中药复方脑得生的有效成分组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性中风属中医学“中风”范畴,是一种严重影响人类健康的常见病。其发病机制复杂,是一种多因素多途径相互作用的疾病,涉及到大量的生物活性物质,目前对其发病机制的研究尚未完全阐明。其病理机制主要有脑组织的能量代谢紊乱、自由基损伤、炎症反应、兴奋性氨基酸神经毒性作用、钙超载、凋亡相关基因的表达等。近年来,脑缺血的治疗主要是针对神经元的保护作用,减少梗塞面积,减少神经元的迟发性死亡等。本文以其发病机制为依据,对复方脑得生有效成分组的神经保护作用及其机制进行了深入研究。
     一、适合高通量筛选样品的制备
     本实验采用现代植物化学分离技术,制定规范的操作程序,将提取分离和层析等技术相结合,用不同溶剂对组方中原料药进行提取,将复方脑得生中的全部成分分为170个独立组分。其中,对乙醇部分进行硅胶柱层析,共计得到90个组分;对石油醚部分进行硅胶柱层析,共计得到80个组分。所有样品进行浓缩供下一步的筛选及研究用。
     二、对样品进行高通量筛选
     建立与脑得生功效主治相关的高通量筛选模型。根据脑得生的功效主治寻找与现代医学共同点,在细胞和分子水平上建立能够反映作用机理的筛选模型。缺血性脑损伤的发生主要与过氧化损伤、钙超载、兴奋毒性作用、炎症反应以及线粒体功能的受损等相关。因此,本研究中我们根据上述发病机制分别建立了相应的损伤模型,并对所得的170个组分进行了筛选。最后,将以上研究结果进行汇总,发现部分样品在不同模型上作用吻合,可能是脑得生发挥作用的活性物质,另外一些样品在多个模型作用强度较弱甚至相反,可能是影响脑得生疗效的部分。通过综合分析,将作用符合我们要求的组分按一定比例混合组成脑得生的有效成分组(2-11,16-21,25-29,31-35,38-41,47-52,59-73,95-99,116-119,122-127,131-136,167-170),进行高效液相成分分析,找出适合大规模生产的有效成分组。
     三、应用HPLC分析高通量筛选结果,实现生产工艺的转换
     分别将硅胶柱分离的醇溶部分和石油醚部分中的抗脑缺血有效成分,按其编号从其DMSO溶液中取出,按照各自得率,有机混合在一起作为有效成分组供检测用。分别将大孔树脂分离的30%、60%、90%乙醇沈脱物部分与抗脑缺血有效成分组做对比,通过HPLC分析寻找适合大规模生产的目的组分。由液相色谱图可以看出,脑得生有效成分主要分布在30%和60%乙醇洗脱物中。因此,我们将30%和60%乙醇洗脱物按比例混合作为新的复方脑得生的有效成分组(NECG),进行下一步的整体动物实验,对其疗效进行验证,并进一步进行机制研究。
     四、利用动物实验进行有效成分组的验证
     采用栓线法造成大鼠大脑中动脉阻断模型,通过预防性以及治疗性两种给药方式,从脑梗塞体积、行为学、脑组织能量代谢、病理学改变、炎症反应以及凋亡等多方面指标进行观察,全面评价了我们所确证的有效成分组的神经保护作用。
     实验结果表明,治疗性给药时NECG大剂量组(0.07 g/kg)可显著降低脑梗死体积、改善神经功能,并且可抑制炎症反应,以及凋亡的发生和发展;NECG中剂量组(0.02 g/kg)和小剂量组(0.007 g/kg)也有改善作用,但某些指标与模型组相比,没有显著性差异(P>0.05)。造模前先连续给予7天药物时,与模型组以及治疗给药的实验结果比,药物的保护作用则更加明显,尤其NECG中剂量组表现出了明显的保护作用。另外,我们同时与原方的疗效进行了对照研究,实验结果说明NECG的疗效明显优于原方。
     五、体外对其作用机制进一步探讨
     实验结果表明,NECG对神经细胞的保护作用机理不是单一的,其药效是多种机理综合作用的结果。
     1、NECG能抑制过氧化氢诱导的PC12细胞凋亡。实验结果表明,NECG可显著改善过氧化氢引起的细胞存活率的降低;流式细胞仪分析表明100μg/ml和10μg/ml的NECG均能显著改善过氧化氢引起的凋亡;Western Blotting的分析结果显示,100μg/ml和10μg/ml NECG能够明显抑制过氧化氢诱导的Bcl-2蛋白表达的下调和Bax蛋白表达的上调,使Bcl-2/Bax比值上升,还能明显抑制细胞色素C从线粒体的释放以及p53的活化;同时,预先加入NECG还可明显抑制过氧化氢损伤引起的caspase-3的活化,使其活性降低。
     2、NECG能够抑制叠氮钠诱导的PC12细胞凋亡。我们的实验结果首先证明了叠氮钠诱导的凋亡伴随有细胞内ROS时间依赖性的产生增多,并且与凋亡的线粒体途径改变密切相关。同时,我们的实验结果也提示,NECG可剂量依赖性的显著改善上述改变:NECG可改善细胞存活率和凋亡率,降低细胞内ROS的增多,100μg/ml和10μg/ml的NECG能够抑制叠氮钠诱导的Bcl-2表达的下调和Bax蛋白表达的上调,使Bcl-2和Bax比值上调,预先加入NECG能明显抑制叠氮钠损伤引起的细胞色素C自线粒体的释放以及caspase-3的活化,从而有效的降低了细胞凋亡的发生。
     3、NECG有改善线粒体功能的作用。NECG体外能够抑制50μmoL/L FeSO_4/500μmoL/L半胱胺酸损伤体系诱导的线粒体MDA生成的增加,降低脂质过氧化的发生率,具有明显的保护线粒体免遭氧化损伤的作用;可减轻线粒体肿胀度,维持线粒体的膜电位,抑制H~+-ATP酶活性的降低,从而保护了线粒体的结构和功能;NECG还可抑制GSH含量的降低,保护了线粒体内源性抗氧化物质,从而使氧自由基的生成与清除保持平衡,使线粒体膜免遭损伤。
     因此,NECG抗细胞凋亡的作用机制一方面和清除氧自由基有关,另一方面NECG可能通过直接影响p53的表达,细胞色素C的释放、caspase-3活性或者通过调控Bcl-2、Bax的蛋白表达间接影响线粒体依赖的caspase-3途径来抑制细胞凋亡。
     六、结论
     研究结果表明,中药复方脑得生对脑缺血有显著的防治作用,这种作用的物质基础是其中多种有效成分的有机组合,这些成分通过不同的作用途径和相互影响,产生综合作用,实现对脑缺血疾病的预防和治疗作用。药效成分组的作用机制研究证明中药有效成分组通过不同的成分从不同的途径发挥作用,如抗过氧化损伤、抑制细胞凋亡以及减轻炎症反应等。结果证明有效成分组可以比较合理的代表了中药的整体作用,反映了中药复方的作用特点。本实验结果也证明,应用高通量筛选方法研究中药复方具有一定的技术优势,也是行之有效的方法。
Ischemic stroke is a common disease, which affects the health of human seriously. Themechanism is complex, and could be regulated by many factors, including the activationsof many kinds of biologically active materials, and so on. At present, the details have notbeen well established, and the possible mechanisms include the dysfunctions of energymetabolism, oxidative stress, inflammation responses, glutamate excitotoxic damage,calcium overload, and the expressiones of some apoptosis-related proteins. In recent years,the main targets to treat brain ischemia are to protect the neurons, decrease the infarctionvolumes, and extenuate the delayed neuronal death. According to this context, weinvestigated the neuroprotective effect and the possible mechanism of the NECG ofNaoDeSheng (NDS) in present study.
