高性能反渗透复合膜及其功能单体制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内反渗透复合膜功能材料单一,性能相对较差,严重影响高性能反渗透的开发,制约我国反渗透工程中的国产化率。本文从功能单体入手,筛选与合成关键功能单体,分析和验证单体结构与纯度;通过对界面反应机理的研究筛选功能单体和优化分离层结构,制备出几种不同性能的反渗透复合膜;结合复合膜性能评价和结构表征开展复合膜成膜机理及其模型化研究,为反渗透复合膜制备工艺的进一步优化与完善,最终开发出高性能反渗透复合膜打下良好的基础。
     首先,建立反渗透复合膜相应功能单体的制备工艺路线,通过对功能单体合成的工艺参数进行优化,合成出四种功能单体:5-氧甲酰氯-异酞酰氯(CFIC;最大收率为29.3%,纯度为99.1%)、5-异氰酸酯异酞酰氯(ICIC;最大收率为64.4%,纯度为99.2%)、1,4-环己二胺(HDA;最大收率为55%;纯度为99.5%)和1,3,5-环己烷三甲酰氯(HT:第一步最高收率为99%;纯度为99.5%。第二步最高收率为85%)。其中前两种单体采用相对安全的酰氯化剂(三光气和草酰氯)替代传统的光气,反应条件由文献报导的高温、高压法改进为常温、常压法,并取得了较高的产品收率及符合界面聚合纯度要求的产品;后两种参照文献报道的方法制备,所获得的产品收率与报道结果相近。所有单体的化学结构通过红外光谱(IR)、核磁共振(NMR)、气-质联机(GC-MS)和元素分析(EA)等仪器分析加以验证确定。
     其次,选用合成和现有功能单体通过界面聚合法制得多种复合膜分离层材料,分析了膜分离层材料的结构,测量膜分离层材料的吸水性和耗氯量。结果表明:不同酰氯与间苯二胺(MPD)或1,4-环己二胺(HDA)生成聚合物的吸水性的大小顺序为:HT>ICIC>TMC>CFIC;不同胺与同种酰氯,生成聚合物的吸水性的大小顺序为:HDA>MPD;因而,在聚合物链中引入脂环结构可提高复合膜的水通量;CFIC/MPD聚合物在相同的时间内吸收的水量最少,但达到吸收平衡的时间最长,可能是由于其结构较致密,这对制备高脱盐反渗透复合膜十分有利;ICIC与多元胺反应生成聚合物的耗氯量大于HT、TMC、CFIC与多元胺反应生成聚合物的耗氯量,不能用于抗氧化膜的制备;对于多元胺而言,甲基间苯二胺(MMPD)与酰氯生成聚合物的耗氯量远小于HDA、MPD与同样酰氯生成聚合物的耗氯量。
     然后,基于膜分离层材料的研究基础,采用界面聚合工艺制备四类八种新型反渗透复合膜:其中抗氧化反渗透复合膜3种(CFIC/MMPD、HT/MMPD、TMC-HT/MMPD);耐污染反渗透复合膜1种(ICIC/MPD);高通量反渗透复合膜3种,(TMC/MPD-SMPS(5-磺酸基间苯二胺)、ICIC-IPC/MPD、ICIC-HT/MPD);高脱盐海水反渗透复合膜1种(CFIC/MPD)。采用傅立叶变换全反射红外、X-射线光电子能谱、探针式原子力显微镜,电子扫描显微镜等分析检测仪器,以及反渗透复合膜性能评价测试,探讨了膜的分离性能与膜分离层化学结构、表面形态之间的关系。研究结果表明:在多元胺的苯环上引入一个甲基可明显提高膜的抗氧化性;耐污染性与膜表面的平滑程度、荷电性也有较大联系;复合层交联程度或复合层中的脂环结构比例与水通量有较大的关联性,在一
Nowadays the percentage of indigenous reverse osmosis (RO) membrane applied in our country is low for the deficiency of RO membrane functional materials which lead to little species RO membranes. Investigation of functional materials and film formation mechanism is crucial for preparation of high performance RO composite membranes. In this study there are four main parts which were synthesis of monomers, preparation and characterization of functional membrane materials, preparation and characterization of RO composite membranes, as well as analysis of film formation process by interfacial polymerization.Four functional monomers were synthesized firstly including 5-chloroformloxy-isophthaloyl chloride(CFIC;the best yield was 29.3%, purity ≥ 99.1%), 5-isocyanate -isophthaloyl chloride(ICIC;the best yield was 64.4%, purity ≥ 99.2%), 1, 4-cylohexane diamine(HDA;the best yield was 55%, purity ≥ 99.5%) and 1,3,5-cyclohexane triacyl chloride(HT;the best yield was 99%, purity ≥ 99.5% for the first step, the best yield was 85% for the second step). The chemical structure of all monomers was proved by Infrared Spectroscopy (IR), Nuclear Magnetic Resonance Spectroscopy (NMR), Gas Chromatogram -Mass spectrum(GC-Ms) and Element Analysis (EA).CFIC and ICIC were prepared with triphosgene and oxalic chloride respectively to replace phosgene in traditional technics at room temperature and low pressure, high yield and good purity were obtained;HDA and HT were prepared according to related reference, similar yield and purity were obtained.Secondly, membrane barrier's materials were prepared with synthesized monomers and purchased monomers through interfacial polymerization technique and characterized by water vapor adsorption and active chloride consumption to decide preliminarily which monomers were suitable to prepare which kind RO composite membranes. Results revealed that the order of water vapor adsorption for polymer prepared with m-phenylenedi amine (MPD) (or HDA) and various multiacyl chloride is: HT>ICIC>TMC>CFIC;the