缺血再灌注脑损伤后蛇床子素的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性脑血管病是中枢神经系统的常见病和多发病;位列十大致死疾病前三、是首位致残因素,其发生率、病死率及致残率正在逐年上升。因此,脑缺血再灌注的分子机制和治疗方法的研究是国内外学者的研究热点。蛇床子素(osthole,OST)是香豆素类化合物的主要成分,来源于草本植物蛇床子,自然资源十分丰富。近年来大量实验表明,OST具有抗炎、抗凝血、扩张血管、抑制血栓形成、改善学习记忆、调血脂和潜在的神经保护作用。本研究应用大鼠的脑缺血再灌注模型,观察OST对缺血性脑损伤的保护作用,初步探讨OST保护作用可能的分子机制以及与内皮型一氧化氮合成酶(endothelial nitric oxide synthase, eNOS)相关通路之间的关系。旨在明确OST对缺血性脑损伤的神经保护作用及其可能的作用机制,为临床应用OST治疗缺血性脑损伤提供理论基础。
     实验一、缺血性脑损伤后OST预处理的保护作用
     目的:观察缺血性脑损伤后OST的保护作用。方法:步骤一:建立大鼠大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)脑缺血再灌注模型。步骤二:实验用Sprague–Dawle(SD)大鼠45只随机分为假手术组(Sham组)、单纯缺血再灌注损伤组(MCAO组)和不同剂量OST预处理组(OST10+MCAO组、OST20+MCAO组、OST40+MCAO组);Sham组动物仅接受手术,没有动脉夹闭的过程;MCAO前30min,对OST预处理组动物分别腹腔注射OST 10mg/kg、20mg/kg、40mg/kg。再灌注24h后,采取双盲的形式对各实验组动物分别进行神经功能缺陷评分(neurological deficit score,NDS)。而后,每组随机选取3只动物用于伊红染色法( hematoxylin-eosin staining, HE染色)观察缺血脑组织形态学变化;3只用于2%红四氮唑(TTC)染色观察缺血脑组织的面积;3只用于干湿重法观察缺血脑组织的水肿程度。结果:在缺血再灌注24h后,OST预处理组大鼠的神经功能缺陷评分、缺血脑组织面积和脑水肿程度明显低于单纯缺血的MCAO组。组织形态学结果也是OST预处理组损伤明显减轻(P< 0.01)。其剂量在40 mg/kg时表现出神经保护作用最明显。结论:在大鼠的MCAO脑缺血再灌注损伤模型中,OST有明显的神经保护作用,在40 mg/kg时最明显。
     实验二、缺血性脑损伤后OST预处理保护作用的机制
     目的:观察OST治疗缺血性脑损伤时,丙二醛(malondialdehyde,MDA)、谷胱甘肽(glutathione,GSH)、髓过氧化物酶(myeloperoxidase,MPO)、白细胞介素(interleukin,IL)-1β和IL-8的改变与作用。方法:实验用SD大鼠36只随机分为假手术组(Sham组)、单纯缺血再灌注损伤组(MCAO组)和OST预处理组(40mg/kg)。再灌注24h后,每组随机选取3只动物用于检测MDA;3只用于检测GSH;3只用于检测MPO的活性;3只用于检测IL-1β和IL-8。结果:在缺血再灌注24h后,OST预处理不但增加了GSH的含量,而且降低了MDA、IL-1β和IL-8的水平以及MPO的活性(P < 0.01)。结论:缺血再灌注脑损伤后OST的保护作用与其抗炎抗氧化活性密切相关。
     实验三、缺血性脑损伤后OST预处理保护作用的分子机制
     目的:探讨缺血性脑损伤后OST保护作用时分子机制。方法:将SD大鼠随机分为假手术组(Sham组)、空载体组(vehicle组)、单纯OST预处理组(osthole组)、OST与一氧化氮合酶非选择性阻断剂左旋硝基精氨酸甲酯(NG-nitro-L-arginine methyl ester,L-NAME)共同给药组(osthole+L-NAME组)、OST与特异性PI3K阻断剂LY-294002共同给药组(osthole+LY294002组)、OST与PPARγ选择性阻断剂GW9662共同给药组(osthole+GW9662组)。再灌注24h后,通过TUNEL染色和Caspase3活性的检测验证OST的抗凋亡作用;用试剂盒检测缺血脑组织一氧化氮(nitric oxide,NO)以及硝基硌氨酸的含量;Western Blot检测三种一氧化氮合酶、TNF-α、arginase I、p-Akt、Akt、p-eNOS的蛋白表达;通过TTC染色和NDS分析各种阻断剂对OST作用的影响。结果:再灌注24h后,OST明显减少了缺血周围神经元的凋亡,降低了Caspase3的活性;增加了缺血区NO的含量但没有增加硝基硌氨酸的含量;减低了iNOS的表达增加了eNOS的表达,未改变nNOS的表达;L-NAME可完全阻断OST的保护作用;OST增加表达的eNOS可被GW9662通过增加TNF-α/arginase I的表达抑制;OST增加的eNOS磷酸化可被LY294002通过减少Akt的磷酸化来抑制。结论:OST可能是通过增加eNOS的表达,从而增加NO介导的抗凋亡作用达到神经保护作用。
Ischemic cerebrovascular disease of the central nervous system is common and frequent diseases,is one of the three killer diseases,is the first disability factors, and its incidence, mortality and disability are increasing year by year. Therefore, the molecular mechanisms and treatment of cerebral ischemia-reperfusion are research focus for domestic and foreign scholars. Osthole (OST) is the main component of coumarin compounds,derived from the herb Cnidium,and is rich in natural resources. In recent years,a large number of experiments show that OST has anti-inflammatory,anti-clotting,dilates blood vessels,inhibits thrombosis,improves learning and memory,and has potential neuroprotective effect. In this study,we will discusse the neuroprotective effect of OST and its possible molecular mechanisms,as well as the relationship of the effect and endothelial nitric oxide synthase (eNOS) relevant pathway in rats by cerebral ischemia-reperfusion model. The aim of this study is to clarify the neuroprotective effect of OST and its possible mechanism on ischemic brain injury, which will provide a theoretical basis for OST to be used in the clinical treatment of ischemic brain injury.