     1. The preparation of NDS samples for high throughput screening
     Sequential components of NDS samples were prepared by the morden seperationtechniques. In brief, the powdered herbs were extracted with petroleum ether, 95%alcoholand aqueous in turn, and both of 95%alcohol extract fraction and petroleum ether extractfraction were further separated, respectively. The natural samples were collected on fixedinterval, and we obtained 170 sequential components in total, including 90 sequentialcomponents of 95%alcohol extract fraction and 80 sequential components of petroleumether extract fraction. All of these samples were concentrated for the further screening andresearching.
     2. Bioactivities of NDS samples tested by the method of High-throughput screening
     According to the mechanism of ischemic stroke, we established ischemia-related injurymodels, including chemical hypoxia model, mitochondfial injury model, inflammatorymodels and the models induced by hydrogen peroxide and glutamate, and evaluated theeffects of 170 sequential components (L1-L90, A91-A170) of NDS on them, respectively.Finally, we combined all of these screening results, and found some of samples alwaysexert effective roles even in different models, which were defined as the effective components group (ECG), some of samples have somewhat weak effect, and others evenhave an contrary effect. By comprehensive analysis of these results, we regarded thefollowing parts as the ECG of NDS (2-11,16-21, 25-29,31-35,38-41,47-52,59-73, 95-99,116-119, 122-127, 131-136, 167-170). In the following experiment, we further analysed theECG by high performance liquid chromatography (HPLC) to find the NDS's ECG (NECG),which is appropriate for producing Chinese herbal medicinal prescription in a commercialscale.
     3. Analysis of the ECG of NDS samples by HPLC
     Comparing the ECG with the extraction of 30%, 60%, and 90%EtOH fraction by HPLC,we found that the mixture of 30%and 60%EtOH fractions of NaoDeSheng could beregarded as the NECG of NaoDeSheng. Furthermore, we will confirm the pharmalogicaleffects in the following in vivo experiment and will researched its mechanism deeply invitro.
     4. The protective effect of NECG on the MCAO in vivo
     Focal brain ischemia was induced by the intraluminal suture MCA occlusion method(MCAO) with minor modifications, NECG was administrated prior to or after MCAO, andthe neuroprotections of NECG were evaluated comprehensively, including themeasurement of infarct volume, alterations in the neurological deficits, oxidative stress,inflammatory responses, and the occurrence of apoptosis. Our results indicated that the highdose of NECG (0.07 g/kg) administrated after the occlusion of MCAO could reduce theinfarct area, extenuate neurological deficient. This protective effects of NECG might bepartially due to its ability to extenuate the oxidative stress and the inflammatory responses.Our results also strongly suggested that NECG exerted its antiapoptotic effect viaregulating the expressions of Bax and caspase-3 proteins. In addition, both of the middledose of NECG (0.02 g/kg) and the low dose (0.007 g/kg) have the protective effects,but there is no statistically significant, compared to the sham-operated control. The effectsof NECG are much better when it is administrated 7 days before the MCAO, compared toadministration after the MCAO.
     5. The effects of NECG on neuronal injury and the mechanism in vitro