order of water vapor adsorption for polymer prepared with different multiamines and the same multiacyl chloride is: HDA>MPD. So the structure of cyclohexane is helpful for improving the water flux. Although CFIC/MPD material had lowest weight gain, its time consumption of reaching to adsorption balance is much longer than others because of its compact structure which is potential to prepared RO composite membrane with high rejection for sodium chloride. The active chlorine consumption of polymer prepared with methyl-m-phenylenediamine (MMPD) is less than the others and the active chlorine consumption of polymers prepared with ICIC is more than others. So MMPD is suitable to prepared chlorine-resistant RO composite membrane and ICIC is not.Thirdly, some new reverse osmosis composite membranes were prepared with multiacyl
    chloride (chloroformloxy or isocyanate) monomers and diamine monomers through interfacial polymerization technique on the polysulphone supporting film. It contains four kinds RO composite membranes: Chlorine-resistant RO composite membrane (CFIC/MMPD. HT/MMPD, TMC-HT/MMPD),Antifouling RO composite membrane (ICIC/MPD),High flux RO composite membrane (TMC/MPD- SMPD (5-sulfonic acid m-phenylenediamine) , ICIC-IPC/MPD, ICIC-HT/MPD) and High rejection RO composite membrane (CFIC/MPD).The membranes were characterized using permeation experiments with salt water, Attenuated total reflectance infrared (ATR-IR), X-ray photoelectronic spectrum(XPS), as well as imaging using atomic force microscopy (AFM) , scanning electronic microscopy (SEM) and so on. Results revealed that introducing a methyl on aromatic multiamine can improve chlorine-resistance property of RO composite membranes;the surface of antifouling RO composite membranes was smoother than the others and its absolute value of surface zeta potential was less than the others which lead to a good antifouling property;the flux can be enhanced more than 30% with little decrease of rejection for sodium chloride by changing the cross-linking degree of high flux RO composite membrane's barrier or introducing cyclohexane structure in its polymer chain;there were much hydroxyl in the high rejection RO composite membrane's barrier which lead to its rejection for sodium chloride decreasing much more slowly than the others.Lastly, hydrolysis of multiacyl chloride and interfacial polymerization of multiacyl chloride and multiamine were monitored by a pH measurement with continuous record. Result revealed that hydrolysis of multiacyl chloride is relatively so slow that can be ignored. The diffusion of multiamine from aqueous solution to oil solution was correlative to their partition coefficient in two solutions. A mathematic model for film formation by interfacial polymerization was set up based on diffusion of multimode from aqueous solution to oil solution and the increase of film thickness layer by layer. The equation of membrane thickness, time, monomer concentration et al is obtained. The effective membrane thickness was defined as the thickness of cross linking polymer membrane. When the average function degree of reactive zone is 2, the efficient membrane thickness is the maximum, just as follow:The mathematic model of membrane thickness, time, monomer concentration et al agreed with the experiment well. It described the process of interfacial polymerization quantificationally and was useful to control the process of interfacial polymerization.