     Part I Neuroprotective effects of OST in ischemic brain injury
     Objective: To identify neuroprotective effects of OST in ischemic brain injury. Methods:Step One:Create a rat middle cerebral artery occlusion (MCAO) model of cerebral ischemia. Step Two: Male Sprague–Dawley rats were randomly divided into five groups: Sham group, MCAO group, pretreatment groups which were treated with osthole 10, 20 or 40 mg/kg (IP) 30 min before MCAO respectively. Twenty four hours after reperfusion, rats in all groups were evaluated neurological deficit score (NDS) by taking the form of double-blind. Then, three rats in each group were randomly selected for hematoxylin-eosin(HE) staining to observe morphological changes in ischemic brain tissue, three rats were randomly selected for 2% of the 2,3,5-triphenyltetrazolium chloride (TTC) staining to evaluate ischemic area of brain tissue, three rats were selected for the dry and wet weight to observe edema. Result:Pretreatment with OST significantly decreased the volume of infarction, NDS and edema compared with rats in the MCAO group at 24 h after MCAO. The histopathological changes of OST groups are also better than that of MCAO group (P < 0.01). Furthermore, the dose of 40 mg/kg of OST was more protective than the dose of 20 mg/kg and 10 mg/kg on the cerebral injury after MCAO. Conclusion:Pretreatment with OST can prevent neurons from the ischemia injury in rats with MCAO. The dose of 40 mg/kg of OST was more protective than the other dose on the cerebral injury after MCAO.
     Part II The potential mechanisms of nuroprotective effects of OST in ischemic brain injury
     Objective:To observe some indices of anti-inflammatory and antioxidant when pretreatment with OST prevents neurons from the ischemia injury in rats with MCAO. Methods:Male Sprague–Dawley rats were randomly divided into three groups: Sham group, MCAO group and pretreatment with OST groups. Twenty four hours after reperfusion, the rats in each of the groups were subdivided into four subgroups consisting of 3 animals. The first subgroup was used for detecting MDA; the second subgroup was used for detecting GSH; the third subgroup was used for detecting MPO; and the fourth subgroup was used for detecting IL-1βand IL-8 by ELISA. Results:Pretreatment with OST significantly increased in GSH, and decreased MDA, MPO, IL-1βand IL-8 compared with rats in the MCAO group at 24 h after MCAO. Conclusion:The antioxidative action and anti-inflammatory property of OST may contribute to a beneficial effect against stroke.
