NaC1胁迫下不同种源沙枣幼苗耐盐性差异生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙枣(Elaeagnus angustifolia L.)作为我国荒地和盐碱地的重要先锋树种,已经广泛应用于盐碱地的改良和治理。为了对沙枣进行选优,并且系统研究沙枣的耐盐生理机制,本文以6个沙枣种源(阿拉尔、昌吉、金昌、银川、盐池和磴口)的实生苗为材料,通过温室盆栽试验,系统研究和比较了6个种源沙枣的耐盐性差异,从中选择了耐盐能力差异较大的两个种源系统研究了其在不同NaCl浓度,不同胁迫时间下的生理变化和矿质离子代谢特征;同时,以水培苗为材料,利用非损伤微测技术(NMT)研究了两个种源的电生理学和药理学特性差异,从不同方面系统研究了不同种源沙枣耐盐性差异的生理机制。主要结果如下:
     1.除阿拉尔种源在150mmol·L-1NaCl胁迫条件下各生长指标与对照之间无明显差异外,随着盐浓度的增加,沙枣幼苗相对株高生长量、地径、单株叶面积、叶片数、总生物积累量和相对生物量均显著减少,而根冠比、比叶面积和叶面积比率与对照之间在低NaCl浓度下差异不明显,在高NaCl浓度下,沙枣幼苗的根冠比均显著增加,比叶面积和叶面积比率显著减少,其中对银川种源沙枣幼苗的抑制作用最大。利用隶属函数法结合权重综合评价6个种源沙枣幼苗的耐盐能力差异,其排序为:阿拉尔>金昌>磴口>盐池>昌吉>银川。
     2. NaCl胁迫下,随着盐浓度的增加和胁迫时间的延长,沙枣生物量积累的抑制效应越来越明显,而阿拉尔种源沙枣幼苗的抑制程度要低于银川种源。在150mmol·L-1NaCl浓度下,与对照相比,阿拉尔种源随着胁迫时间的延长,生物量积累下降较小,根冠比值无明显变化。盐胁迫显著降低了沙枣幼苗叶片中的叶绿素a、叶绿素b和总叶绿素含量以及叶绿素a/b值,并且随着胁迫时间的延长,下降幅度逐渐越大,而盐胁迫对银川种源叶绿素含量的影响要大于阿拉尔种源。随着NaCl浓度的增加和胁迫时间的延长,沙枣叶片中的MDA含量逐渐增加,而银川种源的增加幅度要大于阿拉尔种源。脯氨酸含量随着NaCl浓度的增加而显著增加,但随着胁迫时间的延长,脯氨酸含量增加幅度逐渐下降。随盐浓度增加,处理7天后,沙枣叶片中可溶性糖含量下降,并且阿拉尔种源的下降幅度大于银川种源,当胁迫时间持续到30天,可溶性糖含量先降后升,NaCl胁迫60d后,呈逐渐上升趋势,并且阿拉尔种源的增加幅度要大于银川种源。
     3. NaCl胁迫后,沙枣幼苗各组织中Na+含量均急剧增加,并且随着胁迫时间延长根和叶中的增幅比较明显,而阿拉尔种源在根中的增幅要大于银川种源,在叶片中则正好相反。随着NaCl浓度的增加和胁迫时间延长,K+含量和Ca2+含量呈现逐渐下降的趋势,并且阿拉尔种源沙枣幼苗根和叶中的下降幅低于银川种源,而Mg2+含量变化规律随胁迫时间延长而有所改变,胁迫7天后,根系中随着盐浓度的升高而逐渐增加,而叶片中则逐渐减少;盐胁迫30天时,与对照组间无显著性差异;60天后,各组织呈逐渐下降的趋势。沙枣幼苗各组织和全株K+/Na+比值均随着NaCl浓度的增加和胁迫时间延长而呈下降趋势,叶片的下降幅度最大,其次为根,茎最小,根和叶片中K+/Na+比值在阿拉尔种源中的下降幅度要小于银川种源。在盐胁迫30天内,沙枣的K+选择性吸收系数和运输系数,随着NaCl浓度增加而增加或保持稳定,而当胁迫达到60天时,则随着盐浓度的增加逐渐降低,阿拉尔种源的K+吸收系数要略高于银川种源
     4. NaCl处理后,沙枣幼苗根系的稳态Na+和K+外流均显著增加,而且阿拉尔种源的Na+净流量要明显大于银川种源,而K+外流要低于银川种源;在瞬时加入NaCl刺激下,K+的外流在沙枣幼苗中表现出显著增加,并且银川种源的外流净流量要大于阿拉尔种源,而H+由内流变为外流,阿拉尔种源H+外流量要显著性高于银川种源。药理学试验发现3种抑制剂(氯化四乙铵,阿米洛利,正钒酸钠)分别处理后,NaCl诱导的Na+和K+外流均能受到不同程度的限制,阿米洛利处理后,阿拉尔种源Na+外流仍然明显大于银川种源。正钒酸钠处理后,Na+和K+外流与相应抑制剂处理间差异不大或无差异,表明Na+和K+外流与质膜质子泵活性密切相关。沙枣在盐胁迫下,通过Na+/H+逆向转运体将Na+排出体内。同时,盐胁迫会使细胞去极化程度加强,增加K+外流。由于Na+外排需要质膜两侧产生H+电化学势梯度,这样降低了细胞去极化,从而使细胞内K+外流减少,这样造成了Na+和K+的竞争性外流。
     基于上述结果,表明6个种源沙枣幼苗的耐盐能力差异,其排序为:阿拉尔>金昌>磴口>盐池>昌吉>银川。NaCl胁迫不仅能够抑制沙枣有机物的积累,还能够影响有机物的分配,而且对耐盐能力较弱的种源影响较大。随着NaCl浓度增加和胁迫时间延长,耐盐性较强的沙枣种源的叶绿素含量下降幅度较小,并且能够更好的维持膜系统稳定性,以此保障植物体内各种新陈代谢的顺利进行。在渗透调节物质中,脯氨酸主要是在胁迫早期调节植物体内微环境,而可溶性糖在短期胁迫下,主要是作为能量来源,长期胁迫下,则主要是作为渗透调节物质,并且耐盐能较强的沙枣种源的调节能力较强。同时,耐盐能力强的沙枣种源能够更加有效的把Na+阻隔在根部,减少叶片中Na+含量,并且具有更强的保留K+能力。耐盐能力较强沙枣种源具有更强的Na+/H+逆向转运体活性,使更多的Na+外流,从而减少了K+的外流,因此,更好的维持细胞质中K+/Na+平衡。
Elaeagnus angustifolia L. is an important pioneer tree species for wasteland andsaline-akali land, which has been applied widely in saline-akali land improvement andmanagement. In order to select optimal E. angustifolia and reveal the salt-tolerance mechanism,E. angustifolia seedlings from six provenances (Alaer, Changji, Jinchang, Yinchuan, Yanchi,Dengkou) were used as experimental materials in this research. By pot experiment ingreenhouse, the salt tolerance of six E. angustifolia provenances were studied and comparedsystematically. The physiological changes and metabolic characteristics of mineral ions wereinvestigated with seedlings of salt-tolerance provenance and salt-sensitive provenance underdifferent NaCl concentrations and different stress time. Meanwhile, the electrophysiologicaland pharmacological properties were analyzed by using Non-invasive Mico-test Technique(NMT) with hydroponic seedlings of the two provenances. which systemic studied thephysiological mechanism from different aspects.