引文
[1] P Xu, J E Drewes, C Bellona, G Amy, T U Kim, M Adam, and T Heberer. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Water Environment Research.2005, 77: 40~48.
    [2] 俞三传,高从堦.膜技术在海水淡化和综合利用中的新进展.海洋通报,2001,(1):83~87.
    [3] G Qin, C K. Liu, N H Richman, and J E T Moncur. Aquaculture wastewater treatment and Rcvse by wind-driven reverse osmosis membrane technology: a pilot study on Coconut Island, Hawaii. Aquacultural Engineering. 2005, 2: 365~378.
    [4] 朱小莎,和慧勇,罗奖合.反渗透技术在我国电厂中的应用总结.热力发电.1997,06:38~43.
    [5] Y Yoon, and R M Lueptow. Reverse osmosis membrane rejection for ersatz space mission wastewaters. Water Research. 2005, 39: 3298~3308.
    [6] S Casani, T B Hansen, J Christensen, and S Knochel. Comparison of methods for assessing reverse osmosis membrane treatment of shrimp process water. Journal of Food Protection. 2005, 68: 801~807.
    [7] 韩芸,高旭阔,王志盈,杨永哲,王晓昌,王蜀溢,李勇勤,常剑勇.城市污水回用于工业生产过程中的除盐与除硬度问题的研究.给水排水,2003,(10):55~58.
    [8] 高隆绪,范潇芳,张美珍.饮用纯净水的制备.水处理技术,1998,24(1):26~29.
    [9] 王湛.膜分离技术基础,化学工业出版社,2000.
    [10] 时钧,袁权,高从增.膜技术手册,化学工业出版社,2001.
    [11] P S Fancis. Fabrication and evalution of new ultrathin reverse osmosis membranes, NTIS Report No.PB-177083, available from National Technical Information Service, U.S. Department of Commerce Springfietd, VA22161(1966-02)
    [12] R L Riley, H K Lonsdale, and C R D Lyons. Composite membranes for seawater desalination by reverse osmosis. J Appl Polym Sci, 1971, 15: 1267~1281.
    [13] 高从堦,鲁学仁,鲍志国.聚酰胺反渗透复合膜成膜机理初探.水处理技术,1993,19(1):15~19.
    [14] H Masahiko, I Kenichi. Method of producing high permeable composite reverse osmosis membrane. US Patent, 5576057.1996-11-19.
    [15] A Prakash, N Desai, V Rangarajan. Interfacially synthesized thin film composite RO membranes for seawater desalination. J Membr Sci, 1997, 124: 263~272.
    [16] J Y Koo, S Young, N Kim. Composite polyamide reverse osmosis membrane and method of producing the same. US Patent, 6368507.2002-04-09.
    [17] L T Rozelle, J E Cadotte, R D Comeliussen and B R Nelson. Final report on development of new reverse osmosis membranes. NTIS Report No. PB-177083, loc.cit.(1968-06).
    [18] R J Petersen. Composite reverse osmosis and nanofiltration. J of Membr Sci, 1993, 83: 81-150.
    [19] L T Rozelle, J E Cadotte, W L king, A J Senechal and B R Nelson. Development of ultrathin reverse osmosis membranes for desalination. NTIS Report No. PB-202748, loc.cit.(1971-05).
    [20] U Merin and M Cheryan. Ultrastructure of the surface of a polysulfone ultrafiltration membrane. J Appl Polym Sci, 1980, 21: 2139-2152.
    [21] H strathmann. Composite asymmetrical membranes. US Patent 4071590, 1978-01-31.
    [22] 朱长乐,刘茉娥,高从堦.膜科学与技术.杭州:浙江大学出版社,1992.
    [23] C K Kim, J H Kim, I J Roh. The changes of membrane performance with polyamide molecular structure in the reverse osmosis process. J Membr Sci, 2000, 165(2): 189~199.
    [24] 孙洪明,朱宝康.均苯三甲酰氯的研制.燃料与化工,1991,22(1):42~45.
    [25] J Y Koo, Kim Nowon. Composite polyamide reverse osmosis membrane and method of producing the same. US Patent, 6015495, 2000-01-18
    [26] Y Hiroyuki, T Hiromitsu, M Yoshitaka. Verfahren zur herstellung yon verzweigten polycarbonaten. Deutsches Patentamt, 2626776A1.1976-06-15.