     Our results indicated that NECG exerted its neuroprotection through muti-mechanisms.
     5.1. The effect of NECG on PC12 cells apoptosis induced by H_2O_2
     We established an apoptotic model induced by H_2O_2 in PC12 cells and assessed the effectof NECG on it. PC12 cells were pre-treated with NECG and then incubated with 200μmol/L H_2O_2. Neuronal apoptosis were examined by flow cytometry. The Western blottingresults showed that NECG (100μg/ml and 10μg/ml) could effectively attenuate neuronalapoptosis and antagonized the up-regulation of Bax and the down-regulation of Bcl-2,inhibited the release of cytochrome C and the activations of P53 and caspase-3, all of whichwere closely associated with the occurrence of apoptosis induced by H_2O_2. We concludedthat NECG could significantly attenuate neuronal apoptosis, which may result from itsability to alter the expression of apoptosis-related genes.
     5.2. The effect of NECG on PC12 cells apoptosis induced by sodium azide
     We firstly documented the connection between the generation of ROS and the activity ofcaspase-3 in sodium azide-induced apoptosis in PC12 cells. Secondly, we investigated themolecular mechanism of sodium azide-induced apoptosis, and the protective effects ofNECG against it. The results showed that there was an increase of the production of ROS insodium azide-induced apoptosis, which is associated with the activity of caspase-3, and theapoptosis was followed by the decrease of the ration of bcl-2/bax and the activation ofcaspase cascades. Concomitantly, our results indicated that NECG could attenuate PC12cells apoptosis induced by sodium azide, inhibit caspase-3 activity and extenuate thedecrease of the ratio of Bcl-2/Bax, which suggested that the effects of NECG on intrinsiccaspase-3 pathway might be a downstream event of regulation of the expression of Bcl-2family genes.
     5.3. The protective effects of NECG on mitochondrial dysfunctions
     In the present study, we investigated the capacity of NECG to protect brain mitochondriafrom oxidative damage in vitro. Oxidative damage of brain mitochondria was induced byFe~(2+)/Cys. Our results showed that NECG markedly decreased mitochondrial swelling,inhibited lipid peroxidation, prevented the decrease of GSH, protected the mitochondrialH~+-ATPase activity and maintained the mitochondrial membrane potential. It might be concluded that NECG could protect mitochondria from oxidative injury and have potentialsfor treating diseases mediated by ROS.
     6. Conclusions
     The results showed that NaoDeSheng has an effective protections against brainischemia, whichi is based on the combination of many effective components, and thesecomponents extert an additive effect to prevente and treat of brain ischemia by differentpathways and mutual influence between them. The studies on the mechanism of its actionconfirmed that NECG take its effects by different components and pathways, includinganti-oxidative stress, inhibiting neuronal apoptosis, attenuating inflammation responses,and so on. All of the data indicated that NECG could represent the overall effects ofNaoDeSheng rationally, and reflected the character of Traditional Chinese Medicine (TCM).Our results also indicated that effective components group-guided methodology is afeasible tool to improve the neuoroprotective properties of Traditional Chinese Medicineprescription NDS in rat focal cerebral ischemia.
引文
1. Ginsberg MD. Adventures in the Pathophysiology of Brain Ischemia: Penumbra, Gene Expression, Neuroprotection. Stroke. 2003;34:214.