     PartⅢThe molecule mechanisms of nuroprotective effects of OST in ischemic brain injury
     Objective:To investigate the neuroprotective effect of OST on acute ischemic stroke induced by MCAO in rats and the underlying mechanism.Methods: Adult male Sprague-Dawley rats weighing 250 to 280g were subjected to 2h MCAO and pretreated with vehicle (20% Tween-80), osthole alone, or osthole plus NG-nitro-L-arginine methyl ester (L-NAME, a nonselective NOS inhibitor), LY-294002 (a specific PI3K inhibitor) or GW9662 (a selective PPARγantagonist) at 30min before the transient occlusion. Neurological deficit scores (NDS) and infarct volumes of brain were assessed at 24h and 72h after MCAO. Neuronal apoptosis, NO concentration and activated caspase-3, iNOS, nNOS, eNOS, phosphorylated eNOS (p-eNOS), Akt, phosphorylated Akt (p-Akt), Tumor necrosis factor-α(TNF-α) and arginase I proteins expression were also determined at 24h after MCAO. Results:Pre-administration of osthole on rats with MCAO-induced acute ischemic stroke resulted in a significant decrease both in NDS and infarction volume and in the levels of neuronal apoptosis, activated caspase-3 and iNOS proteins expression at 24h after MCAO. In contrary, NO concentration and eNOS protein expression were increased. The neuroprotective effect of osthole was completely blocked by NOS inhibitor L-NAME. Furthermore, osthole-induced eNOS protein expression and phosphorylation was blocked by GW9662 and LY-294002 respectively. And the phosphorylation of eNOS had a greater effect on osthole neuroprotection than the expression of eNOS. Conclusion:Our results provided direct evidence that osthole attenuates cerebral ischemic neuroinjury via eNOS-dependent and NO-mediated anti-apoptotic action in which both eNOS protein up-regulation and phosphorylation are involved, with the latter being the primary pathway.
引文
1周则卫,刘培勋.蛇床子化学成分及抗肿瘤活性的研究进展[J].中国中药杂志, 2005,30(17):1309-1313.
    2 Jarogniew J Luszczki, Marta Andres-Mach, Wojciech Cisowski,et al. Osthole suppresses seizures in the mouse maximal electroshock seizure model[ J ]. European Journal of Pharmacology , 607 (2009): 107–109.
    3刘建新,张文平,连其深.蛇床子的植物雌激素样作用[J].中国临床康复, 2005,9(23):186-189.
    4马同强,梁智星.蛇床子素预处理对兔心肌缺血/再灌注损伤的保护作用研究[J].山西职工医学院学报, 2008, 2(18):6-8.
    5朱振国译.缺血性卒中的预防和治疗[J] .现代实用医学,2004,16( 1 ) :51.
    6 Lewen A,Mqtz P,Chan PH.Free radial Pathways in CNS injury.Trends Neurosci, 1997,20:132—139.
    7 Ham H,Ayata C.[3H]一L—NG—nitroarginine binding after transient focal ischemia and NMDA-induce excitotxicity in tyge I and type III metric oxide synthase null mice. J Cereb Blood Flow Metab,1997,17(5): 515—526.
    8李炜如.兴奋性氨基酸及钙离子内流在缺氧缺血性脑损伤中的作用[J] .中国实用儿科杂志, 1997,12(4): 245-246.
    9 SUGA H,HAKIN AM.Relevance of interstital Glutamate to selectiee vulnerability in focal Cerebral ischemia.J Cereb Blood How Metab,1994,14(2):33.
    10 NAGEYAMA M,ZHANY F,Zodeeola C.Delayed treatment withaminoguanidine decreases focal cerebral ischemai damage and enhances neurologic recovery in rats,J Cereb Blood Flow Metab, 1998,
    18(10):1107—1l 13.
    11张苏明,方思羽.缺血神经元分子生物学研究的现状与展望[J] .中华神经科杂志,1997,30(4):251—253.
    12 Petitti DB, Sideny S, Bernstein A, et al. Stroke in users of low-dose oral contraceptives.N Engl J Med,1996,335(1):8-15.
    13 Toung TJ, Traystman RJ, Hurn PD. Estrogen mediated neuroprotection after experimental stroke in male rats.Stroke,1998,29(8):1666-1670.
    14 Zhang YQ,Shi J,Rajakaumar G,et al. Effects of gender and estradiol treatment on focal brain ischemia. Brain Res,1998,784(1-2) :321-324.
