res exhibits neuroprotective effects by scavenging ROS and acting at redox regulating proteins. The pro inflammatory cytokines mediates neuron apoptosis and neuropathic pain of peripheral nervous system. A proper understanding of the effects of proinflammatory cytokines and Res on experimental chronic APN rat is highly important for providing a clue and strengthening the rationale of Res as effective therapeutic drug in human APN.
     In this study, the alcoholic peripheral neuropathic pain animal model was induced by intragastric administration of EtOH. The mechanical hyperalgesia was tested by von Frey filaments. The thermal hyperalgesia was tested by a radiant heat generator. The micro structure of the sciatic nerve was observed. The MDA, GSH, nitrite level and SOD activity were measured to assay the oxidative stress. The tumor necrosis factor-a (TNF-a) and interleukin-6(IL-6) level were measured to assay the inflammatory status.
     The results are as follows:
     (1) The mechanical and thermal hyperalgesia appeared at the6th w after administration of EtOH and lasted to the12th w.
     (2) Treatment with Res significantly reversed the mechanical and thermal hyperalgesia which induced by EtOH.
     (3) Res treatment could partially reverse the morphological alterations of sciatic nerve in APN rats.
     (4) Res inhibited the oxidative stress that induced by EtOH in the sciatic nerve.
     (5) Res inhibited the levels of inflammatory cytokines that induced by EtOH in the sciatic nerve.
     The present study demonstrated that, chronic EtOH administration induced peripheral nerve injury and behavior changes in rats. EtOH not only induced the morphological changes of the sciatic nerve but also enhanced the oxidative stress and the expression of pro inflammatory factors. Res may play an important role in relief of pathologic changes and neuropathic pain in APN through inhibiting the oxidative stress and inflammatory cytokine levels in the sciatic nerve. These findings provide rationale and experimental evidence for the development of Res therapeutic strategy to alleviate APN.
引文
Agrawal M, Kumar V, Kashyap MP, Khanna VK, Randhawa GS, Pant AB. Ischemic insult induced apoptotic changes in PC 12 cells:protection by trans resveratrol. Eur J Pharmacol,2011,666 (1-3):5-11.
    Anthony B, Zhou FC, Ogawa T, Goodlett CR, Ruiz J. Alcohol exposure alters cell cycle and apoptotic events during early neurulation. Alcohol Alcohol,2008,43 (3):261-273.
    Antonio AM, Druse MJ. Antioxidants prevent ethanol-associated apoptosis in fetal rhombencephalic neurons. Brain Res,2008,120416-23.
    Antonio AM, Gillespie RA, Druse-Manteuffel MJ. Effects of lipoic acid on antiapoptotic genes in control and ethanol-treated fetal rhombencephalic neurons. Brain Res,2011,1383 13-21.
    Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science,2004,305 (5686):1010-1013.
    Asada N, Sanada K. LKB1-mediated spatial control of GSK3beta and adenomatous polyposis coli contributes to centrosomal forward movement and neuronal migration in the developing neocortex. J Neurosci,2010,30 (26):8852-8865.
    Balcerczyk A, Pirola L. Therapeutic potential of activators and inhibitors of sirtuins. Biofactors,2010,36 (5):383-393.
    Camont L, Collin F, Couturier M, Therond P, Jore D, Gardes-Albert M, Bonnefont-Rousselot D. Radical-induced oxidation of trans-resveratrol. Biochimie,2012,94 (3):741-747.
    Catalgol B, Batirel S, Taga Y, Ozer NK. Resveratrol:French paradox revisited. Front Pharmacol,2012,3141.
    Chen CC, Liou SW, Chen WC, Hu FR, Wang IJ, Lin SJ. Coenzyme Q10 reduces ethanol-induced apoptosis in corneal fibroblasts. PLoS One,2011,6 (4): e19111.
    Chen G, Bower KA, Xu M, Ding M, Shi X, Ke ZJ, Luo J. Cyanidin-3-glucoside reverses ethanol-induced inhibition of neurite outgrowth:role of glycogen synthase kinase 3 Beta. Neurotox Res,2009a,15 (4):321-331.
    Chen L, Zhang Y, Sun X, Li H, LeSage G, Javer A, Zhang X, Wei X, Jiang Y, Yin D. Synthetic resveratrol aliphatic acid inhibits TLR2-mediated apoptosis and an involvement of Akt/GSK3beta pathway. Bioorg Med Chem,2009b,17 (13): 4378-4382.
    Cherian PP, Schenker S, Henderson GI. Ethanol-mediated DNA damage and PARP-1 apoptotic responses in cultured fetal cortical neurons. Alcohol Clin Exp Res,2008,32(11):1884-1892.
    Chu J, Tong M, de la Monte SM. Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol,2007,113 (6):659-673.
    Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I. Regulation of SIRT1 in cellular functions:role of polyphenols. Arch Biochem Biophys,2010, 501 (1):79-90.
    Crews FT, Nixon K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol,2009,44 (2):115-127.
    Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A,2007,104 (17):7217-7222.
    Edwards RB, Manzana EJ, Chen WJ. Melatonin (an antioxidant) does not ameliorate alcohol-induced Purkinje cell loss in the developing cerebellum. Alcohol Clin Exp Res,2002,26 (7):1003-1009.
    Heaton MB, Paiva M, Madorsky I, Shaw G. Ethanol effects on neonatal rat cortex: comparative analyses of neurotrophic factors, apoptosis-related proteins, and oxidative processes during vulnerable and resistant periods. Brain Res Dev Brain Res,2003,145 (2):249-262.
    Heaton MB, Paiva M, Madorsky I, Siler-Marsiglio K, Shaw G. Effect of bax deletion on ethanol sensitivity in the neonatal rat cerebellum. J Neurobiol, 2006,66(1):95-101.
    Huang Q, Wu YT, Tan HL, Ong CN, Shen HM. A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ,2009,16 (2):264-277.
    Hung LM, Chen JK, Huang SS, Lee RS, Su MJ. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc Res,2000, 47(3):549-555.
    Hwang JW, Chung S, Sundar IK, Yao H, Arunachalam G, McBurney MW, Rahman I. Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism:implication in pathogenesis of COPD. Arch Biochem Biophys,2010,500 (2):203-209.
    Jaatinen P, Kiianmaa K, Lahtivirta S, Hervonen A. Ethanol-induced vacuolation in rat peripheral nervous system. J Auton Nerv Syst,1994,46 (1-2):107-121.
    Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Bodhankar SL. Therapeutic role of curcumin in prevention of biochemical and behavioral aberration induced by alcoholic neuropathy in laboratory animals. Neurosci Lett,2012,511 (1): 18-22.
    Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsumura T, Araki E. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes,2006,55 (1):120-127.
    Kumar A, Kaundal RK, Iyer S, Sharma SS. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci,2007,80 (13):1236-1244.
    Kumar A, Singh CK, Lavoie HA, Dipette DJ, Singh US. Resveratrol restores Nrf2 level and prevents ethanol-induced toxic effects in the cerebellum of a rodent model of fetal alcohol spectrum disorders. Mol Pharmacol,2011,80 (3): 446-457.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-lalpha. Cell,2006,127 (6): 1109-1122.
