丙烯酸接枝涤纶抗浸透湿智能织物的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决目前抗浸服抗浸层面料存在的问题和研究的不足,本论文打破
    传统的研究思路,尝试将“高分子水凝胶”的概念引入到纺织品的功能整理领
    域,开发一种智能型抗浸透湿织物
     主要做了以下四个方面内容的研究。
     首先,进行了PET 薄膜的电子束(EB)辐照相关研究。对EB辐照薄膜
    的某些性能指标,如表面接触角、分子量、交联度及拉伸强度、断裂伸长率等
    进行了测试。同时,采用傅立叶红外(FTIR)光谱,扫描电子显微镜(SEM),
    化学分析用电子能谱(ESCA),X-射线衍射,差示扫描量热仪(DSC)等仪
    器分析手段,对EB辐照PET薄膜进行表征;分析推断了PET薄膜在空气氛
    围中接受EB辐照的降解机理,并研究了其聚集态结构的变化。另外,还进
    行了EB预辐照PET薄膜与丙烯酸(AA)的接枝共聚初步实验。结果表明:
     (1)PET薄膜在空气中接受EB辐照后,有黄变,表面致密层破坏,表
    面对水的浸润性增强;
     (2)PET的分子量随EB辐照剂量的增加而逐渐降低,说明PET大分
    子链发生了辐致降解;交联度测试结果表明,PET在受辐照过程中无交联反
    应发生:
     (3)根据ESCA谱图推断,PET的EB辐照降解按 Norrish型机理进
    行,降解中伴生CO、CO_2气体;
     (4)从DSC测试结果看,EB辐照后,PET的结晶度有所增加;而X-光
    衍射谱图显示,PET的晶体结构未发生变化;
     (5)接枝初试结果表明,以EB预辐照的方法引发PET与AA接枝共聚
    是可行的;结合前人的研究成果分析,认为接枝主要发生在PET的无定形区。
     论文的第二个内容,是EB预辐照引发涤纶织物与AA接枝共聚工艺的研
    究。接枝工艺流程如下:
     EB预辐照 浸入AA单体水溶液中进行接枝共聚反应
     原始织物 取出漂洗 水煮,尽除表面附着物 晾干
    接枝织物
    研究结果表明:
     (1)在 AA单体的体积百分比浓度低于 50%时,涤纶织物接枝率随单体浓
    度的增加而增加:而且在一定的反应时间范围内,反应时间越长,接枝率越大;
     (2)当接枝反应温度高于55℃时才有明显的接枝反应发生;温度升高有
    利于接枝速率和接枝率的提高:75℃左右时接枝反应速率比较适中;
     (3)辐照后的织物在低温下冷藏一定时间,仍有一定的反应活性,但引
    发接枝的能力阳宣冷藏时间的延长而变弱;
     (4)在涤纶织物与AA的反应体系中,硫酸的加入会促进均聚反应的发
    生,对接枝率的提高不利;
     (5)Mohr's盐加入反应体系中,会同时对均聚和接枝共聚反应产生明显
    的抑制作用;选择合适的Mohr's盐浓度,可以在有效抑制均聚的同时,得到
    适当高的接枝率。
     l
    
     论文的第三个内客,研究了AAg枝涤纶织物的微观结构和宏观性能。采
    用FTIR、DSC等手段对接枝织物进行了表征。测试了不同接枝率织物的厚度、
    溶胀度、回潮率、保水率、透湿量等;利用自行设计的水流速测试装置,重点
    考察了涤纶织物接枝前后对水阻透能力报所谓抗浸性)的变化。结果表明:
     门)PAA接枝链在纤维表面形成一定厚度的水凝胶涂层;
     0)涤纶织物与AA &枝后,织物对水的阻透能力显著提高;接枝率越
    高,阻水效果越好;
     (3)AA接枝涤纶织物,遇水可瞬时作出响应:接枝PAA凝胶化涂层吸
    水溶胀、体积膨大,阻塞织物上的孔隙,阻止水的渗透;凝胶涂层与水之间的
    相互作用可在十数分钟内完成;响应速率与响应强度受水温影响;
     N)AA接枝有利于提高涤纶织物的透湿量;
     6)AA &枝可明显改善涤纶织物的抗静电性能;
     (6)PAA接枝物的引入对涤纶织物有明显的阻燃作用;当接枝率达 1.92%
    时,就可使涤纶织物燃烧时不出现熔滴。
     论文的最后一个内容,借助于环境扫描电子显赔(ESEM)原位跟踪观
    察和湿态织物的DSC测试,棚了AA接枝涤纶织物跳抗浸的扒理。研究
    认为,接枝织物对水智能性响应从而具备阻水抗浸功能,其机理,一方面是纤
    维表面上接枝的PAA凝胶涂层送水后迅速吸水溶胀、体积膨大,将纤维间及纱
    线间的孔隙逐渐地堵塞;另一方面是,水凝胶涂层表面上水团簇的形成对于水
    经由纤维x的空隙渗透流动也可能会产生一定的阻碍滞留作用。这其中,前者
    是主要的,后者是附属的和次要的。在这些认识的基础上,提出了AA接枝涂
    纶织物改性前后阻水性能变化机理的形象化模型。
     以上的实验研究及分析表明,将高分子水凝胶的概念和方法引入纺织品的
    功能整理领域,开发用于抗浸服的抗浸透湿智能织物,是切实可行和行之有效
    的。
In this paper, in the light of the shortcoming of current immersion layer fabrics of
    lmmersion-resistant suits, we bring forth new ideas to develop a kind of intelligent fabric with
    good immersion resistance and good moisture Permeability which couId be used as
    immerslon-resIstant Iayer. The concept of “polymer hydr0geI” was introduced into functional
    finishing belds of textiIes.