    15 Mann GE, Rowlands DJ, Li FY, de Winter P, Siow RC. Activation of endothelial nitric oxide synthase by dietary isoflavones: role of NO in Nrf2-mediated antioxidant gene expression. Cardiovasc Res , 2007 ,75(2):261-274.
    16向仁德,张新勇,韩英,等.中药蛇床子水提物活性成分研究中草药, 1999; 30(11):813-815.
    17程大敦,赵俊.蛇床子中香豆素类的含量测定.药物分析杂志, 1987; 7(1): 112.
    18黎为能,谢金鲜.蛇床子素药理作用的研究进展.时珍国医国药, 2005; 6(16):530-531.
    19周俐,上官珠,连其深,等.蛇床子素抗心律失常作用实验研究.现代应用药学, 1996, 13(2):11-13.
    20连其深,胡晓,上官珠.蛇床子素镇静作用的研究.中药新药与临床药理, 2000,11(4):244-245.
    21李乐,庄斐尔,赵更生,等.蛇床子素对家兔主动脉条的钙拮抗作用.中国药理学通报, 1992, 8(3):227.
    22李乐,庄斐尔,杨玉林,等.蛇床子素对离体豚鼠心房的作用.中国药理学报,1995, 9(2):108.
    23 Ko FN, Wu TS, Liou MJ, et al. Vasorelaxation of rat thoracic aorta caused by osthole isolated from Angelica pubescens. Eur J Pharmacol 1992, 219 (1):29-34.
    24 Guh JH, Yu SM, Ko FN, et al. Antiproliferative effect in rat vascular smooth muscle cells by osthole, isolated from Angelica pubescens. Eur J Pharmacol 1996, 298 (2):191–197.
    25陈志春,段晓波,刘荣.蛇床子素抗变态反应的研究.药学药报, 1988, 23(2): 96.
    26刘桦,蒋韵,韩英.蛇床子素对小鼠免疫药理作用的研究.中草药, 1997, 28 (9):54.
    27 Matsuda H, Tomohiro N, Ido Y, et al. Anti-allergic effects of cnidii monnieri fructus (dried fruits of Cnidium monnieri) and its major component, osthol. Biol Pharm Bul 2002, 25 (6):809-812
    28王可,苑振亭,王金海,等.蛇床子素及其制剂的药效学研究.丹东医药, 2007; 1:26-32.
    29刘桦,蒋韵,韩英.蛇床子素对小鼠免疫药理作用的研究.中草药,1997, 28(9):543.
    30连其深,周俐,叶和扬,等.蛇床子素抗炎作用的实验研究.赣南医学院学报, 1999, 19(3):165
    31秦路平,王洪斌,张家庆,等.蛇床子素和蛇床子总香豆素对肾阳虚小鼠免疫功能的影响.中国中西医结合杂志, 1995, 15(9):547
    32 Teng CM, Lin CH, Ko FN, et al. The relaxant action of osthole isolated from Angelica pubescens in guinea-pig trachea. Naunyn SchmiedbergsArch Pharmacol 1994, 349(2): 202-20.
    33 Qin LP, Zhang HM, Zhang WD. Effect of osthol and tota coumarins of fructus cnidii on thyroid hormone an thyrotropic hormone in kidney–Yang deficiency rats. Zhongguo Zhong Xi Yi Jie He Za Zhi 1996, 16(9):552-553.
    34沈丽霞,金乐群,张丹参.蛇床子素对AlCl3致急性衰老模型小鼠记忆障碍的保护作用.药学学报, 2002, 37(3):178-180.
    35刘建新,周俐,周青,等.蛇床子素对小鼠实验性肝损伤的保护作用.中药药理与临床, 2006, 22 (2):21-22.
    36王书华,安芳,张丹参.蛇床子素抗氧自由基清除作用的研究.中成药, 2004, 26(12):1062-1063.
    37沈丽霞,张丹参,张力等.蛇床子素对学习记忆的影响及其机制分析.药学学报, 1999, 34(6): 405-409.
    38王书华,安芳,张丹参等.蛇床子素抗氧化作用的实验研究.中成药, 2005, 27(4):488-489.
    39 Wu SN, Lo YK, Chen CC, et al. Inhibitory effect of the plant-extract osthole on L-type calcium current in NG 108-15neuronal cells. Biochem Pharmacol 2002, 63 (2):199-206.