    Lee KW, Kim HJ, Sung JJ, Park KS, Kim M. Defective neurite outgrowth in aphidicolin/cAMP-induced motor neurons expressing mutant Cu/Zn superoxide dismutase. Int J Dev Neurosci,2002,20 (6):521-526.
    Liu Z, Gao W, Wang Y, Zhang W, Liu H, Li Z. Neuregulin-lbeta regulates outgrowth of neurites and migration of neurofi lament 200 neurons from dorsal root ganglial explants in vitro. Peptides,2011,32 (6):1244-1248.
    Marques FZ, Markus MA, Morris BJ. Resveratrol:cellular actions of a potent natural chemical that confers a diversity of health benefits. Int J Biochem Cell Biol,2009,41 (11):2125-2128.
    Mudo G, Makela J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Malkia A, Bonomo A, Kairisalo M, Aguirre JA, Korhonen L, Belluardo N, Lindholm D. Transgenic expression and activation of PGC-lalpha protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell Mol Life Sci,2012,69 (7):1153-1165.
    Ogino K, Wang DH. Biomarkers of oxidative/nitrosative stress:an approach to disease prevention. Acta Med Okayama,2007,61 (4):181-189.
    Peng MC, Chou WJ, Chen SS. Neurological problems in chronic alcoholics. Gaoxiong Yi Xue Ke Xue Za Zhi,1991,7 (8):404-412.
    Peters TJ, Kotowicz J, Nyka W, Kozubski W, Kuznetsov V, Vanderbist F, de Niet S, Marcereuil D, Coffiner M. Treatment of alcoholic polyneuropathy with vitamin B complex:a randomised controlled trial. Alcohol Alcohol,2006,41 (6): 636-642.
    Ramachandran V, Watts LT, Maffi SK, Chen J, Schenker S, Henderson G. Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons. J Neurosci Res,2003,74 (4):577-588.
    Rump TJ, Abdul Muneer PM, Szlachetka AM, Lamb A, Haorei C, Alikunju S, Xiong H, Keblesh J, Liu J, Zimmerman MC, Jones J, Donohue TM, Jr., Persidsky Y, Haorah J. Acetyl-L-carnitine protects neuronal function from alcohol-induced oxidative damage in the brain. Free Radic Biol Med,2010,49 (10):1494-1504.
    Sari Y, Chiba T, Yamada M, Rebec GV, Aiso S. A novel peptide, colivelin, prevents alcohol-induced apoptosis in fetal brain of C57BL/6 mice:signaling pathway investigations. Neuroscience,2009,164 (4):1653-1664.
    Scott B, Petit TL, Lew J. Differential survival of fetal and adult neurons and non-neuronal cells exposed chronically to ethanol in cell culture. Neurotoxicology,1986,7 (1):81-90.
    Shin SM, Cho IJ, Kim SG. Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3beta inhibition downstream of poly(ADP-ribose)polymerase-LKB 1 pathway. Mol Pharmacol,2009,76 (4):884-895.
    Siddiqui MA, Kashyap MP, Kumar V, Al-Khedhairy AA, Musarrat J, Pant AB. Protective potential of trans-resveratrol against 4-hydroxynonenal induced damage in PC12 cells. Toxicol In Vitro,2010,24 (6):1592-1598.
    Smoliga JM, Baur JA, Hausenblas HA. Resveratrol and health--a comprehensive review of human clinical trials. Mol Nutr Food Res,2011,55 (8):1129-1141.
    Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP. Poly(ADP-ribose) Polymerase-1 in Amyloid Beta Toxicity and Alzheimer's Disease. Mol Neurobiol,2012.
    Sun G, Reynolds R, Leclerc I, Rutter GA. RIP2-mediated LKB1 deletion causes axon degeneration in the spinal cord and hind-limb paralysis. Dis Model Mech, 2011,4(2):193-202.
    Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol,2001,155 (1):65-76.
    Tennen RI, Michishita-Kioi E, Chua KF. Finding a target for resveratrol. Cell,2012, 148 (3):387-389.
    Vincent AM, Kato K, McLean LL, Soules ME, Feldman EL. Sensory neurons and schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. Antioxid Redox Signal,2009,11 (3):425-438.
    Wang J, Zhang Y, Tang L, Zhang N, Fan D. Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis. Neurosci Lett,2011,503 (3):250-255.
    Wang X, Meng D, Chang Q, Pan J, Zhang Z, Chen G, Ke Z, Luo J, Shi X. Arsenic inhibits neurite outgrowth by inhibiting the LKB1-AMPK signaling pathway. Environ Health Perspect,2010,118 (5):627-634.
    Weisova P, Davila D, Tuffy LP, Ward MW, Concannon CG, Prehn JH. Role of 5'-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxid Redox Signal,2011,14 (10):1863-1876.
    Yan D, Dong J, Sulik KK, Chen SY. Induction of the Nrf2-driven antioxidant response by tert-butylhydroquinone prevents ethanol-induced apoptosis in cranial neural crest cells. Biochem Pharmacol,2010,80 (1):144-149.
    Young C, Klocke BJ, Tenkova T, Choi J, Labruyere J, Qin YQ, Holtzman DM, Roth KA, Olney JW. Ethanol-induced neuronal apoptosis in vivo requires BAX in the developing mouse brain. Cell Death Differ,2003,10 (10):1148-1155.
    Zambelis T, Karandreas N, Tzavellas E, Kokotis P, Liappas J. Large and small fiber neuropathy in chronic alcohol-dependent subjects. J Peripher Nerv Syst,2005, 10(4):375-381.
    Zimnoch L, Szynaka B, Cylwik B, Kozielec Z. Morphometric and ultrastructural studies of the sciatic nerve regeneration in rats intoxicated with ethanol. Exp Toxicol Pathol,2000,52 (5):455-463.
    Busch F, Mobasheri A, Shayan P, Stahlmann R, Shakibaei M. Sirt-1 is required for the inhibition of apoptosis and inflammatory responses in human tenocytes. J Biol Chem,2012,287 (31):25770-25781.
    Camont L, Collin F, Couturier M, Therond P, Jore D, Gardes-Albert M, Bonnefont-Rousselot D. Radical-induced oxidation of trans-resveratrol. Biochimie,2012,94 (3):741-747.
    Cao C, Lu S, Kivlin R, Wallin B, Card E, Bagdasarian A, Tamakloe T, Wang WJ, Song X, Chu WM, Kouttab N, Xu A, Wan Y. SIRT1 confers protection against UVB- and H2O2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes. J Cell Mol Med,2009,13 (9B):3632-3643.
    Cherian PP, Schenker S, Henderson GI. Ethanol-mediated DNA damage and PARP-1 apoptotic responses in cultured fetal cortical neurons. Alcohol Clin Exp Res,2008,32(11):1884-1892.
    Climent E, Pascual M, Renau-Piqueras J, Guerri C. Ethanol exposure enhances cell death in the developing cerebral cortex:role of brain-derived neurotrophic factor and its signaling pathways. J Neurosci Res,2002,68 (2):213-225.
    de Vries HS, de Heij T, Roelofs HM, te Morsche RH, Peters WH, de Jong DJ. Infliximab exerts no direct hepatotoxic effect on HepG2 cells in vitro. Dig Dis Sci,2012,57 (6):1604-1608.