    [27] H Masahiko, M Yoshihiro, K Yoshiyasu. The relationship between polymer molecular structure of RO membrane skin layers and their RO performances. J Membr Sci, 1997, 123(2): 151~156.
    [28] J E Cadotte. Reverse osmosis membrane. U S Patent 4039440, 1977-08-02.
    [29] J E Cadotte, R S King, R J Majerle and R J Petersen. Interracial Synthesis in the preparation of reverse osmosis membrane. J Macromol Sci Chem, 1981, A-15: 727-755.
    [30] C R Bartels. A surface science investigation of composite membranes. J Membr Sci, 1989, 45: 225-245.
    [31] Y N Kamiyama, K M Yoshioka, K Nakagome. New thin-film composite reverse osmosis membranes and spiral wound modules. Desalination, 1984, 51: 79-92.
    [32] P Parrini. Polypiperazinamides: new polymers useful for membrane process. Desalination, 1983, 48: 67-78.
    [33] J E Cadotte. Interfacially synthesized reverse osmosis membrane. US Patent 4277344, 1981-06-07.
    [34] R E Larson,, J E Cadotte, and R J Petersen. The Ft-30 sea-water reverse-osmosis membrane: element test results. Desalination, 1981, 38: 473-483.
    [35] T Uemura, Y Himeshima and M Kurihara. Interfacially synthesized reverse osmosis membrane. US Patent 4761234, 1988-08-02.
    [36] S A Sundet. Production of composite membranes. U S Patent 4529646, 1985-06-15.
    [37] S A Sunder, S D Arthur, D Campos, T J Eckman and R G Brown. Aromatic/cycloaliphatic polyamide membrane. Desalination, 1987, 64: 259-269.
    [38] U I Richard, B J Marinas. Mechanistic interpretation of solute permeation through a fully aromatic polyamide reverse osmosis membrane. J Membr Sci, 1997, 123(2): 267-280.
    [39] R Fibiger, F Colucci. Rejection enhancing coatings for reverse osmosis membranes. US Patent, 6015495.1989-05-08.
    [40] M Hirose, O Tomomi, A Masaaki. Highly permeable composite reverse osmosis membrane. US Patent, 6171497. 2001-01-09.
    [41] J E Cadotte, H Racchini. Treatment of composite polyamide membranes with compatible oxidants US Patent, 4960518.1990-10-02.
    [42] V Freger, J Gilron, S Belfer. TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study. J Membr Sci, 2002, 209(1): 283~292.
    [43] S Belfer, J Gilron, O Kedem. Characterization of commercial RO and UF modified and fouled membranes by means of ATR/FTIR. Desalination, 1999, 124(1-3): 175~180.
    [44] S Belfer, Y Purinson, R Fainshtein. Surface modification of commercial composite polyamide reverse osmosis membranes. J Membr Sci, 1998, 139(2): 175~181.
    [45] S Coker, P Sehn. Four years field experience with fouling resistant reverse osmosis membranes. Desalination, 2000, 132(1-3): 211~215.
    [46] 李娜,刘忠洲,续曙光.耐污染膜-聚乙烯醇膜的研究进展.膜科学与技术,1999,19(3):1~7.
    [47] M Hirose, H Ito, K Tanaka. Osmosis membrane. US Patent, 5989426. 1999-11-23.
    [48] M Elimelech, X Zhu, A E Childress. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J Membr Sci, 1997, 127(1): 101~109.
    [49] M C Wilbert, J Pellegrino, A Zydney. Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes., Desalination, 1998, 115(1): 15~32.
    [50] B X Mi, CL Eaton, JH Kim. Removal of biological and non-biological viral surrogates by spiral-wound reverse osmosis membrane elements with intact and compromised integrity. Water Research. 2004, 38(18): 3821~3832.
    [51] J Y Hu, S L Ong, J H Shan, J B Kang, W J Ng. Treatability of organic fractions derived from secondary effluent by reverse osmosis membrane. Water Research. 2003, 37(19): 4801~4809.
    [52] H Ozaki, K Sharma, W Saktaywin. Performance of an ultra-low-pressure reverse osmosis membrane(ULPROM) for separating heavy metal: effects of interference parameters. Desalination, 2002, 144(1-3): 287~294.