    40秦路平,石汉平,汪洪斌,等.蛇床子香豆素对肾阳虚模型大鼠学习记忆和神经肽的影响.第二军医大学学报, 1997, 18(2):147-149.
    41李乐,邱瑜.蛇床子素的局部麻醉作用.上海实验动物科学, 1997, 17(3):133.
    42 Li XX,Hara I,Matsumiya T.Effects of Osthole on postmenopausal osteoporosis using ovariectomized rats comparison to the effects of estradiol. Biol Pharm Bull 2002, 25(6):738-742.
    43李建东,章春芝,温晓竟,等.蛇床子素对麻醉大鼠中枢长时称增强现象的影响.陕西中医, 2008, 29(8):1083-1085.
    44 Hsieh MT, Hsieh CL, Wang WH, et al. Osthole improves aspects of spatial performance in ovariectomized rats. Am J Chin Med 2004, 32(1):11-20.
    45李朝阳,吴铁,李青男,等.蛇床子素对去卵巢大鼠近侧胫骨代谢影响的定量研究.药学学报, 1996, 31(5):327.
    46 Yang EB, Zhao YN, Zhang K, et al. Daphnetin,one of the coumarin derivatives,is a protein kinase inhibitor. Biochem Biophys Res Commum 1999, 14; 260(3): 682-685.
    47 Teng CM, Ko FN, Wang JP, et al. Antihaemostatic and antithrombotic effect of some antiplatelet agents isolated from Chinese hearbs. J Pharm Pharmacol 1991, 43(9): 667-669.
    48 Robble YK, Chen WF, Aling Dong, et al. Estrogen-Like activity of ginsenoside Rg1 derived from Panax notoginseng[J]. J Clin Endo 2002, 87(8),3691-3695.
    49 Ko FN, Wu TS, Liou MJ, et al. Inhibition of platelet thromboxane formation and phosphoinositides breakdown by osthole from Angelica pubescens. Thromb Haemost 1989, 24, 62(3):996-999.
    50 Yang LL, Wang MC, Chen LG, et al. Cytotoxic activity of coumarins form the fruits of Cnidium monnieri on leukemia cell lines. Planta Med 2003, 69(12):1091-1095.
    51 Kawaii S, Tomono Y, Ogawa K, et al. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines. Anticancer Res 2001, 21(3B): 1905–1911.
    52龚海英,张丽,李建宇,等.蛇床子素对乳腺癌MCF-7细胞增殖的影响.武警医学院学报, 2008,4(17):281-282.
    53段学军,向仁德,刘德祥,等.中药蛇床子水溶性提取物中化学成分的抗诱变性研究.癌变、畸变、突变, 1999, 11(2):65–67.
    54周俊,程维兴,许永华,等.蛇床子素对肺腺癌、肺鳞癌生长抑制作用的实验研究.癌变、畸变、突变, 2002, 14(4):231–233.
    55 He J, Klag MJ, Wu Z, et al. Stroke in the People’s Republic of China.ⅡMeta-analysis of hypertension and risk of stroke[J]. Stroke, 1995, 26(12):2228-2232.
    56 Cao W, Carney JM, Duchon A, t a1.Oxygen free radical in volvement in ischemia and reperfusion injury to brain[J]. Neurosic Lett, 1980, 88(2):233-238.
    57 Li XJ, Zhang LM, Gu J, et a1. Melatonin decreases production of hydroxyl radical during cerebral ischemia reperfusion[J]. Acta Pharmacol Sin, 1997, 18(5):394-396.
    58 Chan PH. Role of oxidants in ischemia brain damage[J]. Stroke, 1996, 27(6):1124-1129.
    59 Yoshiha S, Abe K, Basto R, et a1. Influence of transient ischemia on lipid-soluble antioxidants, free fatry acids and energy metabolites in rat brain[J]. Brain Res, 1982, 245(2): 307-316.
    60 Troy CM, Shelarski ML. Down-regulation of copper/zinc superoxide dismutase cause apoptotic death in PC12 neuronal cells[J]. Proc Natl Acd Sci USA, 1994, 91(14): 6384-6387.
    61 Mukherje SK, Yasharel R, Klaidman LK, et al. Apoptosis and DNA fragmentation as induced by tertiary butylhydmpemxide in the brain[J]. Brain Res Bull, 1995, 38(6): 595-604.
    62 Matsuyama T, Hata R, Tagays M, et a1. Fas antigan mRNA induction in postischemic murine brain[J]. Brain Res. 1994. 657(1-2): 342-346.