    2. Ou LL, Li JZ, Wang RF, et al. Effects of different extracting techniques on Naodesheng against focal cerebral infarction of rats. Chinese Traditional and Herbal Drugs 2005;36:393-395.
    3. Du GH. High-Throughput Drug Screening and the research of the modernization of Traditional Chinese Medicine. Chinese Traditional Patent Medicine Chinese Traditional Patent Medicine 1999;21:268-270.
    4. Kyung, K. and Kweon, L. Anti-apoptotic role of phospholipase D isozymes in the glutamate-induced cell death. Experimental and molecular medicine. 2003, 35: 38-45.
    5. Olney JW, Zorumski C, Price MT, et al. L-cysteine, a bicarbonate sensitive endogenous excitotoxin. Science, 1990,248:596-599.
    6. 徐丹令,李广君,倪之挺.谷氨酸对大鼠海马兴奋毒性作用的形态学研究.解剖学杂志,2001;24(1):24-27.
    7. Wang L, Nishida H, Ogawa Y. Prevention of oxidative injury in PC12 cells by a traditional Chinese medicine, Shengmai San, as a model of an antioxidant-based composite formula. Biol Pharm Bull. 2003, 26: 1000-1004.
    8. Mosmann T. Rapid colorimetric assay for cellular growth and survivals: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 ;65:55-63.
    9. Liu, M. and Wang, J. The methods and technology for the study of intracellular calcium. In: Zhang JT, editors, Modern experimental methods in pharmacology. 1998, 479-482.
    10. Bayer TA, Wirths O, Maztenyi K, Hartmann T, Multhaup G, Beyreuther K, et al. Key factors in Alzheimer's disease: beta-amyloid precursor protein processing, metabolism and intraneuronal transport. Brain Pathol 2001;11:1-11.
    11. Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 1994;15:7-10.
    12. Varming T, Dreier J, Frandsen A, et al. Characterization of a chemical anoxia model in cerebellar granule neurons using sodium azide: protection by nifedipine and MK 801. J Neuro sci Res, 1996, 44 (1): 40.
    13.安文林,张兰,李雅莉,徐燕玲,曹俊卿,李林.茯苓水提液对叠氮钠致原代培养的新生大鼠海马神经细胞线粒体损伤的影响.中国药学杂志,2001;36(7):450—453.
    14.王金良,顾卫,谭峰,黄涛.醒脑静注射液对急性脑梗塞患者血清TNF-α与IL-6的影响.中华医药杂志,2003,3(3):21—22
    15. HaiXia Zhang, GuanHua Du, JunTian Zhang. Assay of mitochondrial functions by resazurin in vitro. Acta Pharmaceutica Sinica. 2004; 25(3): 385-389.
    16. Sciamanna MA, Zinkel J, Fabi AY, et al. Ischemic injury to rat forebrain mitochondria and cellular calcium homeostasis. Biochim Biophys Acta, 1992, 1134: 223-233.
    17.祝世讷.中药方剂的三个原理问题.中国中医基础医学杂志,2000;6(11):13-16.
    18.陈兰英,陈奇,刘荣华.中药复方药理研究进展.中国医药学报,1999;5(3):62-64.
    19.周大兴,李岚.从现代中药药理学研究论重要特色.浙江中医学院学报,2001, 25(2):68-69.
    20.曹治权.中药药效的物质基础和作用机理研究新思路.上海中医药大学学报,2000, 14(1):36-39.
    21.王月华,杜冠华.中药复方有效成分组学研究.中成药,2002;24(11):878-880.
    22.王月华,杜冠华.小续命汤有效成分组的高通量药物筛选研究.中西医结合学报.2006;4(1):64—67
    23.中药复方有效成分组研究(第四章)、中药有效成分的高通量筛选(第七章)《中药药理学新论》张永祥主编,人民卫生出版社,北京,2004年7月.
    24.中药及天然产物活性成分研究20年回顾.《中药药理学与临床研究进展》(第六册)张永祥 主编.军事医学科学出版社,北京,2006年1月.
    25.王月华,杜冠华.复方小续命汤有效成分组对实验性衰老大鼠的作用.中成药, 2006;28(1):67—71
    26.王月华,杜冠华.复方小续命汤抗AD有效成分组研究.中成药.2005;27(9): 993-996.
    27.杜冠华.中药复方有效成分组学研究.中成药,2002,24(11):878—880.
    28. Coyle JT, Puttfarcken P. Oxidative stress, glutamate and neurodegenerativedisorders. Science, 1993, 262: 689-695.
    29. Cadet JL. Free radicals and neurodegeneration.Trends Neurosci. 1994, 17: 192-194.
    30. HalliwellB, GutteridgeJMC. In: FreeRad-icalsin Biolgoy and Medicine.2ed, Oxford: Press, 1989:1-81.
    31. HalliwellB. Oxidants and human disease: some new concepts. FASEB J. 1987, 1: 358-364.
    32. Fridovich, I. Fundamental Aspects of Reactive Oxygen Species, or What's the Matter with Oxygen? Ann N Y Acad Sci 1997; 893:13-18.
    33. Pettmann B, Henderson CE. Neuronal cell death. Neuron 1998; 20:633-647