    [53] H Ozaki, H F Li. Rejection of organic compounds by ultra-low pressure reverse osmosis membrane. Water Research. 2002, 36(1): 123~130.
    [54] K Tagawa, O Miyatake. Numerical analysis for a reverse osmosis seawater desalination system utilizing the static pressure head. Kagaku Kogaku Ronbunshu. 2001, 27(3): 395~399.
    [55] Z Ujang, G K Anderson. Effect of the operating parameters on the separation of metal chelates using low pressure reverse osmosis membrane(LPROM). Water Science and Technology. 2000, 41(10-11): 135~142.
    [56] M Jenkins, M B Tanner. Operational experience with a new fouling resistant reverse osmosis membrane. Desalination 1998, 119(1-3): 243~249.
    [57] J GIater. The early history of reverse osmosis membrane development[J] Desalination 1998, 117(1-3): 297~309.
    [58] J A Redondo. Development and experience with new FILMTEC reverse osmosis membrane elements for water treatment. Desalination 1997;108(1-3), 59~66.
    [59] H C Chu, J S Campbell, W G Light. High-Temperature Reverse-Osmosis Membrane Element. Desalination, 1988, 70(1-3): 65-76.
    [60] 曹艳霞,郑国栋,徐纪平.高分子复合膜的界面与性能的相关性.科学通报,1998,43(23):2568~2569.
    [61] 曹艳霞,郑国栋,徐纪平,沈家瑞.反渗透复合膜内界面改性对其性能的影响研究(Ⅰ)性能表征.高分子材料科学与工程,2004,20(6):138~141.
    [62] 曹艳霞,郑国栋,徐纪平,沈家瑞.反渗透复合膜内界面改性对其性能的影响研究(Ⅱ)理论分析.高分子材料科学与工程,2004,20(6):142~145.
    [63] S D Arthur. Reverse osmosis membranes of polyamideurethane. US Patent. 5085777, 1992-02-04
    [64] S D Arthur. Reverse osmosis membranes of polyamideurethane. US Patent. 5137606, 1992-08-11
    [65] S D Samuel. Reverse osmosis membranes of polyamideurethane. E Patent. 0473459, 1991-08-30
    [66] S D Arthur. Reverse osmosis membranes of polyamideurethane. J Patent. 7-53469, 1995-02-28
    [67] J E Tomaschke. Interfacially synthesized reverse osmosis membranes and processes for preparing the same. US Patent, 5246587, 1993-09-21.
    [68] 成俊然,文佳,邵瑞链.双(三氯甲基)碳酸酯的制备和应用.化学通报,1999,4:20-25.
    [69] C Livius, D Pietro, N Alfonso, S Vitomir. Bis(trichloromethyl) carbonate in organic synthesis, centro ricerche, I.C.Caffaro SpA, Torviscosa, Italy. Synthesis, 1996, 5: 553~576.
    [70] S D Arthur. Multilayer reverse osmosis membrane of polyamide-urea. US Patent, 5019264. 1991-05-28.
    [71] S D Arthur. Manufacture of isocyanate-substituted isophtholayl chloride. US Patent, 5119111.1993-03-02.
    [72] S D Arthur.. Method of producing multilayer reverse osmosis membrane of polyamide-urea. US Patent, 5173335. 1991-12-22.
    [73] 魏文珑,成斌,常宏宏,王利珍,李彦威.对氯苯异氰酸酯的合成.化工中间体导刊.2005.16:11~13.
    [74] 宋长友,徐秀军.对三氟甲氧基苯基异氰酸酯的合成研究.化工中间体.2005,3:28~29.
    [75] 钟立.异氰酸酯的合成与应用.化工进展.2000,19(4):50~52.
    [76] 赵博,丛津生,胡兴平.对苯二异氰酸酯的合成进展.聚氨酯工业.2004,19(3):10~14.
    [77] 杨凤玲,温金梅.草酰氯的合成及应用.杭州化工.2003,33(2):7~8.
    [78] S Yang, H X Xiao, D P Higley, J Kresta, K C Frisch, W B Farnham, M H Hung. Novel fluorinecontaining anionic aqueous polyurethanes. Journal of macromolecular science, Pure and Applied Chemistry. 1993, A30(2-3): 241~252.