    63 Siemkowic E, Hahsen AJ. Brain extracellular ion and EEG activity following 10 minutes ischemia in normo- and hyperglycemic rats[J]. Stroke,1981, 12(2): 236-240.
    64卢步峰,鲁友明,黄诒森.蛋白激酶C对大鼠脑缺血海马突触体谷氨酸摄取的调控作用[J].生物化学杂志, 1994, 10(4): 371-373.
    65 Lipton P, Lobner D. Mechanism of intracellular calcium accurnulation in the CA1 region of rat hippocampus during anoxia in vitro[J]. Stroke, 1990, 21(11 Suppl):Ⅲ60-64.
    66郝建东,朱长庚,刘庆莹,等.地塞米松对谷氨酸升高海马神经元胞内Ca2+作用的影响[J].神经解剖学杂志, 1999, 15(3): 258-260.
    67 Baba T, Black KL, Ikezaki K, et a1. Intraeamtid infusion of leukotrience C4 seletively increase blood-brain barrier permeability after focal schemia in rats[J]. J Cereb Blood Flow Metab, 1991, 11(4): 638-643.
    68 Cox JA, Lysko PG, Hermeberry RC. Excitatory amino acid neurotoxicity at the N-methy-D-asparate receptor in cultured neurons: pharmacological characterization[J]. Brain Res, 1989, 499(2): 258-266.
    69 M anami K, Kohei S, Takehiko M, et a1. Role of glutamate receptor and voltage-dependent calcium an d sodium channels in the extracellular glutm-nate/aspartate accumlation and subsequent neuronal injury induced by oxygen/glucose deprivation in cultured hippocampal neurons[J]. J Pharmacol Exp Ther, 1998, 285(1): 178-185.
    70 Bicker PE, Gallego SM, Haman BM. Development changes in intracellular calcium regulation in rat cerebral cortex during hypoxia[J]. J Cereb Blood Flow Metab, 1993, 13(5): 811-819.
    71闵小芬,李卫平,王绍斌,等.黄芪提取物对局灶性脑缺血再灌注损伤的抗氧化及线粒体保护作用[J].中国药理学通报, 2005, 21(2):216-219.
    72潘洪平,杨嘉珍,莫祥兰,等.葛根素对急性脑缺血模型大鼠臆细胞损伤后HPS70及Fas蛋白表达的干预作用研究[J].中国药房, 2006,17(2):95—97.
    73 Jiang X, Mu D, Sheldon RA, et al. Neonatal hypoxia-ischemia differentially upregulates MAGUKs and associated proteins in PSD-93-deficient mouse brain. Stroke, 2003, 34(12):2958-2963.
    74 Hoyt KR, Reynolds IJ, Hastings TG. Mechanisms of dopamine induced cell death in cultured rat forebrain neurons: interactions with and differences from glutamate induced cell death. Exp Neurol, 1997, 143(2) : 269- 281.
    75 Cheung HH, Teves L, Wallace MC, et al. Inhibition of protein kinase C reduces ischemia-induced tyrosine phosphorylation of the N-methyl-D-aspartate receptor[J]. J Neurochem, 2003, 86(6): 1441-1449.
    76 Miyanoto O, Nakamura T, Yamagami S, et al. Depression of long term potentiation in gerbil hippocampus following postischemic hypothermia[J]. Brain Res, 2000, 873(1): 168-172.
    77 Galong N, Sasalki H, Iaulikn N, et al. Apoptotic cell death during ischemia/reperfusion and its attenuation by antioxidant therapy[J]. Toxicology, 2000, 148(2-3): 111-118.
    78 Emerson MR, Nelson SR, Samson FE , et al. Hypoxia preconditioning attenuates brain edema associated with kainic acidi-induced status epilepticus in rats[J]. Brain Res, 1999, 825(1-2): 189-193.
    79 Huguet F, Guerraoui A, Barrier L, et al. Changes in excitatory amino acid levels and tissue energy metabolites of neonate rat brain after hypoxia and hypoxia-ischemia[J]. Neurosci Lett, 1998, 240(2): 102-106.
    80王宇卉,邵福源.炎性细胞因子在缺血性脑损伤中的作用[J].临床神经病学杂志, 2000, 4(13):249-250.
    81黄承乐,马付坚.炎性细胞因子缺血性脑损伤中的作用[J].右江民族医学院学报. 2003, 5(25):678-679.