     The main results of this research were summarized as follow:
     1. The relative height growth, ground diameter, leaf area per plant, number of leaf,biomass accumulation and relative biomass were significantly reduced with the NaClconcentration increased, except the Alaer provenance under the150mmol·L-1NaCl stress. Theroot/shoot ratio, specific leaf area and leaf area ratio was not obvious difference under the150mmol·L-1NaCl, but under the300mmol·L-1NaCl concentration, the root/shoot ratio wassignificantly increased and decreased for specific leaf area and leaf area ratio. The growthindexes of Yinchuan provenance had a maximum inhibition under salt stress. Seedlingtolerance ability of six different provenances was assessed by membership function combinedwith weight, and the sequence from strong to weak was Alaer> Jinchang> Dengkou> Yanchi>Changji>Yinchuan.
     2. Under the NaCl stress, the biomass accumulation of E. angustifolia seedlings wasinhibited more obviously with increasing salt concentration and stress time, and the Alaer E.angustifolia provenance had a lower inhibitory effect than Yinchuan provenance. When theseedlings of Alaer provenance were treated with150mmol·L-1NaCl, the biomass accumulationhad a little decline with the stress time prolonging, compared with the control, and theroot/shoot ratio was insignificantly change. The content of chlorophyll a, chlorophyll b, totalchlorophyll and chlorophyll a/b ratio were all remarkable reduced by salt stress, and thedecrement was gradually increased with the salt stress time extending. The salt stress hadgreater inhibited effect on chlorophyll content of Yinchuan provenance than that of Alaerprovenance. With increase of the NaCl concentration and stress time, malonaldehyde (MDA)content of E. angustifolia leaves was gradually increased, and the increased rate of MDAcontent in leaves of Yinchuan provenance was greater than that of Alaer provenance. Theproline content was significantly increased with increase of the NaCl stress, but the increasedrate of proline content decreased with prolong of the stress time. After salt treatment for7days,the soluble sugar content of E. angustifolia leaves decreased with the NaCl concentrationincreased, and the Alaer provenance had more decrement than Yinchuan provenance. Thesoluble sugar content rose after the first drop with increase of the salt concentration after saltstress30days. The soluble sugar content showed a gradual upward trend at NaCl stress60days later, and the rate of increment was greater in Alaer provenance than Yinchuanprovenance.
     3. After NaCl stress, the Na+content in organizations of E. angustifolia seedlingsincreased dramatically with increase of NaCl concentration, and the Na+contents in roots andleaves were more obvious increase with prolonged of stress time. The increment of roots ofAlaer provenance was greater than Yinchuan provenance, but in leaves which was opposite.With the increased of NaCl concentration and prolonged stress, K+and Ca2+content levelsshowed a gradual downward trend, but the contents of root and leaf were fall lower in Alaerprovenance than Yinchuan provenance. Variation of Mg2+content followed NaCl concentration which was changed with prolonged stress time. After salt stress for7days, the Mg2+content ofroots increased with increase of salt concentration, while the leaves were gradually reduced.There was no significant difference compared with the control group after30days, but theMg2+content showed a gradual downward trend in each tissue. K+/Na+ratio in each tissue of E.angustifolia seedlings and whole plant K+/Na+ratio were all decrease with increased of NaClconcentration and stress time, and K+/Na+ratio of the leaves dropped sharpest, followed by theroots and stem smallest. The decrement rate of roots and leaves K+/Na+ratio in Alaerprovenance was less than that of Yinchuan provenance. The K+selective absorption coefficientand transport coefficients of E. angustifolia increased or remained stable as the NaClconcentration increased in30days of salt stress, but the two coefficients were decreasedgradually with increasing salt concentration as the stress time reached60days. Meanwhile, theK+selective absorption coefficient and transport coefficients of Alaer provenance was slightlyhigher than Yinchuan provenance.
     4. The steady-state Na+and K+of E. angustifolia were efflux and significantly increasedafter NaCl treatment24hour. The Na+efflux of Alaer provenance was greater than Yinchuanprovenance, but the K+efflux was lower than Yinchan provenance. When the transientstimulation of NaCl was given, the K+efflux in E. angustifolia seedlings exhibited aremarkable increase, and net K+flux of Yinchuan provenance was higher than Alaerprovenance. In pharmacology experiment, Na+efflux and K+efflux which induced by NaClwere inhibited by three kinds of inhibitors (TEA, Amiloride, Vanadate). After amiloridetreatment, the Na+efflux of Alaer provenance was still significantly larger than Na+efflux ofYinchuan provenance. The Na+and K+efflux which were treated by vanadate had a littledifference or no difference compared with that of corresponding inhibitor treatment, whichindicated the Na+and K+efflux closely associated with the plasma membrane proton pumpactivity. When the E. angustifolia seedlings were under the NaCl stress, Na+of the roots wasexpelled by the Na+/H+antiporter. In the meantime, salt stress strengthened the celldepolarization and increased K+efflux. Because the Na+efflux required H+electrochemical potential gradient at the sides of the membrane which reduced the cell depolarization and K+efflux, this caused the competitive efflux of Na+and K+.
     Based on these results, the sequence of the salt-tolerance from strong to weak of the six E.angustifolia provenances is Alaer>Jinchang>Dengkou>Yanchi>Changji>Yinchuan. NaClstress can not only inhibit the accumulation of organic matter of E. angustifolia, but also canaffect the distribution of organic matter, and which has greater impact for salt-sensitiveprovenance. As the NaCl concentration increased and stress time prolonged, the salt-toleranceprovenance of E. angustifolia has a lesser decrement rate of chlorophyll content, and betterability to maintain the stability of the membrane system, thus all kinds of metabolisms areensured to successfully carry on. In the osmotic adjustment, the proline can regulate the vivomicroenvironment for early stress of E. angustifolia. The soluble sugar is mainly as an energysource in the short-term salt stress and primarily as an osmotic adjustment in the long-termstress, and the salt-tolerance E. angustifolia provenance has stronger regulation ability thansalt-sensitive porenance. Meanwhile, the salt-tolerance E. angustifolia provenance can be moreeffective to obstruct Na+in the roots, reducing leaf Na+content, and has a stronger ability toretain K+for the plants. In addition, the salt-tolerance E. angustifolia provenance has strongerNa+/H+antiporter activity, which increased Na+efflux and decreased K+efflux, thereby theplants can be better to maintain the cytoplasm K+/Na+balance.