    [79] X X Han, Y Shi. Aqueous polyurethane dispersions. US Patent, 5086110.1989-10-6.
    [80] V D Kalmykova, M N Bogdanov, N P Okromchedlidze, I VZhmaeva, V Y Efiemov. Synthesis and behavior of some polyamides based on diamines with cyclohexane rings. Vysokomolekulyarnye socdineniya, seriya A. 1967, 9(12): 2539~2542.
    [81] S Hiroshi, M Amane, U Mitsuru. Synthesis of aliphatic polyamides containing adamantly units. Journal of Polymer Science: Polymer Chemistry. 1999, 37(18): 3584~3590.
    [82] J E Tomaschke. Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same. US Patent, 4872984.1989-10-10.
    [83] M T Cenker, T K Peter, M Livonia. Catalyst and process for the preparation of 1, 3-cyclohexane diamine. US Patent, 4172584.1972-4-18.
    [84] W W Zajac, G J Speier, J H Buzby, and T R Waiters. Oxidative intramolecular cyclization of diketoximes: Synthesis of 1, 5-dinitro-cis-bicyclo[3.3.0] octane. Journal of Organic Chemistry. 1996.61(10): 3545~3547.
    [85] S N Massie, I Palatine. Hydrogenation of aromatic amones. US Patent, 391437. 1975-10-21
    [86] G F Allen. Catalytic hydrogenation of di(4-aminophenyl)methane. US Patent, 4448995. 1984-05-15.
    [87] C P Jeremiah, F J Michael. Hydrogenation of methylenedianiline to produce bis(para-aminocyclohexyl) methane. US Patent, 4946998. 1990-08-07.
    [88] B R Breitscheidel, T F Klemens, J Henkelmann, A Henne, L Rolf. Hydrogenation of an aromatic compound in the presence of a supported catalyst. US Patent, 5874622. 1999-02-23.
    [89] H P Kim, Y K Kun, S C Young, J L Moon, G Byung. Method for preparing cycloaliphatic diamines from aromatic diamines. US Patent, 6075167.2000-06-13.
    [90] S K Hoon, H Sang, L Hyunjoo, D L Sang, S K Young, I M Lee. Ru-catalyzed hydrogenation of aromatic diamine: the effect of alkali metal salts. Journal of Molecular Catalyst, 1998, 132: 267~276.
    [91] 刑其毅,徐瑞秋,周政,裴伟伟.基础有机化学(下),高等教育出版社,1993年11月第2版,P650.
    [92] D Paul, E K Heinz, S A Johann, S Karl. Liquid-crystalline compounds.US Patent, 5804097.1998-09-08.
    [93] S A Sundet. Microporous support layer with interfacially polymerized copolyamide thereon. US Patent, 4626468. 1986-12-02.
    [94] S A Sundet, S D Arthur, D Campos, T J Eckman, R G Brown. Aromatic/cycloaliphatic polyamide membrane. Desalination, 1987, 64: 259~269.
    [95] J E Tomaschke. Interfacially synthesized reverse osmosis membranes and processes for preparing the same. US Patent, 5246587.1993-09-21.
    [96] A J Steitz. Epimers of 1, 3, 5-cyclohexanetricarboxylic acid. The Journal of Organic Chemistry, 1968, 33(7): 2978~2979.
    [97] H W Herman, E Folsom, E Hamel. 1, 3, 5-cyclohexane tricarbonyl chloride. US Patent, 3649687. 1972-03-14.
    [98] H W Herman, E Folsom, E Hamel. 1, 3, 5-cyclohexane triisocyanate. US Patent, 3551469. 1970-12-29.
    [99] C K Kim, J H Kim, I J Roh. The Changes of Membrane Performance with Polyamide Molecular Structure in the Reverse Osmosis Process. J Membr Sci, 2000, 165: 189~199.
    [100] S D Arthur. Structure-property relationship in a thin film composite reverse osmosis membrane. J Membr Sci, 1989, 46: 243~260.
    [101] V P Khare, A R Greenberg, W B Krantz. Development of pendant drop mechanical analysis as a technique for determining the stress-relaxation and water-permeation properties of interfacially polymerized barrier layers. Journal of Applied Polymer Science, 2003, 90(10): 2618~2628.
    [102] N P Soice, A R Greenberg, W B Krantz, A D Norman. Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis. J Membr Sci, 2004, 243(1-2): 345-355.