    34. Serrano M, Blasco MA. Putting the stress on senescence. Curr. Opin. Cell Biol. 2001; 13: 748-753.
    35. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron1988, 1: 623-634.
    36. Lipton SA, Rosenberg PA. Mechanisms of disease: Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 1994; 330: 613-622.
    37. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron1988, 1: 623-634.
    38. Daw NW, Stein PS, Fox K. The role of NMDA receptors in information processing. Annu Rev Neurosci 1993, 16:207-222
    39. Vanden Pol, AN & Trombley, PQ. Glutamate neurons in hypothalamus regulate excitatory transmission. Neurosci. 1993, 13: 2829-2836.
    40. Kato K, Puttfarcken P, Lyons W, Coyle J. The developmental time course and ionic dependence of kainate mediated toxicity in rat cerebellar granule cell cultures. J Pharmacol Exp Ther 1991, 256: 402-411
    41. Choi DW, Maulucci-Gedde MA, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci,1987, 7: 357-368.
    42.卫国,陈学敏.氧化应激、兴奋性毒性与神经毒性.国外医学卫生学分册,1999;26: 692-792.
    43. Jean WC, Spellman SR, Nussbaum ES, et al. Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery, 1998, 43(6): 1382-96.
    44.李岚,炎性细胞因子与脑缺血.国外医学·脑血管疾病分册,1998;6(1):17-19
    45. Verity MA. Mechanisms of phospholipase A_2 activation and neuronal injury. Ann NYA cad Sci, 1993; 679: 110-120.
    46.汪青松,郑彩梅,李露斯.大鼠缺血后脑磷脂酶A、线粒体磷脂含量及线粒体膜流动性的改变.解放军医学杂志,1998;23(6):445-446.
    47. Green D, Kroemer G. The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol, 1998; 8: 267-271.
    48. Green DR, Reed, JC. Mitochondria and apoptosis. Science 1998; 281:1309-1312.
    49. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6:513-519.
    1.《中华人民共和国药典》2005年版,571-572.
    2.张爱丽,陈风鸣,张惠勇,倪伟.“脑得生”治疗中风病(脑梗塞)30例.上海中医药杂志,2002,3:18—19.
    3. He-Song Zeng, Zheng-Xiang Liu, Xiao-Chun Liu. Inhibitory effects of Radix ginseng rubra on cardiomyocyte apoptosis induced by ischemia and reperfusion in rats. Chinese Journal of Clinical Rehabilitation, 2004, 25(8): 1784-1786.
    4.李爱红,柯开富,吴小梅,包仕尧.人参皂甙Rb1、Rb3、Rg1对培养皮层神经细胞的抗缺血效应及其机制.中风与神经疾病杂志,2004,21(3):231-233.
    5.沈思钰,干振华,傅晓东,费震宇,胡兵,蔡辉.人参皂苷对神经系统作用的研究现状及分析.安徽中医学院学报,2004,23(1):62-64.
    6.张鹤玲,张英.川芎嗪的作用机理与临床.医学理论与实践.2001,14(8):809-810.
    7.王晓青,傅静.葛根的药理作用研究进展.北京中医药大学学报.1994,17(3):39-41.
    1.信照亮.鼠急性脑缺血的试验研究进展.国外医学神经病学神经外科学分册,1991; 16(2):90.
    2. 史仁华,姬广臣,赵鲁鸣,等.电针对完全结扎双侧颈总动脉后大鼠软脑膜微循环血流量的影响.中国针灸,1997;17(10):606-607.
    3. Mark P, Mattson CC, Apoptotic and antiapoptotic mechanisms in stroke. Cell and Tissue Research. 2000, 10(7): 712-715.
    4. Linnik MD, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke, 1993, 24:2002-2008.
    5. Linnik MD, Zahos P, Geschwind MD, Federoff HJ.Expression of Bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke. 1995, 26:1670-1674.
    6. 杜冠华.中药复方有效成分组学研究.中成药,2002;24(11):878-880.
    7. 李忠红,杜冠华.中药质量监控之我见.中国药学杂志,2003;38(6):471.
    8. Koizumi J, Yoshida Y, Nakazawa T and Ooneda G: Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke, 1986; 8: 1-8.
    9. Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke, 1986,17:472-476
    10. Bederson JB, Pitts LH, Germano SM, et al. Evaluation of 2, 3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke, 1986, 17:1304-1308
    11. Cho J, Lee HK, Wogonin inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion. Biol. Pharm. Bull., 2004, 27:1561—1564.
    12. Yang Y, Shuaib A, Li, Quantification of infarct size on focal cerebral ischemia model of rats using a simple and economical method.. J Neurosci Methods, 1998, 84: 9-16.
    