    82韩绍娟,刘志龙.补阳还五汤对沙土鼠脑缺血再灌注损伤后血清炎性细胞因子IL-l、IL-6、TNF-α的影响[J].实用中西医结合临床, 2004, 4(4):1.
    83粱健芬,董少龙,胡跃强,等.水蛭注射液对大鼠脑缺血再灌注后TNF-α、IL-1和ICAM-1蛋白表达的影响[J].陕西医学杂志, 2006, 35(12):1605-1607.
    84张勇,刘玲,王海燕,等.涤痰汤对大鼠局灶性脑缺血再灌注损伤的神经保护作用[J].湖北中医杂志, 2005, 27(3):6-8.
    85薛峥,王雪松,阮旭中.灯盏花素对大鼠脑缺血后细胞问粘附分子-1及其mRNA表达的影响[ J].中国病理生理杂志, 2004, 20(12):2287-2290.
    86 Moncade S. Nitric oxide gas: mediator modulator and pathophysidogie entity[J]. J Lab Clin Med, 1992, 120(2): 187-191.
    87 Matsui T, Nagafuji T, Kumanishi T, et al. Role of nitric oxide in pathogenesis underlying ischemic cerebral damage [J]. Cell Mol Neurobiol. 1999, 19(1): 177-189.
    88 Strijbos PJ. Nitric oxide in cerebral ischemic neurodegeneration and excitotoxicity [J]. Crit Rev Neurobiol. 1998, 12(3): 223-243.
    89 Hattori R, Otani H, Maulik N, et al. Pharmacological preconditioning with resveratrol: role of nitric oxide [J]. Am J Physiol Heart Circ Physiol. 2002, 282(6): H1988-1995.
    90 Imamura G, Bertelli AA, Bertelli A, et al. Pharmacological preconditioning with resveratrol: an insight with iNOS knockout mice [J]. Am J Physiol Heart Circ Physiol. 2002, 282(6): H1996-2003.
    91 Chander V, Chopra K. Protective effect of nitric oxide pathway in resveratrol renal ischemia-reperfusion injury in rats [J]. Arch Med Res. 2006, 37(1): 19-26.
    92 Siriussawakul A, Zaky A, Lang JD. Role of nitric oxide in hepatic ischemia-reperfusion injury[J]. World J Gastroenterol. 2010, 16(48): 6079-6086.
    93 Tehin D, Dursun AD, Xi L. Hypoxia inducible factor 1(HIF-1) and cardioprotection[J]. Acta Pharmacol Sin. 2010, 31(9): 1085-1094.
    94 De Rougemont O, Dutkowski P, Clavien PA. Biological modulation of liver ischemia-reperfusion injury[J]. Curr Opin Organ Transplant. 2010, 15(2):183-189.
    95 Elsey DJ, Fowkes RC, Baxter GF. Regulation of cardiovascular cell function by hydrogen sulfide (H(2)S)[J]. Cell Biochem Funct. 2010, 28(2):95-106.
    96 Maslov LN, Kolar F, Barzakh EI. Signaling mechanism of NO-induced increase in cardiac tolerance to ischemia-reperfusion[J]. Ross Fiziol Zh Im I M Sechenova. 2009, 95(11):1175-1189.
    97 Tuttolomondo A, Di Sciacca R, Di Raimondo D, et al. Neuron protection as a therapeutic target in acute ischemic stroke[J]. Curr Top Med Chem. 2009 9(14):1317-1334.
    98 O'Connor DM, O'Brien T. Nitric oxide synthase gene therapy: progress and prospects[J]. Expert Opin Biol Ther. 2009, 9(7):867-878.
    99 Gervois P, Fruchart JC, Staels B. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors [J]. Nat Clin Pract Endocrinol Metab. 2007, 3(2): 145-156.
    100张慧灵,顾振纶,秦正红. PPARs与神经退行性疾病[J].中国药理学通报. 2006, 22(4): 397-402.
    101 Berger JP, Akiyama TE, Meinke PT. PPARs: therapeutic targets for metabolic disease [J]. Trends Pharmacol Sci. 2005, 26(5): 244-251.
    102 Brown JD, Plutzky J. Peroxisome proliferator-activated receptors astranscriptional nodal points and therapeutic targets [J]. Circulation. 2007, 115(4): 518-533.