    [103] 谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用(修订版).科学出版社,2001.P306~307
    [104] S Y Kwak, M O Yeom, I J Roh, D Y Kim, J J Kim. Correlations of chemical structure, atomic force microscopy(AFM) morphology, and reverse osmosis(RO) characteristics in aromatic polyester high-flux RO membranes. J Membr Sci, 1997, 132(2): 183~191.
    [105] A Canas, M.J Ariza, J Benavente. Characterization of active and porous sublayers of a composite reverse osmosis membrane by impedance spectroscopy, streaming and membrane potentials, salt diffusion and X-ray photoelectron spectroscopy measurements. J Membr Sci, 2001, 183: 135~146.
    [106] S. S Deshmukh, A E Childress. Zeta potential of commercial RO membranes: influence of source water type and chemistry. Desalination, 2001, 140: 87~95.
    [107] A E Childress, S S Deshmukh. Effect of humic substances and anionic surfactants on the surface charge and performance of reverse osmosis membranes. Desalination. 1998, 118: 16~174.
    [108] G Robert, H Hachisuka, M Hirose. New membrane developments expanding the horizon for the application of reverse osmosis technology. Desalination, 1998, 119: 47-55.
    [109] S S Deshmukh, A T Childress. Zeta potential of commercial RO membrane: influence of source water type and chemistry. Desalination, 2001, 140: 87~95
    [110] J Koo, R J Peterson, J E Cadotte. ESCA characterization of chlorine damaged ployamide reverse osmosis membrane. ACS Polym Prepr, 1986, 27(2): 391~392.
    [111] T Kawaguchi, H Tamura. Chorine-resistance membrane for reverse osmosis: l Correlation between chemical structures and chlorine resistance of polyamides. Journal of Applied polymer science, 1984, 29: 3359~3367.
    [112] K N ita, Y K Matsui. Study of Chorine-resistance membrane for reverse osmosis. ICOM'90, Chicago, 1990, P1055.
    [113] Z Amjad.反渗透-膜技术、水化学和工业应用(第一版).殷琦,华耀祖译.北京:化学工业出版社.1999,9.
    [114] 黄显怀,霍守亮.膜污染及其控制方法研究.安徽建筑工业学院学报(自然科学版).2003,11(1):65~68.
    [115] M A Mazid. Seperation and fractionation of macromolecule solutions by ultrafiltration. Separ. Sci Tech, 1988, 23(14): 2191~2210.
    [116] W Peng, C E Isabel, B W Donald. Effect of water chemistries and properties of membrane on the performance and fouling: a model development study. J Membr Sci., 2004, 238: 33-46.
    [117] M E Vrijenhoek, S Hong, M Elimelech. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J Membr Sci. 2001, 188: 115~128.
    [118] M Elimdech, X Zhu, A E Childress. Role of membrane surface morphology in colloidal fouling of celluloseacetate and composite acomatic polyamide RO membranes. J Membr Sci, 1997, 127: 101~109.
    [119] W C Rice, J P Puglia. High performance composite-membrane. US Patent, 6536605.2003-03-25.
    [120] N N Li, M A Kuehne, R J Petersen. High flux reverse osmosis membrane. US Patent, 6162358. 2000-12-19.
    [121] S D Arthur. Process for the manufacture of thin film composite membranes. US Patent, 5258203. 1993-11-02.
    [122] W Atsuo, N Mitsutoshi, N Hiroshi, Y Yamada, O Tsutomu. Concentration of solution by the reverse osmosis process. US Patent, 5096590.1992-3-17.
    [123] K Masaru, W Tetsuo, I Tetsuo. Method of making a reverse osmosis semi permeable membrane.US Patent, 4557949.1985-12-10.
    [124] A Kulkarni, D Mukherjee, W N Gill. Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes. J Membr Sci, 1996, 114(1): 39~50.
    [125] E G Darton, A G Turner. Operating Experiences in A Sea-Water Reverse-Osmosis Plant in Gibraltar(1987-1990). Desalination, 1991, 82(1-3): 51~69.
    [126] M Urairi, T Tsuru, S Nakao, S Kimura. Bipolar reverse-osmosis membrane for separatiog monovalcnt and divalent ions. J Membr Sci, 1992, 70(2-3): 153~162.