    Do GM, Jung UJ, Park HJ, Kwon EY, Jeon SM, McGregor RA, Choi MS. Resveratrol ameliorates diabetes-related metabolic changes via activation of AMP-activated protein kinase and its downstream targets in db/db mice. Mol Nutr Food Res,2012,56 (8):1282-1291.
    Duong HQ, Hwang JS, Kim HJ, Seong YS, Bae I. BML-275, an AMPK inhibitor, induces DNA damage, G2/M arrest and apoptosis in human pancreatic cancer cells. Int J Oncol,2012.
    Gordon T. The role of neurotrophic factors in nerve regeneration. Neurosurg Focus, 2009,26 (2):E3.
    Heaton MB, Mitchell JJ, Paiva M, Walker DW. Ethanol-induced alterations in the expression of neurotrophic factors in the developing rat central nervous system. Brain Res Dev Brain Res,2000,121 (1):97-107.
    Hoke A. Mechanisms of Disease:what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol,2006,2 (8):448-454.
    Hoke A, Cheng C, Zochodne DW. Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport, 2000,11 (8):1651-1654.
    Hu J, Zhou J, Li X, Wang F, Lu H. Schwann cells promote neurite outgrowth of dorsal root ganglion neurons through secretion of nerve growth factor. Indian J Exp Biol,2011,49 (3):177-182.
    Huang Q, Wu YT, Tan HL, Ong CN, Shen HM. A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ,2009,16 (2):264-277.
    Hwang JW, Chung S, Sundar IK, Yao H, Arunachalam G, McBurney MW, Rahman I. Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism:implication in pathogenesis of COPD. Arch Biochem Biophys,2010,500 (2):203-209.
    Kao CL, Chen LK, Chang YL, Yung MC, Hsu CC, Chen YC, Lo WL, Chen SJ, Ku HH, Hwang SJ. Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J Atheroscler Thromb,2010,17 (9):970-979.
    Kim MY, Lim JH, Youn HH, Hong YA, Yang KS, Park HS, Chung S, Koh SH, Shin SJ, Choi BS, Kim HW, Kim YS, Lee JH, Chang YS, Park CW. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGCl alpha axis in db/db mice. Diabetologia,2012.
    Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsumura T, Araki E. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes,2006,55 (1):120-127.
    Kumar A, Singh CK, Lavoie HA, Dipette DJ, Singh US. Resveratrol restores Nrf2 level and prevents ethanol-induced toxic effects in the cerebellum of a rodent model of fetal alcohol spectrum disorders. Mol Pharmacol,2011,80 (3): 446-457.
    Kumar V, Mahal BA. NGF-the TrkA to successful pain treatment. J Pain Res, 2012,5279-287.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 alpha. Cell,2006,127 (6): 1109-1122.
    Lehmann HC, Hoke A. Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurol Disord Drug Targets,2010,9 (6):801-806.
    Massimi M, Tomassini A, Sciubba F, Sobolev AP, Devirgiliis LC, Miccheli A. Effects of resveratrol on HepG2 cells as revealed by (1)H-NMR based metabolic profiling. Biochim Biophys Acta,2012,1820(1):1-8.
    McNeill DL, Shew RL, Papka RE. Effects of ethanol exposure on myelination and axon numbers in the L2 dorsal root of the neonatal rat. Dev Neurosci,1991,13 (3):171-175.
    Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB. Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci,1998,10 (2): 607-621.
    Mimouni-Rongy M, White JH, Weinstein DE, Desbarats J, Almazan G. Fas ligand acts as a counter-receptor in Schwann cells and induces the secretion of bioactive nerve growth factor. J Neuroimmunol,2011,230 (1-2):17-25.
    Mithen FA, Reiker MM, Birchem R. Effects of ethanol on rat Schwann cell proliferation and myelination in culture. In Vitro Cell Dev Biol,1990,26 (2): 129-139.
    Moriya J, Chen R, Yamakawa J, Sasaki K, Ishigaki Y, Takahashi T. Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol Pharm Bull,2011, 34 (3):354-359.
    Mudo G, Makela J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Malkia A, Bonomo A, Kairisalo M, Aguirre JA, Korhonen L, Belluardo N, Lindholm D. Transgenic expression and activation of PGC-1 alpha protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell Mol Life Sci,2012,69 (7):1153-1165.
    Pettingill LN, Wise AK, Geaney MS, Shepherd RK. Enhanced auditory neuron survival following cell-based BDNF treatment in the deaf guinea pig. PLoS One,2011,6 (4): e18733.
    Rahvar M, Nikseresht M, Shafiee SM, Naghibalhossaini F, Rasti M, Panjehshahin MR, Owji AA. Effect of oral resveratrol on the BDNF gene expression in the hippocampus of the rat brain. Neurochem Res,2011,36 (5):761-765.
    Salazar M, Pariente JA, Salido GM, Gonzalez A. Ethanol induces glutamate secretion by Ca2+ mobilization and ROS generation in rat hippocampal astrocytes. Neurochem Int,2008,52 (6):1061-1067.
    Shakhbazau A, Martinez JA, Xu QG, Kawasoe J, van Minnen J, Midha R. Evidence for a systemic regulation of neurotrophin synthesis in response to peripheral nerve injury. J Neurochem,2012,122 (3):501-511.
    Shin SM, Cho IJ, Kim SG. Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3beta inhibition downstream of poly(ADP-ribose)polymerase-LKB 1 pathway. Mol Pharmacol,2009,76 (4):884-895.
    Sobue G, Yamamoto M, Doyu M, Li M, Yasuda T, Mitsuma T. Expression of mRNAs for neurotrophins (NGF, BDNF, and NT-3) and their receptors (p75NGFR, trk, trkB, and trkC) in human peripheral neuropathies. Neurochem Res,1998,23 (6):821-829.
    Spedding M, Gressens P. Neurotrophins and cytokines in neuronal plasticity. Novartis Found Symp,2008,289222-233; discussion 233-240.
    Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP. Poly(ADP-ribose) Polymerase-1 in Amyloid Beta Toxicity and Alzheimer's Disease. Mol Neurobiol,2012.
    Tennen RI, Michishita-Kioi E, Chua KF. Finding a target for resveratrol. Cell,2012, 148 (3):387-389.
    Vargas MR, Pehar M, Cassina P, Estevez AG, Beckman JS, Barbeito L. Stimulation of nerve growth factor expression in astrocytes by peroxynitrite. In Vivo,2004, 18 (3):269-274.
    von Haefen C, Sifringer M, Menk M, Spies CD. Ethanol enhances susceptibility to apoptotic cell death via down-regulation of autophagy-related proteins. Alcohol Clin Exp Res,2011,35 (8):1381-1391.
    Wang X, Ke Z, Chen G, Xu M, Bower KA, Frank JA, Zhang Z, Shi X, Luo J. Cdc42-dependent activation of NADPH oxidase is involved in ethanol-induced neuronal oxidative stress. PLoS One,2012,7 (5):e38075.