引文
艾力江·麦麦提,齐曼·尤努斯,公勤. NaCl胁迫对尖果沙枣实生苗膜脂过氧化与抗氧化酶系的影响.果树学报,2008,25(4):531-536.
    不合力杰木·吾不力卡斯木,再通古丽·朱玛,吾买尔江·亚森,等.盐胁迫对酸枣种子萌发及幼苗生长的影响.新疆农业大学学报,2012,35(4):312-316.
    曹兵,宋丽华,魏婷婷. NaCl胁迫对3个臭椿种源种子萌发的影响.东北林业大学学报,2007,35(12):9-12.
    陈健妙,郑青松,刘兆普,等.两种麻疯树苗对盐胁迫的生理生态响应.生态学报,2010,30(4):933-940.
    陈健妙,郑青松,刘兆普,等.麻疯树(Jatropha curcas L.)幼苗生长和光合作用对盐胁迫的响应.生态学报,2009,29(3):1356-1365.
    陈静波,褚晓晴,李珊,等.盐水灌溉对7属11种暖季型草坪草生长的影响及抗盐性差异.草业科学,2012,29(8):1185-1192.
    程钧,张晓平,方炎明.不同浓度NaCl胁迫对红桤木幼苗生长及部分生理指标的影响.中国农学通报,2010,26(6):142-145.
    戴高兴,彭克勤,皮灿辉.钙对植物耐盐性的影响.中国农学通报,2003,19(3):97-101.
    丁菲,杨帆,张国武,等. NaC1胁迫对构树幼苗叶片水势、光合作用及Na+、K+吸收和分配的影响.林业科学研究,2009,22(3):428-433.
    方连玉,刘桂丰,王军,等.盐胁迫对盐松两种源光合日变化的影响[会议论文]. First InternationalConference on Cellular, Molecular Biology, Biophysics and Bioengineering,2010,4:129-133.
    高俊凤.植物生理学实验指导.北京:高等教育出版社,2006.
    公勤,齐曼·尤努斯,艾力江·麦麦提.盐胁迫对尖果沙枣离子分布及渗透调节的影响.经济林研究,2008,26(3):34-37.
    管文轲,徐娜.沙枣资源利用研究与开发现状述评.安徽农学通报,2012,18(19):119-121.
    管志勇,陈发棣,陈素梅,等. NaCl胁迫对2个菊属野生种幼苗体内K+、Na+和Cl-分布及生长的影响.生态学报,2010,30(12):3198-3205.
    郭春秀,李德禄,刘虎俊,等.不同种源梭梭苗木耐盐性盆栽试验.甘肃农业大学学报,2008,43(6):110-112.
    郭杰.不同种源苦楝种苗特性和耐盐能力差异的研究.南京:南京林业大学硕士学位论文,2008.
    郭丽君,王玉涛.沙枣种质资源特性及利用价值.中国野生植物资源,2008,27(5):32-34.
    黄俊华,买买提江,杨昌友,等.沙枣(Elaeagnus angustifolia L.)研究现状与展望.中国野生植物资源,2005,24(3):26-28,33.
    黄有军,夏国华,郑炳松,等.芙蓉盐胁迫下的生长表现和生理响应.江西农业大学学报,2007,29(3):389-392.
    纪灵霄,杨洪兵. K+和Mg2+对盐胁迫下荞麦种子萌发及幼苗生长的影响.广东农业科学,2013,(17):52-53.
    康浩,甘肖梅,潘文平,等. Na+/H+逆向转运蛋白与植物耐盐性的关系.湖南农业科学,2009,(2):11-14.
    柯裕州,周金星,卢楠,等.盐胁迫对桑树幼苗光合生理及叶绿素荧光特性的影响.林业科学研究,2009,22(2):200-206.
    李丹,彭少麟.马尾松地理种源遗传变异规律研究的综述与分析.应用生态学报,2000,11(2):293-296.
    李合生,孙群,赵世杰,等.植物生理学实验技术.北京:高等教育出版社,2000.
    李宏,邓江宇,张振春,等.盐胁迫对盐桦幼树光合特性的影响.新疆农业科学,2010,47(2):213-217.
    李景,刘群录,唐东芹,等.盐胁迫和洗盐处理对贴梗海棠生理特性的影响.北京林业大学学报,2011,33(6):40-46.
    李婧男,刘强,贾志宽,等.盐胁迫对沙冬青幼苗生长与生理特性的影响.植物研究,2009,29(5):553-558.
    李源,刘贵波,高洪文,等.紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应.草业学报,2010,19(4):79-86.
    廖严,彭友贵,陈桂珠.植物耐盐机理研究进展.生态学报,2007,2(5):2077-2089.
    廖岩,陈桂珠.三种红树植物对盐胁迫的生理适应.生态学报,2007,27(6):2208-2214.
    刘炳响,王志刚,杨敏生,等.模拟盐胁迫对白榆种子发芽、出苗及幼苗生长的影响.草业学报,2012,21(5):39-46.
    刘克东,郑彩霞,郝建卿.甘蒙柽柳对NaCl胁迫的生理响应.广东农业科学,2012,(10):38-43.
    刘伟娜,蒋海月,杨敏生,等.盐胁迫对刺槐实生苗选择及生理特性影响.河北农业大学学报,2010,33(3):62-66.
    刘奕琳,万福绪,娄晓瑞.盐胁迫对10个墨西哥柏种源幼苗生理生化的影响.南京林业大学学报(自然科学版),2013,37(4):29-33.
    刘正祥.沙枣对氯化钠和硫酸钠胁迫差异性响应的生理机制.中国林业科学研究院博士学位论文,2013.
    刘志高,申亚梅,邵伟丽.盐胁迫对红叶石楠‘红罗宾’幼苗生长与光合生理的影响.福建林学院学报,2012,32(3):238-242.
    刘智微,钟小仙,常盼盼,等.海盐胁迫下苏牧2号象草幼苗不同器官中阳离子分配与运输.草业学报,2012,21(5):237-247.
    马清,包爱科,伍国强,等.质膜Na+/H+逆向转运蛋白与植物耐盐性.植物学报,2011,46(2):206-215.
    马正龙,白生文.盐度对沙枣离子分布和渗透调节影响的研究.甘肃科学学报,2007,19(3):83-85.
    倪建伟,武香,张华新,等.3种白刺耐盐性的对比分析.林业科学研究,2012,25(1):48-53.
    聂小兰.沙枣的研究现状与展望.北方园艺,2007,(4):67-69.
    宁建凤,郑青松,杨少海,等.高盐胁迫对罗布麻生长及离子平衡的影响.应用生态学报,2010b,21(2):325-330.
    宁建凤,郑青松,邹献中,等.罗布麻对不同浓度盐胁迫的生理响应.植物学报,2010a,45(6):689-697.