    103 Han S, Roman J. Peroxisome proliferator-activated receptor gamma: a novel target for cancer therapeutics? [J]. Anticancer Drugs. 2007 18(3): 237-244.
    104 Collino M, Aragno M, Mastrocola R, et al. Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643 [J]. Free Radic Biol Med. 2006, 41(4): 579-589.
    105 Sundararajan S, Gamboa JL, Victor NA, et al. Peroxisome proliferator-activated receptor-gamma ligands reduce inflammation and infarction size in transient focal ischemia [J]. Neuroscience. 2005, 130(3): 685-696.
    106 Zhao Y, Patzer A, Herdegen T, et al. Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats [J]. FASEB J. 2006, 20(8): 1162-1175.
    107 Lin TN, Cheung WM, Wu JS, et al. 15d-prostaglandin J2 protects brain from ischemia-reperfusion injury [J]. Arterioscler Thromb Vasc Biol. 2006, 26(3): 481-487.
    108 Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes [J]. Mol Cell Biol. 2000, 20(5): 1868-1876.
    109 Han SH, Quon MJ, Koh KK. Beneficial vascular and metabolic effects of peroxisome proliferator-activated receptor-alpha activators [J]. Hypertension. 2005, 46(5): 1086-1092.
    110 Gulick T, Cresci S, Caira T, et al. The peroxisome proliferator-activatedreceptor regulates mitochondrial fatty acid oxidative enzyme gene expression [J]. Proc Natl Acad Sci USA. 1994, 91(23): 11012-110126.
    111 Otani H. The role of nitric oxide in myocardial repair and remodeling[J]. Antioxid Redox Signal. 2009, 11(8):1913-1928.
    112 Yoshida H, Yanai H, Namiki Y, et al. Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury[J]. CNS Drug Rev. 2006, 12(1):9-20.
    113 Huang CY, Hsiao JK, Lu YZ, et al. Anti-apoptotic PI3K/Akt signaling by sodium/glucose transporter 1 reduces epithelial barrier damage and bacterial translocation in intestinal ischemia[J]. Lab Invest. 2011, 91(2):294-309.
    114 Yuan Y, Guo Q, Ye Z, et al. Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway[J]. Brain Res. 2011, 1367:85-93.
    115 Jean WC, Spellman SR, Nussbaum ES, et al. Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon[J]. Neurosurgery. 1998, 43(6):1382-96.
    116 Evans. Free radicals in brain metabolism and pathology[J]. Br.Med. Bull. 1993, 49:577–587.
    117 Liu WB, Zhou J, Qu Y, et al. Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production[J]. Neurochem Int, 2010, 57(3):206-215.
    118 Chou SY, Hsu CS, Wang KT, et al. Antitumor effects of osthole from Cnidium monnieri: an in vitro and in vivo study[J]. Phytother. Res, 2007, 21:226-230.
    119 Coleone AC, Torres KA, Carnio EC, et al. Role of brain nitric oxide in the thermoregulation of broiler chicks[J]. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 154:204-210.
    120 Gursoy-Ozdemir Y, Can A, Dalkara T. Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia[J]. Stroke, 2004, 35:1449-1453.
    121 Rafael Radi. Nitric oxide, oxidants, and protein tyrosine nitration[J]. PNAS, 2004, 101:4003-4008.
    122 Liu J, Zhang W, Zhou L, et al. Anti-inflammatory effect and mechanism of osthole in rats[J]. Zhong Yao Cai, 2005, 28:1002-1006.
    123 Fan H, Zingarelli B, Harris V, et al. Lysophosphatidic acid inhibits bacterial endotoxin-induced pro-inflammatory response: potential anti-inflammatory signaling pathways[J]. Mol Med, 2008, 14:422-428.
    124 Gao X, Xu X, Belmadani S, et al. TNF-alpha contributes to endothelial dysfunction by upregulating arginase in ischemia/reperfusion injury[J]. Arterioscler Thromb Vasc Biol, 2007, 27:1269-1275.
    125 Bulhak AA, Jung C, Ostenson CG, et al. PPAR-alpha activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury: involvement of the PI3-Kinase/Akt and NO pathway[J]. Am J Physiol Heart Circ Physiol, 2009, 296:H719-727.
    126 Burger D, Lei M, Geoghegan-Morphet N, et al. Erythropoietin protects cardiomyocytes from apoptosis via up-regulation of endothelial nitric oxide synthase. Cardiovasc Res, 2006, 72:51-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700