    Weisova P, Davila D, Tuffy LP, Ward MW, Concannon CG, Prehn JH. Role of 5'-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxid Redox Signal,2011,14 (10):1863-1876.
    Xin P, Pan Y, Zhu W, Huang S, Wei M, Chen C. Favorable effects of resveratrol on sympathetic neural remodeling in rats following myocardial infarction. Eur J Pharmacol,2010,649 (1-3):293-300.
    Zhang F, Lu YF, Wu Q, Liu J, Shi JS. Resveratrol promotes neurotrophic factor release from astroglia. Exp Biol Med (Maywood),2012,237 (8):943-948.
    Zhang L, Ma Z, Smith GM, Wen X, Pressman Y, Wood PM, Xu XM. GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by primary effects on neurons. Glia,2009,57 (11): 1178-1191.
    Zhu H, Wang WJ, Ding WL, Li F, He J. Effect of panaxydol on hypoxia-induced cell death and expression and secretion of neurotrophic factors (NTFs) in hypoxic primary cultured Schwann cells. Chem Biol Interact,2008,174 (1): 44-50.
    Arruda JL, Sweitzer S, Rutkowski MD, DeLeo JA. Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat:possible immune modulation in neuropathic pain. Brain Res,2000,879 (1-2):216-225.
    Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell,2009,139 (2):267-284.
    Bureau G, Longpre F, Martinoli MG. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res,2008,86 (2):403-410.
    Chopra K, Tiwari V. Alcoholic neuropathy:possible mechanisms and future treatment possibilities. Br J Clin Pharmacol,2012,73 (3):348-362.
    Das SK, Vasudevan DM. Alcohol-induced oxidative stress. Life Sci,2007,81 (3): 177-187.
    Doyle T, Finley A, Chen Z, Salvemini D. Role for peroxynitrite in sphingosine-1-phosphate-induced hyperalgesia in rats. Pain,2011,152 (3): 643-648.
    Fidanboylu M, Griffiths LA, Flatters SJ. Global inhibition of reactive oxygen species (ROS) inhibits paclitaxel-induced painful peripheral neuropathy. PLoS One,2011,6(9):e25212.
    Jia HB, Jin Y, Ji Q, Hu YF, Zhou ZQ, Xu JG, Yang JJ. Effects of recombinant human erythropoietin on neuropathic pain and cerebral expressions of cytokines and nuclear factor-kappa B. Can J Anaesth,2009,56 (8):597-603.
    Johannsen L, Smith T, Havsager AM, Madsen C, Kjeldsen MJ, Dalsgaard NJ, Gaist D, Schroder HD, Sindrup SH. Evaluation of patients with symptoms suggestive of chronic polyneuropathy. J Clin Neuromuscul Dis,2001,3 (2): 47-52.
    Juntunen J, Matikainen E, Nickels J, Ylikahri R, Sarviharju M. Alcoholic neuropathy and hepatopathy in mice. An experimental study. Acta Pathol Microbiol Immunol Scand A,1983,91 (2):137-144.
    Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain,2004,111 (1-2):116-124.
    Koike H, Iijima M, Sugiura M, Mori K, Hattori N, Ito H, Hirayama M, Sobue G. Alcoholic neuropathy is clinicopathologically distinct from thiamine-deficiency neuropathy. Ann Neurol,2003,54 (1):19-29.
    Koike H, Mori K, Misu K, Hattori N, Ito H, Hirayama M, Sobue G. Painful alcoholic polyneuropathy with predominant small-fiber loss and normal thiamine status. Neurology,2001,56 (12):1727-1732.
    Kumar A, Sharma SS. NF-kappaB inhibitory action of resveratrol:a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun,2010,394 (2):360-365.
    Kumar A, Singh CK, Lavoie HA, Dipette DJ, Singh US. Resveratrol restores Nrf2 level and prevents ethanol-induced toxic effects in the cerebellum of a rodent model of fetal alcohol spectrum disorders. Mol Pharmacol,2011,80 (3): 446-457.
    Lee I, Kim HK, Kim JH, Chung K, Chung JM. The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain,2007,133 (1-3):9-17.
    Lee KM, Jeon SM, Cho HJ. Tumor necrosis factor receptor 1 induces interleukin-6 upregulation through NF-kappaB in a rat neuropathic pain model. Eur J Pain, 2009,13 (8):794-806.
    Levy D, Zochodne DW. NO pain:potential roles of nitric oxide in neuropathic pain. Pain Pract,2004,4(1):11-18.
    Maciel ME, Castro JA, Castro GD. Inhibition of rat mammary microsomal oxidation of ethanol to acetaldehyde by plant polyphenols. Hum Exp Toxicol, 2011,30 (7):656-664.
    Maffi SK, Rathinam ML, Cherian PP, Pate W, Hamby-Mason R, Schenker S, Henderson GI. Glutathione content as a potential mediator of the vulnerability of cultured fetal cortical neurons to ethanol-induced apoptosis. J Neurosci Res, 2008,86 (5):1064-1076.
    Marques FZ, Markus MA, Morris BJ. Resveratrol:cellular actions of a potent natural chemical that confers a diversity of health benefits. Int J Biochem Cell Biol,2009,41 (11):2125-2128.
    Milligan ED, Twining C, Chacur M, Biedenkapp J, O'Connor K, Poole S, Tracey K, Martin D, Maier SF, Watkins LR. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci,2003,23 (3): 1026-1040.
    Monforte R, Estruch R, Valls-Sole J, Nicolas J, Villalta J, Urbano-Marquez A. Autonomic and peripheral neuropathies in patients with chronic alcoholism. A dose-related toxic effect of alcohol. Arch Neurol,1995,52 (1):45-51.
    Montiel-Ruiz RM, Reyes-Garcia G, Flores-Murrieta F, Deciga-Campos M. Antinociceptive interaction between benfotiamine and resveratrol in capsaicin-induced licking. Proc West Pharmacol Soc,2009,5267-71.
    Naik AK, Tandan SK, Dudhgaonkar SP, Jadhav SH, Kataria M, Prakash VR, Kumar D. Role of oxidative stress in pathophysiology of peripheral neuropathy and modulation by N-acetyl-L-cysteine in rats. Eur J Pain,2006,10 (7):573-579.
    Padi SS, Kulkarni SK. Minocycline prevents the development of neuropathic pain, but not acute pain:possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol,2008,601 (1-3):79-87.
    Perez-Severiano F, Bermudez-Ocana DY, Lopez-Sanchez P, Rios C, Granados-Soto V. Spinal nerve ligation reduces nitric oxide synthase activity and expression: effect of resveratrol. Pharmacol Biochem Behav,2008,90 (4):742-747.
    Purwata TE. High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J Pain Res,2011,4 169-175.
    Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation,2008,510.
    Sharma S, Kulkarni SK, Chopra K. Effect of resveratrol, a polyphenolic phytoalexin, on thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Fundam Clin Pharmacol,2007,21 (1):89-94.
    Sharma SS, Kumar A, Arora M, Kaundal RK. Neuroprotective potential of combination of resveratrol and 4-amino 1,8 naphthalimide in experimental diabetic neuropathy:focus on functional, sensorimotor and biochemical changes. Free Radic Res,2009,43 (4):400-408.