    Our research included four sections listed as follows.
    FirstIy, related studies of electron Beam(EB)-irradiated poly(ethyIene terephthalate)
    (PET) film were carried out. Some performance indexes such as surface contact angle,
    molecular weight, crosslinkage, tensile strength and break elongation etc. were investigated.
    The EB-irradiated PET film was charactenzed by various techniques, including Fourier
    Transform infrared Absorption Spectrum (FTlR), Scanning EIeCtron Microscopy (SEM),
    Electron Spectroscopy of Chemical AnaIysis (ESCA), X-ray Diffraction, Differential Scanning
    Calorimetry (DSC). Degradation mechanism of PET film irradiated by EB in air was discussed,
    and the variation of super moIecular structure was explored. Furthermore, originaI test of
    acrylic acid (AA) grafting to PET film was carried out. The results revealed that, after EB
    irradiation, the PET film showed yellowing tendency surface collapse Iayer was destroyed
    and surface wettability increased. Molecular weight of PET decreased gradually with the
    increasing of irradiation dose, which indicated that PET macromolecular chains degraded
    during EB irradiation. There was no crossIinking reaction occurred according to crosslinkage
    measurement results. Judged from ESCA spectra, the degradation of PET might folIow to
    Type Norrish I mechanism, and was accompanied by production of CO, CO_2. According to
    DSC measurement results, crystallinity of PET increased to a somewhat extent after EB
    irradiation. X-ray differential spectra gave the information that the crystal structure kept
    constant. Original grafting test showed, it is practicabIe to make PET grafted with AA by EB
    preirradiation. Analysis of re1ated results combined with other researchers' concIusion
    assured us that gratting mainly occurred in amor0hous region of PET.
    Secondly , technology of preirradiation grafting of AA to poIyester fabric was
    investigated. The graffing reaction technoIogy process is given as follows.
     EB pretrrautoion lmmersed into AA solution to perform grafting reaction
    Orbinal fabrics rinsed in water several times boiled in water to remove homopolymer
    grafted fabrics
     The resuts of the investigation showed that,graft ratio increased with the increasing of the
    monomer concentrationn when the concentration was lower than 50%.Within Certain reaction
    time range;the longer the reaction time,the higher the graft ratio.Reaction temperature
    played an linportant role in grafting reaction.Only when it was higher than 55℃,coud
    apparent grafting reaction occur. Higher temperature helped increase graft rate and graft ratio.
    The graft rate is appropriate at 75℃.The ability of inducing graft吨 of preirradiated
    加【W9妇r灿nc帕0阳钻劝 洲m 幻0旧驴tMe m a*8川阶c 肛旧 阑n 帅*0bme
    horn000lymerlzatlon,wMch Is unbenlnclaD to sncrease gran ralb.仆e e湘dof M0hr’s SaDI【s
    complicated.Itcan restralnbothhom0POlymerlzatlon andgraftcop0lymerlzatlon atsametlme.