    彭立新,周黎君,冯涛,等.盐胁迫对沙枣幼苗抗氧化酶活性和膜脂过氧化的影响.天津农学院学报,2009,16(4):1-4.
    乔佩,卢存福,李红梅,等.盐胁迫对诱变小麦种子萌发及幼苗生理特性的影响.中国生态农业学报,2013,21(6):720-727.
    邱凤英,廖宝文,肖复明.半红树植物杨叶肖槿幼苗耐盐性研究.林业科学研究,2011,24(1):51-55.
    任文佼,李清河,王赛宵,等.盐胁迫下不同种源籽蒿的生理生化特性与耐盐性评价.东北林业大学学报,2013,,4(2):10-14.
    宋彬,朱小虎,韩娜,等.温度及盐胁迫对新疆两种锦鸡儿种子萌发的影响.新疆农业大学学报,2011,34(2):119-124.
    宋尚文,孙明高,吕廷良,等.盐胁迫对3个桑树品种幼苗光合特性的影响.西南林学院学报,2010,30(3):20-23.
    隋德宗,王保松,施士争,等.盐胁迫对灌木柳无性系幼苗生长及光合作用的影响.浙江林学院学报,2010,27(1):63-68.
    孙海菁,王树凤,陈益泰.盐胁迫对6个树种的生长及生理指标的影响.林业科学研究,2009,22(3):315-324.
    孙宏丽,商宏艳,姚叶,等. NaCl与KCl处理对海滨木槿生长特性的影响.山东林业科技,2011,41(6):13-16.
    孙健.胡杨响应盐胁迫与离子平衡调控信号网络研究.北京林业大学博士学位论文,2011.
    孙景波,孙广玉,刘晓东,等.盐胁迫对桑树幼苗生长、叶片水分状况和离子分布的影响.应用生态学报,2009,20(3):543-548.
    孙孟超,尹赜鹏,马晓蕾,等.盐胁迫对欧李幼苗生理响应及离子含量的影响.经济林研究,2012,30(2):33-37.
    孙守文,李宏,郑朝晖,等.6种新疆主栽树种耐盐能力及盐胁迫下光合特性分析.西南林业大学学报,2011,31(5):10-14.
    陶晶,陈士刚,李青梅,等.耐寒型抗盐碱树种银莓、沙枣引种及应用.防护林科技,2007(5):94-96.
    汪贵斌,曹福亮,游庆芳,等.盐胁迫对4树种叶片中K+和Na+的影响及其耐盐能力的评价.植物资源与环境学报,2001,10(1):30-34.
    王标,虞木奎,孙海菁,等.盐胁迫对不同种源麻栎叶片光合特征的影响.应用生态学报,2009,20(8):1817-1824.
    王斌,巨波,赵慧娟,等.不同盐梯度处理下沼泽小叶桦的生理特征及叶片结构.林业科学,2011,47(10):29-36.
    王臣,虞木奎,张翠,等.盐胁迫下3个楸树无性系光合特征研究.林业科学研究,2010,23(4):537-543.
    王利军,马履一,王爽,等.水盐胁迫对沙枣幼苗叶绿素荧光参数和色素含量的影响.西北农业学报,2010,19(12):122-127.
    王利军.不同种源沙枣对水分和盐分胁迫生长的响应.北京林业大学硕士学位论文,2010.
    王树凤,胡韵雪,李志兰,等.盐胁迫对弗吉尼亚栎生长及矿质离子吸收、运输和分配的影响.生态学报,2010,30(7):4609-4616.
    王文卿,林鹏.不同盐胁迫时间下秋茄幼苗叶片膜脂过氧化作用的研究.海洋学报,2000,22(3):49-54.
    王迅华,温阳,杨跃文.不同种源沙枣苗期生长特性研究.内蒙古林业科技,2009,35(4):21-24.
    王泳,张晓勉,高智慧,等.盐胁迫对大果沙枣和尖果沙枣幼苗生长的影响.林业科技开发,2010,24(3):25-28.
    王志和,严亚斌,张敏,等.盐胁迫对榉树种子萌发及幼苗生理特性的影响.江苏林业科技,2009,36(2):15-19.
    网易新闻.专家:我国具有农业利用潜力的盐碱土地面积近2亿亩.2010,http://news.163.com/10/0911/10/6G9VN2TO00014JB5.html.
    魏志刚,高玉池,杨传平,等. NaCl胁迫下盐松不同种源种子的发芽特性.种子,2009,28(8):9-14.
    吴月燕,李波,张燕忠,等.盐胁迫对杜鹃生理生化与叶绿体亚显微结构的影响.浙江大学学报(农业与生命科学版),2011,37(6):642-648.
    武冲,张勇,唐树梅,等.盐胁迫对木麻黄种子萌发的影响.种子,2010,29(4):30-33.
    武香,倪建伟,张华新,等.盐胁迫下不同盐生植物渗透调节的生理响应.东北林业大学学报,2012,40(8):29-33
    闫道良,余婷,徐菊芳,等.盐胁迫对海滨锦葵生长及Na+、K+离子积累的影响.生态环境学报,2013,22(1):105-109.
    杨帆,丁菲,杜天真.盐胁迫下构树幼苗器官中K+、Ca2+、Na+和Cl-含量分布及吸收特征.应用生态学报,2009,20(4):767-772.
    杨凤军,李天来,臧忠婧,等.外源钙施用时期对缓解盐胁迫番茄幼苗伤害的作用.中国农业科学,2010,43(6):1181-1188.
    杨升,张华新,刘涛.16个树种盐胁迫下的生长表现和生理特性.浙江农林大学学报,2012a,29(5):744-754.
    杨升,张华新,刘涛.盐胁迫对16种幼苗渗透调节物质的影响.林业科学研究,2012b,25(3):269-277.
    杨树军,张柏习,张学利.美国皂角不同种源耐盐碱评价与筛选.防护林科技,2008,(2):7-8.
    姚瑞玲,方升佐.盐胁迫对青钱柳根部离子分布及幼苗生长的影响.林业科学,2008,44(6):66-72.
    于雷,张学培,王娟娟,等.盐胁迫对锦鸡儿种子萌发的影响.防护林科技,2011,(3):45-46.
    宰学明,邵志广,钦佩.盐胁迫对滨梅幼苗生长和渗透调节物质含量的影响.北方园艺,2012,(19):12-14.
    张宝泽,曹子谊,赵可夫.盐分胁迫下沙枣某些生理特性的研究.林业科学,1992,28(2):187-189.
    张桂霞,李树玲.盐胁迫对两种沙枣抗氧化酶活性的影响.北方园艺,2011,(10):46-49.
    张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,1998,40(1):56-61.
    张华新,刘正祥,刘秋芳.盐胁迫下树种幼苗生长及其耐盐性.生态学报,2009,29(5):2263-2271.
    张华新,宋丹,刘正祥.盐胁迫下11个树种生理特性及其耐盐性研究.林业科学研究,2008,21(2):168-175.