    Sharma SS, Sayyed SG. Effects of trolox on nerve dysfunction, thermal hyperalgesia and oxidative stress in experimental diabetic neuropathy. Clin Exp Pharmacol Physiol,2006,33 (11):1022-1028.
    Siniscalco D, Fuccio C, Giordano C, Ferraraccio F, Palazzo E, Luongo L, Rossi F, Roth KA, Maione S, de Novellis V. Role of reactive oxygen species and spinal cord apoptotic genes in the development of neuropathic pain. Pharmacol Res, 2007,55(2):158-166.
    Sun AY, Wang Q, Simonyi A, Sun GY. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol,2010,41 (2-3):375-383.
    Tredici G, Minazzi M. Alcoholic neuropathy. An electron-microscopic study. J Neurol Sci,1975,25 (3):333-346.
    Wang JY, Wen LL, Huang YN, Chen YT, Ku MC. Dual effects of antioxidants in neurodegeneration:direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des, 2006,12 (27):3521-3533.
    Wang S, Lim G, Zeng Q, Sung B, Ai Y, Guo G, Yang L, Mao J. Expression of central glucocorticoid receptors after peripheral nerve injury contributes to neuropathic pain behaviors in rats. J Neurosci,2004,24 (39):8595-8605.
    Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle-controlled study. The Capsaicin Study Group. Arch Intern Med,1991,151 (11):2225-2229.
    Ahlgren SC, Levine JD. Protein kinase C inhibitors decrease hyperalgesia and C-fiber hyperexcitability in the streptozotocin-diabetic rat. J Neurophysiol, 1994,72 (2):684-692.
    Ahluwalia B, Ahmad S, Adeyiga O, Wesley B, Rajguru S. Low levels of ethanol stimulate and high levels decrease phosphorylation in microtubule-associated proteins in rat brain:an in vitro study. Alcohol Alcohol,2000,35 (5):452-457.
    al-Ghoul WM, Volsi GL, Weinberg RJ, Rustioni A. Glutamate immunocytochemistry in the dorsal horn after injury or stimulation of the sciatic nerve of rats. Brain Res Bull,1993,30 (3-4):453-459.
    Aley KO, Levine JD. Different peripheral mechanisms mediate enhanced nociception in metabolic/toxic and traumatic painful peripheral neuropathies in the rat. Neuroscience,2002,111 (2):389-397.
    Aley KO, Martin A, McMahon T, Mok J, Levine JD, Messing RO. Nociceptor sensitization by extracellular signal-regulated kinases. J Neurosci,2001,21 (17):6933-6939.
    Ali DW, Salter MW. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol,2001,11 (3):336-342.
    Ammendola A, Gemini D, Iannaccone S, Argenzio F, Ciccone G, Ammendola E, Serio L, Ugolini G, Bravaccio F. Gender and peripheral neuropathy in chronic alcoholism:a clinical-electroneurographic study. Alcohol Alcohol,2000,35 (4): 368-371.
    Anisimova E, Danilov A. Bendotiamine efficacy in alcoholic polyneuropathy therapy. Zh Nevrol Psikhiatr Im S S Korsakova,2001 101 (12):32-36.
    Behse F, Buchthal F. Alcoholic neuropathy:clinical, electrophysiological, and biopsy findings. Ann Neurol,1977,295-110.
    Bosch-Morell F, Martinez-Soriano F, Colell A, Fernandez-Checa JC, Romero FJ. Chronic ethanol feeding induces cellular antioxidants decrease and oxidative stress in rat peripheral nerves. Effect of S-adenosyl-L-methionine and N-acetyl-L-cysteine. Free Radic Biol Med,1998,25 (3):365-368.
    Bosch EP, Pelham RW, Rasool CG, Chatterjee A, Lash RW, Brown L, Munsat TL, Bradley WG. Animal models of alcoholic neuropathy:morphologic, electrophysiologic, and biochemical findings. Muscle Nerve,1979,2 (2): 133-144.
    Carrington AL, Calcutt NA, Ettlinger CB, Gustafsson T, Tomlinson DR. Effects of treatment with myo-inositol or its 1,2,6-trisphosphate (PP56) on nerve conduction in streptozotocin-diabetes. Eur J Pharmacol,1993,237 (2-3): 257-263.
    Cooper AJ, Kristal BS. Multiple roles of glutathione in the central nervous system. Biol Chem,1997,378 (8):793-802.
    Depaz IM, de Las Heras R, Kroon PA, Wilce PA. Changes in neuronal protein 22 expression and cytoskeletal association in the alcohol-dependent and withdrawn rat brain. J Neurosci Res,2005,81 (2):253-260.
    Dicker E, Cederbaum AI. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH. Arch Biochem Biophys,1992,293 (2):274-280.
    Dina OA, Barletta J, Chen X, Mutero A, Martin A, Messing RO, Levine JD. Key role for the epsilon isoform of protein kinase C in painful alcoholic neuropathy in the rat. J Neurosci,2000,20 (22):8614-8619.
    Dina OA, Chen X, Reichling D, Levine JD. Role of protein kinase Cepsilon and protein kinase A in a model of paclitaxel-induced painful peripheral neuropathy in the rat. Neuroscience,2001,108 (3):507-515.
    Dina OA, Gear RW, Messing RO, Levine JD. Severity of alcohol-induced painful peripheral neuropathy in female rats:role of estrogen and protein kinase (A and Cepsilon). Neuroscience,2007,145 (1):350-356.
    Dina OA, Hucho T, Yeh J, Malik-Hall M, Reichling DB, Levine JD. Primary afferent second messenger cascades interact with specific integrin subunits in producing inflammatory hyperalgesia. Pain,2005,115 (1-2):191-203.
    Dina OA, Khasar SG, Alessandri-Haber N, Bogen O, Chen X, Green PG, Reichling DB, Messing RO, Levine JD. Neurotoxic catecholamine metabolite in nociceptors contributes to painful peripheral neuropathy. Eur J Neurosci,2008, 28(6):1180-1190.
    Dina OA, McCarter GC, de Coupade C, Levine JD. Role of the sensory neuron cytoskeleton in second messenger signaling for inflammatory pain. Neuron, 2003,39 (4):613-624.
    Drewes AM, Andreasen A, Poulsen LH. Valproate for treatment of chronic central pain after spinal cord injury. A double-blind cross-over study. Paraplegia,1994, 32 (8):565-569.
    Eisenberg E, Lurie Y, Braker C, Daoud D, Ishay A. Lamotrigine reduces painful diabetic neuropathy:a randomized, controlled study. Neurology,2001,57 (3): 505-509.
    Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH. Algorithm for neuropathic pain treatment:an evidence based proposal. Pain,2005,118 (3): 289-305.
    Gianoulakis C, Dai X, Brown T. Effect of chronic alcohol consumption on the activity of the hypothalamic-pituitary-adrenal axis and pituitary beta-endorphin as a function of alcohol intake, age, and gender. Alcohol Clin Exp Res,2003, 27 (3):410-423.