    13. Yang Y, Li Q, Miyashita H, Howlett W, Siddiqui M, Shuaib A. Usefulness of postischemic thrombolysis with or without neuroprotection in a focal embolic model of cerebral ischemia. J Neurosurg, 2000, 92: 841-847.
    
    14. Emaus RK, Grunwald R, Lemasters J. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochimica Biophysica Acta ,1986, 850: 436-448.
    
    15. Haleatrap P, Davidson M. Inhibition of Ca2+-induced large amplitude swelling of liver and heart mitochondria by cyclosporin A is probably caused by the inhibitor binding to mitochondria-matrix peptidyl-prolyl-cis-trans-isomerase and preventing it from interacting with adenine nucleotide translocase. Biochem J, 1990, 268: 153-157.
    
    16 Garcia JH, Yoshida Y, Chen H, Li Y, Chopp M. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol, 1993,142: 623-635.
    
    17 Xu J, Culman J, Blume A, Brecht S. Gohlke P., Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death. Stroke, 2003, 34: 1287-1292.
    
    18 Choi JM, Shin HK, Kim KY, Lee JH, HONG KW. Neuroprotective Effect of Cilostazol against Focal Cerebral Ischemia via Antiapoptotic Action in Rats. JPET, 2002, 300 (3): 787-793.
    
    19 Aims NR, Finegan JM, Blass JP. Effects of postdecapitative ischemia on mitochondrial respiration in brain tissue homogenate. J Neurochem 1986, 47(2): 506-511.
    
    20 Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke ,1979,10: 267-272.
    
    21 Hayashi T, Sakurai M, Itoyama Y, Abe K. Oxidative damage and breakage of DNA in rat brain after transient MCA occlusion. Brain Res,1999, 832: 159-163.
    
    22 谢立新,方云祥.脑缺血损伤的炎症机制研究进展.现代医药卫生,2004,20:(7),516—517.
    23 F. Block, M. Dihne, M. Loos. Inflammation in areas of remote changes following focal brain lesion. Progress in Neurobiology, 2005, 75,342-365.
    24 谭峰,顾卫,王金良.急性脑梗死患者CD62P与细胞因子的变化.中华新医学,2002, (8):79-81.
    25 李岚.炎性细胞因子与脑缺血.国外医学·脑血管疾病分册,1998,6(1):17-19.
    26 Pantoni L, Sarti C, Inzitari D.Cytokines and cell adhesion molecules in cerebral ischemia: experimental bases and therapeutic perspectives. Terioscler Thromb Vasc Biol. 1998; 18(4): 503-13.
    27 吴珊.ICAM-1与脑缺血再灌流损害.卒中与神经疾病杂志,1998,5(1):49-53.
    28 杨金升.肿瘤坏死因子在脑卒中时的表达及作用.国外医学·脑血管疾病分册,1996, 4(2):77.
    29 Kim JS, Yoon SS, Kim YH, Ryu JS. Serial measurement of interleukin-6, transforming growth factor-beta, and S-100 protein in patients with acute stroke. Stroke, 1996, 27: 1553.
    30 ClarR WM, RinRer LG, Lessov NS, et al.Time course of IL-6em~-pression in experimental CNS ischenia. Neurol Res, 1999, 21 (3): 287-292.
    31 王金良,顾卫,谭峰,黄涛.醒脑静注射液对急性脑梗塞患者血清TNF-α与IL-6的 影响.中华医药杂志,2003,3(3):170.
    32 Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP.Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci, 1998, 18:4914-4928.
    33 Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci, 1999, 22:391-397.
    1. Wang LZ, Sun WC, Zhu XZ. Ethyl pyruvate protects PC12 cells from dopamine-induced apoptosis. Eur J Pharmacol 2005;508:57-68.
    2. Krohn AJ, Preis E, Prehn JM. Staurosporine-induced apoptosis of cultured rat hippocampal neurons involves caspase-1-like proteases as upstream initiators and increased production of superoxide as a main downstream effector. J Neurosci. 1998; 20: 8186-8197.
    3.姜泊.细胞凋亡基础与临床.北京人民军医出版社,1999,225-227.
    4. Ilan Z, Eldad M, Nurit N, Drorit L, Anat A, Daniel O, Ari B. Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons—A possible novel pathogenetic mechanism in Parkinson's disease. Neurosci Lett. 1994;170:136-140.
    
    5. Sarin A, Hadid E, Henkart PA. Caspase dependence of target cell damage induced by cytotoxic lymphocytes.J Immunol 1998, 161: 2810-2816.
    
    6. Ochu EE, Rothwell NJ, Walterls CM. Caspases medicate 6-hydroxydopamone-induced apoptosis but not necrosis in PC12 cells. J Neurochem. 1998;70:2637-40.
    
    7. Suzuki K, Hino M, Kutsuna H, et al. Selective activation of p38 mitogen-activated protein kinase cascade in human eutrophils stimulated by IL-1β. J Immunol 2001, 167: 5940-5947.
    
    8. Sambrook J, Fritsch EF, ManiatisT. Molecular cloning: A Laboratory Manual 2nd ed. Cold Spring Harbor Laboratory Press, 1989, 880-898.
    