    张建明. NaCl对沙枣组织培养影响的研究.聊城师院学报(自然科学版),1999,12(4):66-68.
    张丽,张华新,杨升,等.植物耐盐机理的研究进展.西南林学院学报,2010,30(3):82-86.
    张露婷,吴江,梅丽,等.喜树种源耐盐能力评价及耐盐指标筛选.林业科学,2011,47(11):66-72.
    张晓勉,王泳,高智慧,等.盐胁迫对尖果沙枣和大果沙枣膜脂过氧化和渗透调节的影响.浙江林业科技,2012,32(4):1-5.
    张智猛,慈敦伟,丁红,等.花生品种耐盐性指标筛选与综合评价.应用生态学报,2013,24(12):3487-3494.
    赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报,1999,16(5):540-546.
    赵可夫,周澍波,刘家尧.盐分胁迫下沙枣幼苗一些生理特性的观测.山东师大学报(自然科学版),1992,7(1):72-76.
    郑青松,刘兆普,刘友良,等.盐和水分胁迫对海篷子、芦荟、向日葵幼苗生长及其离子吸收分配的效应.南京农业大学学报,2004,27(2):16-20.
    周青,王纪忠,陈新红,等.持续盐胁迫对耐盐性不同的两个黄瓜品种幼苗生长和生理特性的影响.北方园艺,2013,(18):24-26.
    Abbad A,Hadrami A E,Benchaabane A. Germination responses of the Mediterranean Saltbush(Atriplexhalimus L.) to NaCl treatment. Journal of Agronomy,2004,3(2):111-114.
    Abdelkader A F,Aronsson H,Sundqvist C. High salt stress in wheat leaves causes retardation of chlorophyllaccumulation due to a limited rate of protochlorophyllide formation. Physiologia Plantarum,2007,130(1):157-166.
    Ahmad P,Jaleel C A,Sharma S. Antioxidant defense system, lipid peroxidation, proline-metabolizingenzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. RussianJournal of Plant Physiology,2010,57(4):509-517.
    Akca Y,Samsunlu E. The effect of salt stress on growth, chlorophyll content, proline and nutrientaccumulation and K/Na ratio in walnut. Park. J. Bot.,2012,44(5):1513-1520.
    Al-Saady N A,Khan A J,Rajesh L,et al. Effect of Salt Stress on Germination, Proline Metabolism andChlorophyll Content of Fenugreek (Trigonella foenum gracium L.). Journal of Plant Sciences,2012,7(5):176-185.
    Amador B M,Jones H,Kaya C,et al. Effects of foliar application of calcium nitrate on growth andphysiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environmentaland Experimental Botany,2006,58(1-3):188-196.
    Andre L L D S,Yohana D O,Roberson D,et al. Hydroponics growth of Eucalyptus saligna Sm. onsalt-stress mediated by sodium chloride. Journal of Biotechnology and Biodiversity,2012,3(4):213-218.
    Ashraf M,Orooj A. Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zonetradition medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). Journal of Arid Enviornments,2006,64(2):209-220.
    Bai W B,Li P F,Li B G,et al. Some physiological response of Chinese iris to salt stress. Pedosphere,2008,18(4):454-463.
    Balal R M,Khan M M,Shahid M A,et al. Comparative studies on the physiobiochemical, enzymatic, andionic modifications in salt-tolerant and salt-sensitive citrus rootstocks under NaCl stress. Journal of theAmerican Society for Horticultural Science,2012,137(2):86-95.
    Baque M A,Lee E J,Paek K Y. Medium salt strength induced changes in growth, physiology and secondarymetabolite content in adventitious roots of Morinda citrifolia: the role of antioxidant enzymes andphenylalanine ammonialyase. Plant Cell Reports,2010,29(7):685-694.
    Belkheiri O and Mulas M. The effects of salt stress on growth, water relations and ion accumulation in twohalophyte Atriplex species. Environmental and Experimental Botany,2013,86(special issue):17-28.
    Bharti N,Yadav D,Barnawal D,et al. Exiguobacterium oxidotolerans, a halotolerant plant growthpromoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.)Pennell under primary and secondary salt stress. World Journal of Microbiology and Biotechnology,2013,29(2):379-387.
    Bor M,Ozdemir F,Turkan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves ofsugar beet Beta vulgaris L. and wild beet Beta maritime L.. Plant Science,2003,164(1):77-84.
    Britto D T,Kronzucker H J. Cellular mechanisms of potassium transport in plants. Physiologia Plantarum,2008,133(4):637-650.
    Celik O,Atak C. The effect of salt stress on antioxidative enzymes and proline content of two Turkishtobacco varieties. Turk J. Biol.,2012,36:339-356.
    Chao D Y,Dilkes B,Luo H,et al. Polyploids exhibit higher potassium uptake and salinity tolerance inArabidopsis. Science,2013,341(6146):658-659.
    Cha-um S,Kirdmanee C. Remediation of salt-affected soil by the addition of organic matter: an investigationinto improving glutinous rice productivity. Scientia Agricola,2011,68(4):406-410.
    Cha-um S,Pal S H,Thapanee S,et al. Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp.indica): Physiological and morphological changes. Australian Journal of Crop Science,2012,6(1):176-182.
    Cha-um S, Takabe T, Kirdmanee. Ion contents, relative electrolyte leakage, proline accumulation,photosynthetic abilities and growth characters of Oil Palm seedlings in response to salt stress.Pak.J.Boti.,2010,42(3):2191-2020.
    Chen H T,He H,Yu D Y. Overexpression of a novel soybean gene modulating Na+and K+transportenhances salt tolerance in transgenic tobacco plants. Physiologia Plantarum,2011,141(1):11-18.
    Chen J,Xiong D Y,Wang W H,et al. Nitric oxide mediates root K+/Na+balance in a mangrove plant,Kandelia obovata, by enhancing the expression of AKT1-Type K+channel and Na+/H+antiporter underhigh salinity. PloS One,2013,8(8):e71543.
    Chen S L,Li J K,Wang S S,et al. Effects of NaCl on shoot growth, transpiration, ion compartmentation,and transport in regenerated plants of Populus euphratica and Populus tomentosa. Canadian Journal ofForest Research,2003,33(6):967-975.
    Chen Z,Newman I,Zhou M,et al. Screening plants for salt tolerance by measuring K+flux: a case study forbarely. Plant Cell Environ,2005,28(10):1230-1246.
    Chen Z,Pottosin I I,Cuin T A,et al. Root plasma membrane transporters controlling K+/Na+homeostasisin salt-stressed barley. Plant Physiology,2007a,145(4):1714-1725.
    Chen Z,Shabala S,Mendham N,et al. Combining ability of salinity tolerance on the basis of NaCl-inducedK flux from roots of barley. Crop Science,2008,48(4):1382-1388.
    Chen Z,Zhou M,Newman I A,et al. Potassium and sodium relations in salinised barley tissues as a basisof differential salt tolerance. Functional Plant Biology,2007b,34(2):150-162.