    Guru SC, Shetty KT, Shankar SK. Effect of chronic ethanol ingestion on phosphate content of neurofilament proteins and neurofilament associated protein phosphatase in rat spinal cord. Neurochem Res,1991,16 (11):1193-1197.
    Hawley RJ, Kurtzke JF, Armbrustmacher VW, Saini N, Manz H. The course of alcoholic-nutritional peripheral neuropathy. Acta Neurol Scand,1982,66 (5): 582-589.
    Hellweg R, Baethge C, Hartung HD, Bruckner MK, Arendt T. NGF level in the rat sciatic nerve is decreased after long-term consumption of ethanol. Neuroreport, 1996,7 (3):777-780.
    Hudson LJ, Bevan S, McNair K, Gentry C, Fox A, Kuhn R, Winter J. Metabotropic glutamate receptor 5 upregulation in A-fibers after spinal nerve injury: 2-methyl-6-(phenylethynyl)-pyridine (MPEP) reverses the induced thermal hyperalgesia. J Neurosci,2002,22 (7):2660-2668.
    Jia H, Rustioni A, Valtschanoff JG. Metabotropic glutamate receptors in superficial laminae of the rat dorsal horn. J Comp Neurol,1999,410 (4):627-642.
    Joseph EK, Levine JD. Caspase signalling in neuropathic and inflammatory pain in the rat. Eur J Neurosci,2004,20 (11):2896-2902.
    Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature,2001,413 (6852):203-210.
    Jung ME, Gatch MB, Simpkins JW. Estrogen neuroprotection against the neurotoxic effects of ethanol withdrawal:potential mechanisms. Exp Biol Med (Maywood),2005,230 (1):8-22.
    Kannarkat GT, Tuma DJ, Tuma PL. Microtubules are more stable and more highly acetylated in ethanol-treated hepatic cells. J Hepatol,2006,44 (5):963-970.
    Khasar SG, Lin YH, Martin A, Dadgar J, McMahon T, Wang D, Hundle B, Aley KO, Isenberg W, McCarter G, Green PG, Hodge CW, Levine JD, Messing RO. A novel nociceptor signaling pathway revealed in protein kinase C epsilon mutant mice. Neuron,1999,24 (1):253-260.
    Kishi Y, Schmelzer JD, Yao JK, Zollman PJ, Nickander KK, Tritschler HJ, Low PA. Alpha-lipoic acid:effect on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy. Diabetes,1999,48 (10): 2045-2051.
    Kochar DK, Garg P, Bumb RA, Kochar SK, Mehta RD, Beniwal R, Rawat N. Divalproex sodium in the management of post-herpetic neuralgia:a randomized double-blind placebo-controlled study. QJM,2005,98 (1):29-34.
    Kochar DK, Jain N, Agarwal RP, Srivastava T, Agarwal P, Gupta S. Sodium valproate in the management of painful neuropathy in type 2 diabetes-a randomized placebo controlled study. Acta Neurol Scand,2002,106 (5): 248-252.
    Kochar DK, Rawat N, Agrawal RP, Vyas A, Beniwal R, Kochar SK, Garg P. Sodium valproate for painful diabetic neuropathy:a randomized double-blind placebo-controlled study. QJM,2004,97 (1):33-38.
    Koike H, Iijima M, Mori K, Hattori N, Ito H, Hirayama M, Sobue G. Postgastrectomy polyneuropathy with thiamine deficiency is identical to beriberi neuropathy. Nutrition,2004,20 (11-12):961-966.
    Koike H, Iijima M, Sugiura M, Mori K, Hattori N, Ito H, Hirayama M, Sobue G. Alcoholic neuropathy is clinicopathologically distinct from thiamine-deficiency neuropathy. Ann Neurol,2003,54 (1):19-29.
    Koike H, Ito S, Morozumi S, Kawagashira Y, Iijima M, Hattori N, Tanaka F, Sobue G. Rapidly developing weakness mimicking Guillain-Barre syndrome in beriberi neuropathy:two case reports. Nutrition,2008,24 (7-8):776-780.
    Koike H, Misu K, Hattori N, Ito S, Ichimura M, Ito H, Hirayama M, Nagamatsu M, Sasaki I, Sobue G. Postgastrectomy polyneuropathy with thiamine deficiency. J Neurol Neurosurg Psychiatry,2001a,71 (3):357-362.
    Koike H, Mori K, Misu K, Hattori N, Ito H, Hirayama M, Sobue G. Painful alcoholic polyneuropathy with predominant small-fiber loss and normal thiamine status. Neurology,2001b,56 (12):1727-1732.
    Koike H, Sobue G. Alcoholic neuropathy. Curr Opin Neurol,2006,19 (5):481-486.
    Krebs JF, Armstrong RC, Srinivasan A, Aja T, Wong AM, Aboy A, Sayers R, Pham B, Vu T, Hoang K, Karanewsky DS, Leist C, Schmitz A, Wu JC, Tomaselli KJ, Fritz LC. Activation of membrane-associated procaspase-3 is regulated by Bcl-2. J Cell Biol,1999,144 (5):915-926.
    Kucera P, Balaz M, Varsik P, Kurca E. Pathogenesis of alcoholic neuropathy. Bratisl Lek Listy,2002,103 (1):26-29.
    Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, Watkins LR. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain,2005,115 (1-2): 71-83.
    Lee I, Kim HK, Kim JH, Chung K, Chung JM. The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain,2007,133 (1-3):9-17.
    Lieber CS. Hepatic and other medical disorders of alcoholism:from pathogenesis to treatment. J Stud Alcohol,1998,59 (1):9-25.
    Lin KP, Kwan SY, Chen SY, Chen SS, Yeung KB, Chia LG, Wu ZA. Generalized neuropathy in Taiwan:an etiologic survey. Neuroepidemiology,1993,12 (5): 257-261.
    Lin Q, Wu J, Peng YB, Cui M, Willis WD. Nitric oxide-mediated spinal disinhibition contributes to the sensitization of primate spinothalamic tract neurons. J Neurophysiol,1999,81 (3):1086-1094.
    Love A, Cotter MA, Cameron NE. Effects of the sulphydryl donor N-acetyl-L-cysteine on nerve conduction, perfusion, maturation and regeneration following freeze damage in diabetic rats. Eur J Clin Invest,1996, 26 (8):698-706.
    Maestri A, De Pasquale Ceratti A, Cundari S, Zanna C, Cortesi E, Crino L. A pilot study on the effect of acetyl-L-carnitine in paclitaxel- and cisplatin-induced peripheral neuropathy. Tumori,2005,91 (2):135-138.
    Malatova Z, Cizkova D. Effect of ethanol on axonal transport of cholinergic enzymes in rat sciatic nerve. Alcohol,2002,26 (2):115-120.
    Mansouri A, Demeilliers C, Amsellem S, Pessayre D, Fromenty B. Acute ethanol administration oxidatively damages and depletes mitochondrial dna in mouse liver, brain, heart, and skeletal muscles:protective effects of antioxidants. J Pharmacol Exp Ther,2001,298 (2):737-743.
    Mantle D, Preedy VR. Free radicals as mediators of alcohol toxicity. Adverse Drug React Toxicol Rev,1999,18 (4):235-252.