    [127] N Voutchkov. Desalination system. US Patent, 6946081. 2005-9-20.
    [128] A Alexiadis, J Bao, D F Fletcher, D E Wiley, D J Clements. Analysis of the dynamic response of a reverse osmosis membrane to time-dependent transmembrane pressure variation. Industrial & Engineering Chemistry Research, 2005, 44(20): 7823~7834.
    [129] Y J Song, F Liu, B H Sun. Preparation, characterization, and application of thin film composite nanofiltration membranes. Journal of Applied Polymer Science, 2005, 95(5): 1251~1261.
    [130] A L Ahmad, B S Ooi. Properties-performance of thin film composites membrane: study on trimesoyl chloride content and polymerization time. J Membr Sci, 2005, 255(1-2): 67~77.
    [131] Y J Song, P Sun, L L Henry, B H Sun. Mechanisms of structure and performance controlled thin film composite membrane formation via interracial polymerization process. J Membr Sci, 2005, 251(1-2): 67~79.
    [132] I C Kim, K H Lee. Preparation of interfacially synthesized and silicone-coated composite polyamide nanofiltration membranes with high performance. Industrial & Engineering Chemistry Research. 2002, 41(22): 5523~5528.
    [133] M M Jayarani, S S Kulkarni. Thin-film composite poly(esteramide)-based membranes. Desalination. 2000, 130(1): 17~30.
    [134] 林尚安,陆耘,梁姚熙.高分子化学(第一版).科学出版社.1982.
    [135] S K Karode, S S Lullarni, A K Suresh and R A Mashelkar. New insights into kinetics and thermodynamics of interfacial polymerization. Chemical Engineering Science, 1998, 53(15): 2649~2663.
    [136] J H Bradbury, P J Crawford and A N Hambly. Kinetics of an interfacial polycondensation reaction part 2-Reaction of terephthaloyl chloride and piperazine. Trans. Faraday Soc. 1968, 65: 1337~1347
    [137] V Enkelmann and G Wegner. Mechanism of interfacial polycondensation and the direct synthesis of polyamide membranes. Appl Polym Syrup. 1975, 26: 365~372.
    [138] V Enkelmann and G Wegner. Mechanism of interfacial polycondensation and the direct synthesis of polyamide membranes. Macromol.Chem, 1976, 177: 3177~3189.
    [139] R G Pearson and H L William. Interfacial Polymerization of an isocyanate and a diol. J Polym Sci: Part A, 1985, 23: 9~18.
    [140] M Sirdesai and K C Khilar. A model for microencapsulation in polyurea shell by interfacial polycondensation. Can J Chem Engng, 1988, 66: 509~513.
    [141] S K Yadav, A K Suresh and K C Khilar. Microencapsulation in polyurea shell by interfacial polycondensation. AIChE J. 1990, 36(3): 431~438.
    [142] S K Yadav, K C Khilar and A K Suresh. Microencapsulation in polyurea shell-kinetics and film structure. AIChE J. 1996, 42(9): 2626~2636.
    [143] S K Karode, S S Lullarni, A K Suresh and R A Mashelkar. Molecular weight distribution in interracial polymerization model development and verification. Chemical Engineering Science, 1997, 52(19): 3243~3255.
    [144] J. Ji, J. M. Dickson, R. F. Childs and B. E. McCarry. Mathematical model for the formation od thin-film composite membranes by interfacial polymerization: porous and dense films. Macromolecules, 2000, 33: 624~633.
    [145] 张浩勤,刘金盾,范国栋,方文骥.界面聚合制备复合膜过程的数学模型.高校化学工程学报,2004,18(2):146~151.
    [146] M Hirose. The relationship between polymer molecular structure of RO membrane skin layers and their RO performance. J Membr Sci, 1997, 123: 151~156.
    [147] P W Morgan. Condensation polymers by interfacial and solution methods, interscince publishers, John Wiley & sons, New York, 1965.
    [148] S K Yadav, K C Khilar and A K Suresh. Microencapsulation in polyurea shell-kinetics and film structure. A IChE J. 1996, 42(9): 2616~2626.
    [149] J H Bradbury, P J Crawford and A N Hambly. Kinetics of an interfacial polycondensation reaction part 2-Reaction of terephthaloyl chloride and piperazine. Trans. Faraday Soc, 1968, 65: 1337~1347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700