    Sudhakar C,Lakshmi A,Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yieldinggenotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science,2001,161(3):613-619.
    Coskun D,Britto D T,Jean Y K,et al. K+efflux and retention in response to NaCl stress do not predict salttolerance in contrasting genotypes of rice (Oryza sativa L.). PloS One,2013,8(2):e57767(1-16).
    Cuin T A,Betts S A,Chalmandrier R,et al. A root's ability to retain K+correlates with salt tolerance inwheat. Journal of Experimental Botany,2008,59(10):2697-2706.
    Cuin T A,Bose J,Stefano G,et al. Assessing the role of root plasma membrane and tonoplast Na+/H+exchangers in salinity tolerance in wheat: in planta quantification methods. Plant, Cell&Environment,2011,34(6):947-961.
    Cuin T A,Zhou M,Parsons D,et al. Genetic behaviour of physiological traits conferring cytosolic K+/Na+homeostasis in whea. Plant Biology,2012,14(3):438-446.
    Curtis P S,Lauchli A. The role of leaf area development and photosynthetic capacity in determining growthof kenaf under moderate salt stress. Australian Journal of Plant Physiology,1986,13(4):553-565.
    Damianos N,Miltiadis V. Effects of NaCl stress on red raspberry (Rubus idaeus L.‘Autumn Bliss’). ScientiaHorticulturae,2007,112(3):282-289.
    Delfine S,Artura A,Concetta M,et al. Restrictions to carbon dioxide conductance and photosynthesis inspinach leaves recovering from salt stress. Plant Physiology,1999,119(3):1101-1106.
    Demidchik V,Maathuis F J M. Physiological roles of nonselective cation channels in plants: from salt stressto signaling and development. New Phytol,2007,175(3):384-404.
    Dennis J,Silke L,Henning W,et al. Salt stress induces the formation of a novel type of ‘pressure wood’ intwo Populus species. New Phytologist,2012,194(1):129-141.
    Durel. Plant responses to cellular dehydration during environment stress. Plant Physiology,1993,103(10):91-93.
    Dykstra D P. Extraction and utilization of saltcedar and Russian olive biomass In: Shafroth P B,Brown C A,Merritt D M. ed. Saltcedar and Russian olive control demonstration act science assessment. Chapter6,Denver Publishing Service Center,2010,103-116.
    Egamberdieva D,Lugtenberg B. Use of Plant growth-promoting rhizobacteria to alleviate salinity stress inplants.//Use of Microbes for the Alleviation of Soil Stresses,Volume1. Springer New York,2014:73-96.
    El-Akhal M R,Rincón A,Coba de la Pe a T,et al. Effects of salt stress and rhizobial inoculation on growthand nitrogen fixation of three peanut cultivars. Plant Biology,2013,15(2):415-421.
    Elizamar C D S,Rejane J M C N,Francisco P D A,et al. Physiological responses to salt stress in youngumbu plants. Environmental and Experimental Botany,2008,63(1-3):147-157.
    Essa T A. Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L.Merrill) cultivars. J. Agronomy&Crop Science,2002,188(2):86-93.
    Estrada B,Aroca R,Azcón-Aguilar C,et al. Importance of native arbuscular mycorrhizal inoculation in thehalophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plantand Soil,2013,370(1-2):175-185.
    Falleh H,Jalleli I,Ksoun R,et al. Effect of salt treatment on phenolic compounds and antioxidant activityof two Mesembryanthe mumedule provenances. Plant Physiology and Biochemistry,2012,52(3):1-8.
    Feki K,Quintero F J,Khoudi H,et al. A constitutively active form of a durum wheat Na+/H+antiporterSOS1confers high salt tolerance to transgenic Arabidopsis. Plant cell reports,2014,33(2):277-288.
    Francois L E,Grieve C M,Maas E V,et al. Time of salt stress affects growth and yield components ofirrigated wheat. Agronomy Journal,1994,86(1):100-107.
    Fu X Z,Khan E U,Hu S S,et al. Overexpression of the betaine aldehyde dehydrogenase gene from Atriplexhortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.).Environmental and Experimental Botany,2011,74:106-113.
    Gabrielle L K,Patrick B S. Biology, ecology and management of Elaeagnus angustifolia L.(Russian olive)in western North America. Wetlands,2003,23(4):763-777.
    Gadallah M A A. Effects of proline and glycinebetaine on Vicia Faba responses to salt stress. BiologiaPlantarum,1999,42(2):249-257.
    Gao S,Ouyang C,Wang S,et al. Effects of salt stress on growth, antioxidant enzyme and phenylalanineammonialyase activities in Jatropha curcas L. seedlings. Plant Soil Environ.,2008,54(9):374-381.
    Gu J T,Liu W N,Akindele A,et al. Effect of salt stress on genetic diversity of Robinia pseudoacaciaseedlings. African Journal of Biotechnology,2012,11(8):1838-1847.
    Guimaraes F V A,Lacerda C F,Marques E C,et al. Calcium can moderate changes on membrane structureand lipid composition in cowpea plants under salt stress. Plant Growth Regulation,2011,65(1):55-63.
    Han L,Liu H,Yu S,et al. Potential application of oat for phytoremediation of salt ions in coastalsaline-alkali soil. Ecological Engineering,2013,61:274-281.
    Hosein A. Effect of salt stress on lipid peroxidation, antioxidative enzymes, and proline accumulation inpistachio plants. Journal of Medicinal Plants Research,2012,6(3):526-529.
    Jaarsma R, de Vries R S M, de Boer A H. Effect of salt stress on growth, Na+accumulation and prolinemetabolism in potato (Solanum tuberosum) cultivars. Plos One,2013,8(3):e60183.doi:10.1371/journal.pone.0060183
    Jamil M,Bashir S,Anwar S,et al. Effect of salinity on physiological and biochemical characteristics ofdifferent varieties of rice. Pakistan Journal of Botany,2012,44:7-13.
    Karim S,Behrouz S,Vahid R, et al. Salt stress induction of some key antioxidant enzymes and metabolitesin eight Iranian wild almond species. Acta Physiol Plant,2012,34(1):203-213.
    Karray-Bouraoui N,Harbaoui F,Rabhi M,et al. Different antioxidant responses to salt stress in two differentprovenances of Carthamus tinctorius L. Acta Physiologiae Plantarum,2011,33(4):1435-1444.
    Khamzina A,Lamers J P A,Martius C,et al. Potential of nine multipurpose tree species to reduce salinegroundwater tables in the lower Amu Darya River region of Uzbekistan. Agroforesty Systems,2006,68(2):151-165.
    Khamzina A,Lamers J P A,Vlek P L G.. Tree establishment under deficit irrigation on degraded agriculturalland in the lower Amu Darya River region, Aral Sea Basin. Forest Ecology and Management,2008,255(1):168-178.