    Masaki T, Mochizuki H, Matsushita S, Yokoyama A, Kamakura K, Higuchi S. Association of aldehyde dehydrogenase-2 polymorphism with alcoholic polyneuropathy in humans. Neurosci Lett,2004,363 (3):288-290.
    McDonough KH. Antioxidant nutrients and alcohol. Toxicology,2003,189 (1-2): 89-97.
    McLane JA. Decreased axonal transport in rat nerve following acute and chronic ethanol exposure. Alcohol,1987,4 (5):385-389.
    Meller ST, Dykstra C, Gebhart GF. Acute thermal hyperalgesia in the rat is produced by activation of N-methyl-D-aspartate receptors and protein kinase C and production of nitric oxide. Neuroscience,1996,71 (2):327-335.
    Miyoshi K, Narita M, Suzuki T. Involvement of mGluR5 in the ethanol-induced neuropathic pain-like state in the rat. Neurosci Lett,2006,410 (2):105-109.
    Miyoshi K, Narita M, Takatsu M, Suzuki T. mGlu5 receptor and protein kinase C implicated in the development and induction of neuropathic pain following chronic ethanol consumption. Eur J Pharmacol,2007,562 (3):208-211.
    Monforte R, Estruch R, Valls-Sole J, Nicolas J, Villalta J, Urbano-Marquez A. Autonomic and peripheral neuropathies in patients with chronic alcoholism. A dose-related toxic effect of alcohol. Arch Neurol,1995,52 (1):45-51.
    Nagamatsu M, Nickander KK, Schmelzer JD, Raya A, Wittrock DA, Tritschler H, Low PA. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care,1995,18(8):1160-1167.
    Naik AK, Tandan SK, Dudhgaonkar SP, Jadhav SH, Kataria M, Prakash VR, Kumar D. Role of oxidative stress in pathophysiology of peripheral neuropathy and modulation by N-acetyl-L-cysteine in rats. Eur J Pain,2006,10 (7):573-579.
    Narita M, Miyoshi K, Suzuki T. Involvement of microglia in the ethanol-induced neuropathic pain-like state in the rat. Neurosci Lett,2007,414 (1):21-25.
    Netzel M, Ziems M, Jung KH, Noll E, Borsch C, Bitsch I. Effect of high-dosed thiamine hydrochloride and S-benzoyl-thiamine-O-monophosphate on thiamine-status after chronic ethanol administration. Biofactors,2000,11 (1-2): 111-113.
    Nickander KK, Schmelzer JD, Rohwer DA, Low PA. Effect of alpha-tocopherol deficiency on indices of oxidative stress in normal and diabetic peripheral nerve. J Neurol Sci,1994,126 (1):6-14.
    Norenberg MD. Astrocyte responses to CNS injury. J Neuropathol Exp Neurol, 1994,53 (3):213-220.
    Novak DJ, Victor M. The vagus and sympathetic nerves in alcoholic polyneuropathy. Arch Neurol,1974,30 (4):273-284.
    Ohnishi A, Tsuji S, Igisu H, Murai Y, Goto I, Kuroiwa Y, Tsujihata M, Takamori M. Beriberi neuropathy. Morphometric study of sural nerve. J Neurol Sci,1980, 45(2-3):177-190.
    Otto M, Bach FW, Jensen TS, Sindrup SH. Valproic acid has no effect on pain in polyneuropathy:a randomized, controlled trial. Neurology,2004,62 (2): 285-288.
    Padi SS, Kulkarni SK. Minocycline prevents the development of neuropathic pain, but not acute pain:possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol,2008,601 (1-3):79-87.
    Park SA, Choi KS, Bang JH, Huh K, Kim SU. Cisplatin-induced apoptotic cell death in mouse hybrid neurons is blocked by antioxidants through suppression of cisplatin-mediated accumulation of p53 but not of Fas/Fas ligand. J Neurochem,2000,75 (3):946-953.
    Pisano C, Pratesi G, Laccabue D, Zunino F, Lo Giudice P, Bellucci A, Pacifici L, Camerini B, Vesci L, Castorina M, Cicuzza S, Tredici G, Marmiroli P, Nicolini G, Galbiati S, Calvani M, Carminati P, Cavaletti G. Paclitaxel and Cisplatin-induced neurotoxicity:a protective role of acetyl-L-carnitine. Clin Cancer Res,2003,9 (15):5756-5767.
    Raghavendra V, Tanga F, DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther,2003,306 (2):624-630.
    Rains C, Bryson HM. Topical capsaicin. A review of its pharmacological properties and therapeutic potential in post-herpetic neuralgia, diabetic neuropathy and osteoarthritis. Drugs Aging,1995,7 (4):317-328.
    Rao RD, Flynn PJ, Sloan JA, Wong GY, Novotny P, Johnson DB, Gross HM, Renno SI, Nashawaty M, Loprinzi CL. Efficacy of lamotrigine in the management of chemotherapy-induced peripheral neuropathy:a phase 3 randomized, double-blind, placebo-controlled trial, N01C3. Cancer,2008,112 (12): 2802-2808.
    Raskin J, Pritchett YL, Wang F, D'Souza DN, Waninger AL, Iyengar S, Wernicke JF. A double-blind, randomized multicenter trial comparing duloxetine with placebo in the management of diabetic peripheral neuropathic pain. Pain Med, 2005,6 (5):346-356.
    Ratcliff EV. Alcoholic neuropathies. Aust Fam Physician,1979,8 (2):171-177.
    Rauck RL, Shaibani A, Biton V, Simpson J, Koch B. Lacosamide in painful diabetic peripheral neuropathy:a phase 2 double-blind placebo-controlled study. Clin J Pain,2007,23 (2):150-158.
    Rintala DH, Holmes SA, Courtade D, Fiess RN, Tastard LV, Loubser PG. Comparison of the effectiveness of amitriptyline and gabapentin on chronic neuropathic pain in persons with spinal cord injury. Arch Phys Med Rehabil, 2007,88(12):1547-1560.
    Robbins MA, Maksumova L, Pocock E, Chantler JK. Nuclear factor-kappaB translocation mediates double-stranded ribonucleic acid-induced NIT-1 beta-cell apoptosis and up-regulates caspase-12 and tumor necrosis factor receptor-associated ligand (TRAIL). Endocrinology,2003,144 (10): 4616-4625.
    Rowbotham MC, Goli V, Kunz NR, Lei D. Venlafaxine extended release in the treatment of painful diabetic neuropathy:a double-blind, placebo-controlled study. Pain,2004,110 (3):697-706.
    Sandercock D, Cramer M, Wu J, Chiang YK, Biton V, Heritier M. Gabapentin extended release for the treatment of painful diabetic peripheral neuropathy: efficacy and tolerability in a double-blind, randomized, controlled clinical trial. Diabetes Care,2009,32 (2):e20.
    Saperstein DS, Barohn RJ. Peripheral Neuropathy Due to Cobalamin Deficiency. Curr Treat Options Neurol,2002,4 (3):197-201.
    Saunders DE, DiCerbo JA, Williams JR, Hannigan JH. Alcohol reduces neurofilament protein levels in primary cultured hippocampal neurons. Alcohol, 1997,14 (5):519-526.