    9. Chandra D , Liu JW, Tang DG. Early mitochondrial activation and cytochrome C up regulation during apoptosis. J BiolChem , 2002, 277: 50842
    
    10. Chen Q, Gong B, Almasan A. Distinctstages of cytochrome C release from mito2chondria :evidence for a feedback amplica2tion loop linking caspase activation to mi2tochondrial dysfunction in genotoxic stressinduced apoptosis. Cell death andDifer , 2000, 7: 227
    
    11. Green DR, Reed, JC. Mitochondria and apoptosis. Science 1998;281:1309-1312.
    
    12. Kroemer G, Reed JC Mitochondrial control of cell death. Nat Med 2000;6:513-519.
    
    13. Li NY, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson, JP. Mitochondrial Complex I Inhibitor Rotenone Induces Apoptosis through Enhancing Mitochondrial Reactive Oxygen Species Production. J Biol Chem 2003;278: 8516-8525.
    
    14. Grammatopoulos TN, Morris K, Bachar C, Moore S, Andres R, Weyhenmeyer JA. Angiotensin II attenuates chamical hypoxia-induced caspase-3 activation in primary cortical neuronal cultures. Brain Res Bull 2004; 62: 297-303.
    
    15.Inomatal K, and Tanaka H. Protective Effect of Benidipine Against Sodium Azide-Induced Cell Death in Cultured Neonatal Rat Cardiac Myocytes. J Pharmacol Sci 2003; 93: 163-170.
    
    16. Rebecca A. Kirkland and James L. Franklin. Evidence for Redox Regulation of Cytochrome c Release during Programmed Neuronal Death: Antioxidant Effects of Protein Synthesis and Caspase Inhibition. J Neurosci, 2001, 21:1949-1963.
    17. Wang LZ, Sun WC, Zhu XZ, Ethyl pyruvate protects PC12 cells from dopamine-induced apoptosis. Eur J Pharmacol. 2005; 508: 57-68.
    18. Jakubowski W, Bartosz G. 2, 7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int. 2000; 24:757-760
    19. Pereira, CF. and Oliveira, CR. Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular Ca~(2+) homeostasis. Neurosci Res. 2000, 37: 227-236.
    20. Liu, M. and Wang, J. The methods and technology for the study of intracellular calcium. In: Zhang JT, editors, Modern experimental methods in pharmacology. 1998, 479-482.
    21. Tolonen, A.; Pakonen, M. and Hohtola, A. Phenylpropanoid glycosides from Rhodiola rosea. Chem Pharm Bu. 2003, 51: 467-470.
    22. Yuan, Z.B.; Ma, Z.R. The anti-superoxide anion radical effect of salidroside and salviandic acid studied by electrochemistry method. Chinese J Anal Chem. 1999, 27: 626.
    23. Sciamanna, M.A; Zinkel, J.; Fabi, A.Y.; Lee, C.P. Ischemic injury to rat forebrain mitochondria and cellular calcium homeostasis. Biochim Biophys Acta. 1992, 1134: 223-233.
    24. Melino G, Bernassola F. Nitrosylation regulates apoptosis. Nature, 1997, 388: 4324.
    25. Denis GV, Yu Q, Ma P. Bcl22, via itsBH4 domain, blocks apoptotic signaling mediated by mitochondrial Ras. J BiolChem, 2003, 278: 5775.
    26.吴彦,孙建宁,于绍坤.黄连解毒汤对过氧化氢诱导大鼠皮层神经元损伤的保护作用.中国医院药学杂志,2005,25(2):142—144.
    27. Sanchez Alcazar JA, Khodjakv A, Schneider E, et al. Anticancer drags induce increased mitochondrial cytochrome c expression that precedes cell death. Cancer Res, 2001, 61(3): 1038-1044.
    28.杨世昕,韩泉,卞修武.寻找以线粒体为靶点的抗癌新药.第三军医大学学报. 2003,25(11):1022—1023.
    1. Neil Howell, et al. Resotring energy in a power crisis: mitochondrial targets for drug development. TARGETS. 2003; 2(5): 208-216.
    2. Wallance DC. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science, 1992; 256: 628-32.
    3. 5Howel I N, Kubacka I, Halvorson S, et al. Phylogenetic analysis of the mitochondrial genomes from Leber hereditary optic neuropathy pedigrees. Genetics, 1995; 140: 285-302.
    4. 6Howell N. LHON and other optic nerve atrophies: the mitochondrial connection. Dev Ophthalmol. 2003; 37: 94-108.
    5. Tzen CY, et al. Melas with point mutations involving tRNALeu (A3243G) and tRNAGlu(A14693g). Muscle Nerve. 2003; 28(5): 575-81.
    6. Piechota J, et al. MELAS as an example of a mitochondrial disease. Mroczek K, Bartnik E. J Appl Genet. 2001; 42(3): 351-358.
    7. Liolitsa D, et al. Is the mitochondrial complex I ND5 gene a hot-spot for MELAS causing mutations? Ann Neurol. 2003; 53(1): 128-32.
    8. Mongini T, et al. MERRF/MELAS overlap syndrome in a family with A3243G mtDNA mutation. Clin Neuropathol. 2002; 21 (2): 72-6.
    9. Nishigaki Y, et al. A novel mitochondrial tRNA(Leu(UUR)) mutation in a patient with features of MERRF and Kearns-Sayre syndrome. Neuromuscul Disord. 2003; 13(4): 334-40.
    10. 10Uziel G, et al. Mitochondrial disease associated with the T8993G mutation of the mitochondrial ATPase 6 gene: a clinical, biochemical, and molecular study in six families. J Neurol Neurosurg Psychiatry. 1997; 63(1): 16-22.
    