    Ko C H,Gaber R F. TRK1and TRK2encode structurally related K+transporters in Saccharomycescerevisiae. Mol. Cell. Biol.,1991,11(8):4266-4273.
    Kong X Q,Luo Z,Dong H Z,et al. Effects of non-uniform root zone salinity on water use, Na+recirculation,and Na+and H+flux in cotton. Journal of Experimental Botany,2012,63(5):2105-2116.
    Lamers J P A,Khamzina A,Worbes M. The analyses of physiological and morphological attributes of10tree species for early determination of their suitability to afforest degraded landscapes in the Aral SeaBasin of Uzbekistan. Forest Ecology and Management,2006,221(1-3):249-259.
    Levitt J. Response of plants to environmental stress. New York: Academic Press,1980,365-434.
    Li G,Wan S W,Zhou J,et al. Leaf chlorophyll fluoresecence, hyperspectral reflectance, pigments content,malondialdehyde and proline accumlation responses of castor bean (Ricinus communis L.) seedlings tosalt stress levels. Industrial Crops and Products,2010,31(1):13-19.
    Liu Z X,Zhang H X,Yang X Y,et al. Effects of soil salinity on growth, ion relations, and compatible soluteaccumulation of two sumac species: Rhus glabra and Rhus trilobata. Communicatons in Soil Scienceand Plant Analysis,2013,44:3187-3204.
    Loupassaki M H,Chartzoulakis K S,Digalaki N B,et al. Effects of salt stress on concentration of nitrogen,phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olivecultivars. Journal of Plant Nutrition,2002,25(11):2457-2482.
    Lu Y,Li N,Sun J,et al. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes intwo non-secretor mangrove species subjected to NaCl stress. Tree Physiology,2013,33(1):81-95.
    Ma H C,Fung L,Wang S S,et al. Photosynthetic response of Populus euphratica to salt stress. ForestEcology and Management,1997,93(1-2):55-61.
    Maathuis F J M,Amtmann A. K+nutrition and Na+toxicity: the basis of cellular K+/Na+ratios. Annals ofBotany,1999,84(2):123-133.
    Maathuis F J M. The role of monovalent cation transporters in plant responses to salinity. Journal ofExperimental Botany,2006,57(5):1137-1147.
    Maggio A,Raimondi G,Martino A,et al. Salt stress response in tomato beyond the salinity tolerancethreshold. Environmental and Experimental Botany,2007,59(3):276-282.
    Maria E P, Silke L, Uwe N, et al. Salt stress affects xylem differentiation of grey poplar(Populus×canescens). Planta,2009,229(2):299-309.
    Md.Anamul H,Eiji O,Mst.Nasrin A B,et al. Exogenous proline mitigates the detrimental effects of saltstress more than exogenous bentaine by increasing antioxidant enzyme activities. Journal of PlantPhysiology,2007,164(5):553-561.
    Megdiche W,Amor N B,Debez A,et al. Salt tolerance of the annual halophyte Cakile maritima as affectedby the provenance and the developmental stage. Acta physiologiae plantarum,2007,29(4):375-384.
    Meloni D A,Gulotta M R,Martinez C A,et al. The effects of salt stress on growth, nitrate reduction andproline and glycinebetaine accumulation in Prosopis alba. Braz. J. Plant Physiol,2004,16(1):39-46.
    Miller G A D,Suzuki N,Ciftci-yilmaz S,et al. Reactive oxygen species homeostasis and signalling duringdrought and salinity stresses. Plant, Cell&Environment,2010,33(4):453-467.
    Munns R,Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology,2008,59:651-681.
    Munns R. Comparative physiology of salt and water stress. Plant Cell and Environment,2002,25(2):239-250.
    Najoua K B,Faten H,Mokded R,et al. Different antioxidant responses to salt stress in two differentprovenances of Carthamus tinctorius L.. Acta Physiol Plant,2011,33(4):1435-1444.
    Nasr S M H,Parsakhoo A,Naghavi H,et al. Effect of salt stress on germination and seedling growth ofProsopis juliflora (Sw.). New Forests,2012,43:45-55.
    Nawaz K,Hussain K,Majeed A,et al. Fatality of salt stress to plants: Morphological, physiological andbiochemical aspects. African Journal of Biotechnology,2013,9(34):5475-5480
    Niu G H,Rodriguez D S. Effect of saline water irrigation on growth and physiological responses of threerose rootstocks. Hort Science,2008,43(5):1479-1484.
    Olias R,Eljakaoui Z,Li J U N,et al. The plasma membrane Na+/H+antiporter SOS1is essential for salttolerance in tomato and affects the partitioning of Na+between plant organs. Plant, Cell&Environment,2009,32(7):904-916.
    Paksoy M,Türkmen,Dursun A. Effects of potassium and humic acid on emergence, growth and nutrientcontents of okra (Abelmoschus esculentus L.) seedling under saline soil conditions. African Journal ofBiotechnology,2013,9(33):5343-5346.
    Pamoliya P J,Patel H M,Pandey A N. Effect of salinization of soil on growth and macro-and micro-nutrientaccumulation in seedlings of Salvadora persica (Salvadoraceae). Forest Ecology and Management,2004,202(1-3):181-193.
    Parida A K,Das A B,Sanada Y,et al. Effects of salinity on biochemical components of the mangrove,Aegiceras corniculatum. Aquatic Botany,2004,80(2):77-87.
    Parida A K,Jha B. Salt tolerance mechanisms in mangroves: a review. Trees,2010,24(2):199-217.
    Parvaiz A,Satyawati S. Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Environ,2008,54(3):88-99.
    Pater M,Bragato C,Malagoli M,et al. Osmotic and ionic effects of NaCl and Na2SO4salinity onPhragmites australis. Aquatic Botany,2009,90(1):43-51.
    Pushpam R,Rangasamy S R S. Variations in chlorophyll contents of rice in relation to salinity. CropResearch (Hisar),2000,20(2):197-200.
    Rashad M B,M. Yasin A,Muhammad M K,et al. Influence of salt stress on growth and biochemicalparameters of citrus rootstocks. Pak.J.Bot.,2011,43(4):2135-2141.
    Rasool S,Ahmad A,Siddiqi T O,et al. Changes in growth, lipid peroxidation and some key antioxidantenzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum,2013,35(4):1039-1050.
    Rausch T,Kirsch M,L w R,et al. Salt stress responses of higher plants: the role of proton pumps andNa+/H+-antiporters. Journal of Plant Physiology,1996,148(3):425-433.
    Renault S,Croser C,Franklin J A,et al. Effect of NaCl and Na2SO4on red-osier dogwood (Cornusstolonifera Michx.) seedlings. Plant and Soil,2001,233(2):261-268.
    Renault S. Salinity tolerance of Cornus sericea seedlings from three provenances. Acta PhysiologiaePlantarum,2012,34(5):1735-1746.
    Saur E,Lambrot C,Loustau D,et al. Growth and uptake of mineral elements in response to sodium chlorideof three provenances of maritime pine. Journal of plant nutrition,1995,18(2):243-256.