    H0weven atan appropriate concentration,ltcan restrain homopolymerlzatlon en一ctlvely and
    bring higher graft ratio simultaneously,
     *卜汀d匕me ii比【***sffib5hno恤【e a*d ii*or*0*3 ii比****巾05*pci以*5怕r抢*卜s
    grafted by AA were investigated.Grafted fabrics were characterized by FTR and DSC etc一
    The thickness;degree of swehng,mo旧tUre regain,water旧hjbkon ratio and moistUre
    permeabdty of grafted fabric with various graft ratro were measured.We des旧ned and
    manUfactured a sc10fwat6rnowrale-measuring device,w汕帅忆 山e d椎rence ofwaler
    preventing ahhty;1.e,so-called immersion resistance,between grafted fabric
引文
1 盐谷隆.纤维制品消费科学(JPN)(日),1991:32(9):18-21
    2 Rayfield JF, Schieble JD. US4242769. 1998-06-06
    3 PB 92-157973/HDM
    4 杨彩云.产业用纺织品,北京:中国纺织出版社,1998:108
    5 Evert KR, Minn SC. US4, 137, 586. 1979-06-02
    6 黄故,马崇启,林国才等.纺织学报,1997:18(1):4-7
    7 韦朝晖.PVDF防水透湿微孔膜涂层织物的研制.天津纺织工学院博士学位论文,2000:6
    8 顾振亚.中国劳动防护用品,1999:(1):21-26
    9 S.吴著,潘强余,吴敦汉译.高聚物的界面与粘合,北京:纺织工业出版社,1987:164-165
    10 骆强,孙玉山,王玥等.纺织科学研究,1999:(3):5-8
    11 孙玉山,徐纪刚,骆强等.合成纤维,2000:29(6):23-25
    12 Holger B. WO84/0, 366. 1984-08-30
    13 Hoshino T. GB2, 156, 655A. 1985-10-16
    14 Buck WM. US5, 660, 572. 1997-08-26
    15 Glasa S. US5, 685, 455. 1997-11-11
    16 Glasa S. US5, 429, 539. 1995-07-04
    17 Jankowiak R, Lutocka JA, Jr.. US4, 768, 128. 1988-08-30
    18 Crockford GW. GB1, 350, 081. 1971-09-24
    19 Steger RE. US5, 249, 999. 1993-10-05
    20 Loughlin KO. US5, 326, 297. 1994-07-05
    21 Ray E, Schmidt T. US5, 619, 751. 1997-04-15
    22 French CM. US5, 855, 497. 1999-01-05
    23 GB8242.4-87:船体设备术语 救生设备
    24 GB4304-84:船用工作救生衣
    25 GB4303-84:船用救生衣
    26 GB9954-88:保温救生服 试验方法
    27 GB5869-86:救生衣灯
    28 HB6652-92:民用航空器救生衣最低性能要求
    29 俞剑秋,冯厦门.科学技术研究成果公报,1991:(4):60
    30 马丙申,王秉维.科学技术研究成果公报,1998:(2):66
    31 董玉仁,马丙申.科学技术研究成果公报,1992:(4):72
    32 黄志春.中国科技成果库,项目年度编号:92206953
    33 马丙申,王秉维.中国科技成果库,项目年度编号:860102
    34 王晓芳.CN2,067,680u.1990-12-19
    35 段仁山.CN2166618Y.1994-06-01
    36 张伟,袁少霞,王宗茂.CN2,099,729u.1992-03-25
    37 姚康德,许美萱,成国祥.物理,1996:25(6):330-335
    38 姚康德.智能材料,天津:天津大学出版社,1996:61;1;2;62-63;72;92-93;205-206
    39 姚康德,彭涛,高伟.高分子通报,1994:(2):103-111
    40 材料科学技术百科全书,北京:中国大百科全书出版社,1995:1189
    41 高木俊宜.日本机械学会志(日),1993:96(4):77
    42 沈锋,杨丽芳,成国祥等.材料研究学报,2000:14(1):1-11
    43 Yu MX, Zhang WH. Polymer Bulletin, 1993:30:719-724
    44 Yao KD, Sun S. Polymer International, 1993 (32): 19-22
    45 Siegel RA, Firestone BA. Macromolecules, 1998 (21): 3254-3259
    46 余锡胜,佟水心,孙以实.高分子学报,1989:(4):488
    47 Kabra BG, Akhtar MK, Gehrke SH. Polymer, 1992:33(5): 990-995
    48 Zhang YQ, Nature, 1992: 360(12): 142-144
    49 Bee YH, Okano T, Kim SW. Journal of Polymer Science: Part B: Polymer Physics, 1990: 28:923-936
    50 Suzuki A, Tanaka T. Nature, 1990:346: 345-357
    51 Yao KD, Sun S. Polymer Bulletin, 1992:28:677-681
    52 Shihara KI, Muramoto Shinohara I. J. Appl. Sci, 1984: 29:211
    53 李承华.辐照技术基础,北京:原子能出版社,1988:187-188
    54 Yang ZH, Yu H. Adv. Mater, 1997:9(5):426-427
    55 Ito Y, Kotera S, Inaba M, et al. Polymer, 1990:31:2157-2161
    56 Iwata H, Oodate M, Uyama Y, et al. Journal of Membrane Science, 1991: 55:119-130
    57 Okahata Y, Noguchi H, Seki T. Macromolecules, 1986:19:493-494
    58 Kaetsu I, Uchida K, Shindo H, et al. Radiation Physics and Chemistry, 1999: 55:193-201
    59 Liu JQ, Zhai ML, Ha HF. Radiation Physics and Chemistry, 1999: 55:55-59
    60 Jenkings LM, Donald AM. Textile Research Journal, 2000: 70(3): 269-276

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700