    11. Filiano JJ, et al Mitochondrial DNA depletion in Leigh syndrome . Pediatr neurol. 2002; 26(3): 239-42.
    
    12. Tsao CY, et al Leigh disease with mitochondrial DNA A8344G mutation: case report and brief review. J Child Neurol. 2003; 18(1): 62-4.
    
    13. Playan A, Leigh syndrome resulting from a de novo mitochondrial DNA mutation (T8993G) Rev Neurol. 2002;16-30; 34(12): 1124-6.
    
    14. Wilson CJ, et al. Mitochondrial DNA point mutation T9176C in Leigh syndrome. J Child Neurol. 2000; 15(12): 830-3.
    
    15. Puccio H, et al. Friedreich ataxia: a paradigm for mitochondrial diseases. Curr Opin Genet Dev. 2002; 12(3): 272-7.
    
    16. Elatycki MB,et al. Friedreich ataxia: an overview. J Med Genet. 2000; 37(1): 1-8.
    
    17. Atorino L, et al. Loss of m-AAA protease in mitochondria causescomplexIdeficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol. 2003 ; 163(4): 777-87.
    
    18. Rainier S, et al. NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am J Hum Genet. 2003; 73(4): 967-71.
    
    19. Pesch UE, et al. OPA1 mutations in patients with autosomal dominant optic atrophy and evidence for semi-dominant inheritance. Hum Mol Genet. 2001; 10(13): 1359-68.
    
    20. Olich on, A. et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 2003; 278:7743-7746.
    
    21. Votruba, et al. Genetic refinement of dominant optic atrophy (OPA1) locus to within a 2 cM interval of chromosome 3q. Joural of medical genetics, 1997; 34: 117-121.
    
    22. Roesch K, et al. Human deafness dystonia syndrome is caused by a defect assembly of the DDP1/TIMM8a-TIMM13 complex. Hum Mol Genet. 2002; 11(5): 477-86.
    
    23. Ranebjaerg L, et al. Neuronal cell death in the visual cortex is a prominent feature of the X-linked recessive mitochondrial deafhess-dystonia syndrome caused by mutations in the TIMM8a gene. Ophthalmic Genet. 2001; 22(4): 207-23.
    
    24. Lackstone C, et al. Interaction of the deafness-dystonia protein DDP/TIMM8a with the signal transduction adaptor molecule STAM1. Biochem Biophys Res Commun. 2003 ;30; 305(2):45-52
    
    25. Karin Roesch, et al. Human deafness dystonia syndrome is caused by a defect in assembly of the DDPl/TIMM8a-TIMM13 complex . Human Molecular Genetics, 2002; 11,5 477-486.
    
    26. Aver B, et al. Molecular and behavioral analysis of the r6/1 huntington's disease sgenic mouse. Neuroscience. 2003; 122(4): 1049-57.
    
    27. Castellani R, et al. Role of mitochondrial dysfunction in Alzheimer's disease. J. Neurosci. Res. 2002;70, 357-360.
    
    28. Casley CS. β-amyloid fragment 25-35 causes mitochondrial dysfunction in primary cortial neurons. Neurobiol. Dis. 2002;10,258-267.
    
    29. Trojanowski JQ. Retenone neurotoxity: a new window on environmental causes of Parkinson's disease and related brain amyloidoses. Exp. Neurol. 2003;179, 9-16.
    
    30. Bywood, PT, Johnson, SM. Mitochondrial complex inhibitors preferentially damage substantia nigra dopamine neurons in rat brain slices. Exp. Neurol. 2003; 179,47-59.
    
    31. Gao HM, et al. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. J. Neurosci. 2003;23, 1228-1236.
    
    32. Nier CD, Everts HB. Mitochondrial DNA in aging and degenerative disease. Mutat Res, 2001(475): 169-184.
    
    33. Hmiedel J, et al. Mitochondrial cytopathies. J Neurol. 2003;250(3):267-77.
    
    34. Ruro S, et al. Mitochondrial disorders. J Child Neurol.2002; 17 suppl 3: 3S35-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700