    Seemann J R,Critchley C. Effects of salt stress on the growth, ion content, stomatal behaviour andphotosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L.. Planta,1985,164(2):151-162.
    Shabala S,Cuin T A. Potassium transport and plant salt tolerance. Physiologia Plantarum,2008,133(4):651-669.
    Shabala S,Pottosin I I. Potassium and potassium-permeable channels in plant salt tolerance. In: DemidchikV and Maathuis F (eds.), Ion Channels and Plant Stress Responses. Springer Berlin Heidelberg,2010:87-110.
    Shi H Z,Ishitani M,Kim C,et al. The Arabidopsis thaliana salt tolerance gene SOS1encodes a putativeNa+/H+antiporter. Proceedings of the National Academy of Sciences,2000,97(12):6896-6901.
    Shi H Z,Lee B,Wu S J,et al. Overexpression of a plasma membrane Na+/H+antiporter gene improves salttolerance in Arabidopsis thaliana. Nature biotechnology,2003,21(1):81-85.
    Silva E N D,Ribeiro R V,Silva S L F,et al. Salt stress induced damages on the photosynthesis of physic nutyoung plants. Sci. Agric.(Piracicaba Braz.),2011,68(1):62-68.
    Sneha S,Rishi A,Chandra S. Effect of short term salt stress on chlorophyll content, protein and activities ofcatalase and ascorbate peroxidase enzymes in Pearl Millet. American Journal of Plant Physiology,2014,9(1):32-37.
    Soltanpour P N,Al-wardy M M,Ippolito J A,et al. Chloride versus sulfate salinity effects on alfalfa shootgrowth and ionic balance. Soil Science Society of America Journal,1999,63(1):111-116.
    Song J,Chen M,Feng G,et al. Effect of salinity on growth, ion accumulation and the roles of ions inosmotic adjustment of two populations of Suaeda salsa. Plant and Soil,2009,314(1-2):133-141.
    Soussi M,Ocana A,Lluch C. Effects of salt stress on growth, photosynthesis and nitrogen fixation inchick-pea (Cicer arietinum L.). Journal of Experimental Botany,1998,49(325):1329-1337.
    Stannard M, Ogle D,Holzworth L,et al. History, biology, ecology, suppression and revegetation ofRussian-olive sites (Elaeagnus angustifolia L.). USA Plant Materials No.47: USDA-NationalResources Conservation Service,2002,1-14.
    Summart J,Thanonkeo P,Panichajakul S,et al. Effect of salt stress on growth, inorganic ion and prolineaccumulation in Thai aromatic rice, Khao Dawk Mali105, callus culture. African Journal ofBiotechnology,2010,9(2):145-152.
    Sun J K,Li T,Xia J B,et al. Influence of salt stress on ecophysiological parameters of Periploca sepiumBunge. Plant Soil Environ.,2011,57(4):139-144.
    Sun J,Chen S,Dai S,et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots ofsalt-resistant and salt-sensitive poplar species. Plant Physiology,2009,149(2):1141-1153.
    Sun J,Dai S X,Wang R G,et al. Calcium mediates root K+/Na+homeostasis in poplar species differing insalt tolerance. Tree Physiology,2009,29(9):1175-1186.
    Sun J,Li L,Liu M,et al. Hydrogen peroxide and nitric oxide mediate K+/Na+homeostasis and antioxidantdefense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell, Tissue and Organ Culture(PCTOC),2010,103(2):205-215.
    Tang D, Shi S, Li D, et al. Physiological and biochemical responses of Scytonema javanicum(cyanobacterium) to salt stress. Journal of Arid Enviroments,2007,71(3):312-320.
    Vicente O,Boscaiu M,Naranjo M A,et al. Responses to salt stress in the halophyte Plantago cyassifolia(Plantaginaceae). Journal of Arid Environments,2004,58(4):463-481.
    Walter L. Plant physioecology. Zhai Z X Translated. Beijing, China: Agricultural University Press,1997,305.
    Wang H,Wu Z,Zhou Y,et al. Effects of salt stress on ion balance and nitrogen metabolism in rice. PlantSoil Environ,2012,58(2):62-67.
    Wang K,Zhang L X,Gao M. Influence of salt stress on growth and antioxidant responses of two Malusspecies at callus and plantlet stages. Pak. J. Bot.,2013,45(2):375-381.
    Wang R G,Chen S L,Deng L. Leaf photosynthesis, fluorescence response to salinity and the relevance tochloroplast salt compartmentation and anti-oxidative stress in two poplars. Tree,2007,21(5):581-591.
    Wang Y,Nii N. Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betainecontent, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Journal ofHorticultural Science and Biotechnology,2000,75(6):623-627.
    Wegner L H,Stefano G,Shabala L,et al. Sequential depolarization of root cortical and stelar cells inducedby an acute salt shock–implications for Na+and K+transport into xylem vessels. Plant, Cell&Environment,2011,34(5):859-869.
    Wided M,Nader B A,Ahmed D,et al. Salt tolerance of the annual halophyte Cakile maritima as affected bythe provenance and the developmental stage. Acta Physiol Plant,2007,29(4):375-384.
    Woodward A J, Bennett L. The effect of salt stress and abscisic acid on proline production, chlorophyllcontent and growth of in vitro propagated shoots of Eucalyptus camaldulensis. Plant Cell, Tissue andOrgan Culture,2005,82(2):189-200.
    Wu G Q,Wang S M. Calcium regulates K+/Na+homeostasis in rice (Oryza sativa L.) under saline conditions.Plant Soil Environ,2012,58(3):121-127.
    Yan Z Z,Wang W Q,Tang D L. Effect of different time of salt stress on growth and some physiologicalprocesses of Avicennia marina seedlings. Marine Biology,2007,152(3):581-587.
    Yang F,Xiao X W,Zhang S,et al. Salt stress responses in Populus cathayana Rehder. Plant Science,2009,176(5):669-677.
    Yang Q,Chen Z Z,Zhou X F,et al. Overexpression of SOS (Salt Overly Sensitive) genes increases salttolerance in transgenic Arabidopsis. Molecular Plant,2009,2(1):22-31.
    Yin Y Q,Yang R Q,Gu Z X. Calcium regulating growth and GABA metabolism pathways in germinatingsoybean (Glycine max L.) under NaCl stress. European Food Research and Technology,2014,doi:10.1007/s00217-014-2214-z.
    Yue Y,Zhang M,Zhang J,et al. SOS1gene overexpression increased salt tolerance in transgenic tobacco bymaintaining a higher K+/Na+ratio. Journal of plant physiology,2012,169(3):255-261.
    Zheng Q S,Liu L,Liu Z P,et al. Comparison of the response of ion distribution in the tissues and cells oftwo succulent plants Aloe vera and Salicornia europaea to saline stress. Journal of Plant Nutrition SoilScience,2009,172(6):875–883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700