    Sharma SS, Sayyed SG. Effects of trolox on nerve dysfunction, thermal hyperalgesia and oxidative stress in experimental diabetic neuropathy. Clin Exp Pharmacol Physiol,2006,33 (11):1022-1028.
    Silver M, Blum D, Grainger J, Hammer AE, Quessy S. Double-blind, placebo-controlled trial of lamotrigine in combination with other medications for neuropathic pain. J Pain Symptom Manage,2007,34 (4):446-454.
    Sindrup SH, Bjerre U, Dejgaard A, Brosen K, Aaes-Jorgensen T, Gram LF. The selective serotonin reuptake inhibitor citalopram relieves the symptoms of diabetic neuropathy. Clin Pharmacol Ther,1992,52 (5):547-552.
    Singh B, Moodley J, Shaik AS, Robbs JV. Sympathectomy for complex regional pain syndrome. J Vasc Surg,2003,37 (3):508-511.
    Singleton CK, Martin PR. Molecular mechanisms of thiamine utilization. Curr Mol Med,2001,1 (2):197-207.
    Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA. Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes, 2000,49(6):1006-1015.
    Sun Y, Lai MS, Lu CJ. Effectiveness of vitamin B12 on diabetic neuropathy: systematic review of clinical controlled trials. Acta Neurol Taiwan,2005,14 (2):48-54.
    Sundkvist G, Dahlin LB, Nilsson H, Eriksson KF, Lindgarde F, Rosen I, Lattimer SA, Sima AA, Sullivan K, Greene DA. Sorbitol and myo-inositol levels and morphology of sural nerve in relation to peripheral nerve function and clinical neuropathy in men with diabetic, impaired, and normal glucose tolerance. Diabet Med,2000,17 (4):259-268.
    Tackmann W, Minkenberg R, Strenge H. Correlation of electrophysiological and quantitative histological findings in the sural nerve of man. Studies on alcoholic neuropathy. J Neurol,1977,216 (4):289-299.
    Taiwo YO, Bjerknes LK, Goetzl EJ, Levine JD. Mediation of primary afferent peripheral hyperalgesia by the cAMP second messenger system. Neuroscience, 1989,32 (3):577-580.
    Takeuchi M, Saito T. Cytotoxicity of acetaldehyde-derived advanced glycation end-products (AA-AGE) in alcoholic-induced neuronal degeneration. Alcohol Clin Exp Res,2005,29 (12 Suppl):220S-224S.
    Thayer JF, Hall M, Sollers JJ,3rd, Fischer JE. Alcohol use, urinary cortisol, and heart rate variability in apparently healthy men:Evidence for impaired inhibitory control of the HPA axis in heavy drinkers. Int J Psychophysiol,2006, 59 (3):244-250.
    Tiwari V, Kuhad A, Chopra K. Tocotrienol ameliorates behavioral and biochemical alterations in the rat model of alcoholic neuropathy. Pain,2009,145 (1-2): 129-135.
    Tiwari V, Kuhad A, Chopra K. Amelioration of functional, biochemical and molecular deficits by epigallocatechin gallate in experimental model of alcoholic neuropathy. Eur J Pain,2011,15 (3):286-292.
    Tutuncu NB, Bayraktar M, Varli K. Reversal of defective nerve conduction with vitamin E supplementation in type 2 diabetes:a preliminary study. Diabetes Care,1998,21 (11):1915-1918.
    Valerio A, Paterlini M, Boifava M, Memo M, Spano P. Metabotropic glutamate receptor mRNA expression in rat spinal cord. Neuroreport,1997,8 (12): 2695-2699.
    Vestergaard K, Andersen G, Gottrup H, Kristensen BT, Jensen TS. Lamotrigine for central poststroke pain:a randomized controlled trial. Neurology,2001,56 (2): 184-190.
    Victor M, Adams RD. On the etiology of the alcoholic neurologic diseases with special reference to the role of nutrition. Am J Clin Nutr,1961,9379-397.
    Walter M, Gerhard U, Gerlach M, Weijers HG, Boening J, Wiesbeck GA. Cortisol concentrations, stress-coping styles after withdrawal and long-term abstinence in alcohol dependence. Addict Biol,2006,11 (2):157-162.
    Wang S, Lim G, Zeng Q, Sung B, Ai Y, Guo G, Yang L, Mao J. Expression of central glucocorticoid receptors after peripheral nerve injury contributes to neuropathic pain behaviors in rats. J Neurosci,2004,24 (39):8595-8605.
    Watkins LR, Milligan ED, Maier SF. Spinal cord glia:new players in pain. Pain, 2001,93 (3):201-205.
    Weir DG, Scott JM. The biochemical basis of the neuropathy in cobalamin deficiency. Baillieres Clin Haematol,1995,8 (3):479-497.
    Wickramasinghe SN, Marjot DH, Rosalki SB, Fink RS. Correlations between serum proteins modified by acetaldehyde and biochemical variables in heavy drinkers. J Clin Pathol,1989,42 (3):295-299.
    Woelk H, Lehrl S, Bitsch R, Kopcke W. Benfotiamine in treatment of alcoholic polyneuropathy:an 8-week randomized controlled study (BAP I Study). Alcohol Alcohol,1998,33 (6):631-638.
    Wullner U, Seyfried J, Groscurth P, Beinroth S, Winter S, Gleichmann M, Heneka M, Loschmann P, Schulz JB, Weller M, Klockgether T. Glutathione depletion and neuronal cell death:the role of reactive oxygen intermediates and mitochondrial function. Brain Res,1999,826 (1):53-62.
    Wymer JP, Simpson J, Sen D, Bongardt S. Efficacy and safety of lacosamide in diabetic neuropathic pain:an 18-week double-blind placebo-controlled trial of fixed-dose regimens. Clin J Pain,2009,25 (5):376-385.
    Yerdelen D, Koc F, Uysal H. Strength-duration properties of sensory and motor axons in alcoholic polyneuropathy. Neurol Res,2008,30 (7):746-750.
    Young MR, Fleetwood-Walker SM, Dickinson T, Blackburn-Munro G, Sparrow H, Birch PJ, Bountra C. Behavioural and electrophysiological evidence supporting a role for group I metabotropic glutamate receptors in the mediation of nociceptive inputs to the rat spinal cord. Brain Res,1997,777 (1-2): 161-169.
    Zambelis T, Karandreas N, Tzavellas E, Kokotis P, Liappas J. Large and small fiber neuropathy in chronic alcohol-dependent subjects. J Peripher Nerv Syst,2005, 10(4):375-381.
    Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain,2005,114 (1-2): 149-159.
    Ziegler D, Hidvegi T, Gurieva I, Bongardt S, Freynhagen R, Sen D, Sommerville K. Efficacy and safety of lacosamide in painful diabetic neuropathy. Diabetes Care,2010,33 (4):839-841.
    Zima T, Fialova L, Mestek O, Janebova M, Crkovska J, Malbohan I, Stipek S, Mikulikova L, Popov P. Oxidative stress, metabolism of ethanol and alcohol-related diseases. J Biomed Sci,2001,8 (1):59-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700