智能型抗浸透湿织物的开发与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗浸服面料需要面对“干态——湿态”两种截然不同的环境,现有的抗浸服面料难以兼顾防水性和热湿舒适性(透湿性),如欲二者兼顾,面料结构势必非常复杂,技术难度大、成本高。本研究将水凝胶高分子材料引入纺织品设计与开发领域,开发智能型抗浸透湿织物,通过接枝改性的方法使纤维表面形成智能凝胶层,从而获得对“干态——湿态”环境变化做出响应的能力:在干态的环境中,凝胶分子处于收缩状态,织物中的孔隙开放,透湿透气性良好;织物一旦浸入水中,凝胶层迅速速溶胀,将织物中的各级孔隙封闭,阻止水向织物内部渗透,发挥抗浸功能。
     首先对引发接枝的方法进行了研究。聚酯(PET)薄膜、聚乙烯(PE)薄膜以及涤纶(PET)织物经低温等离子体(LTP)引发接枝丙烯酸(AAc)后表面亲水性大为提高,但是由于基质表面生成的活性基团浓度太低,导致接枝率太低,无法获得水凝胶的溶胀性能,在低接枝率的情况下透水性反而有所升高。
     进而利用硝酸铈铵(CAN)为引发剂,在棉织物及T/C织物上接枝AAc或AAm,接枝改性后,T/C织物的强力保留率在90%以上,透湿性明显提高:透气性最初有所下降,在接枝率较高的情况下透气性优于未改性织物。
     接枝T/C织物遇水后能够迅速做出响应,接枝率越高,织物对水的响应强度越高,响应速度越快。在接枝率相近的情况下,AAm接枝织物对水的响应速度快于AAc接枝织物:接枝链分子量的在数万到数十万之间,提高接枝链分子量及接枝频率对于增强织物抗浸性能更为有利。织物只需获得适当的接枝率即可将平衡透水率降至接近于O的水平,继续提高接枝率不能阻止水的微量渗漏。另外对溶液中的NaCl浓度、工作水压、工作水温、凝胶的水解作用等因素对抗浸性能的影响进行了测试与研究。
     织物在紧度相近、纱线号数相同的情况下,平纹组织抗浸效果最好,斜纹次之,缎纹最差;在微孔水力半径概念的基础上,根据Hagen-Poiseuille定律建立了改性织物溶胀过程中t时刻透水率的计算模型,对影响织物抗浸性能的因素进行了理论分析。在此基础上,对改性织物进行了单面拒水整理,平衡透水率显著下降。
     最后,对双层抗浸织物进行了初步研究。未经改性的双层织物即表现出与AAm改性T/C织物相似的阻水现象,同时发现表层PET织物面向水流时的平衡透水率明显高于背对水流的情况:接枝AAm后,平衡透水率明显低于接枝率相近的T/C织物。
The fabric of immersion suit has to be faced with two sharply different circumstances, dry state and wet state. So it is very difficult for the existing fabrics of immersion suit to have good immersion-resistant ability meanwhile with good heat-moisture comfort (moisture permeability). Were it has both merits, the fabric's structure must be very complex and the producing technology be very hard and cost highly. In this research the hydrogel macromolecule has been introduced into textile developing and designing field and a novel 'Immersion-Resistant and Moisture-Permeable Smart Fabric' was made out. It is the layer of hydrogel come into being on the surface of fibers by grafting modification that make this kind of fabric got responsibility to the change of the circumstance between dry state and wet one. In dry environment the hydrogel macromolecules contract and the fabric has good permeability of gas and moisture as the space of pores between fibers and yarns kept open. As soon as the fabric was immersed into water the layer of hydrogel was swelling immediately with the result that all kinds of pores were closed and it got immersion-resistant effect.Firstly, the grafting method initiated by low temperature plasma (LTP) was studied. Although the hydrophilic property of polyethylene terephthalate (PET) film, polyethylene (PE) film and PET fabric was raised greatly by grafted with acrylic acid (AAc) initiated with LTP the graft ratio was too low to achieve swelling property wanted. It is the reason that the quantity of active group created on the surface of base material is very little. The fabric's water permeability rises at low graft ratio contrarily.Then the ceric ammonium nitrate (CAN) was used as initiator and cotton fabric and polyester and cotton blend fabric (T/C fabric) were grafted with AAc or acrylamide (AAm). The retention ratio of tensile strength of grafted T/C fabric can kept up 90 per cent meanwhile moisture permeability was improved. Gas permeability was depressed with growth of graft ratio firstly but batter than original fabric at high graft ratio.The grafted T/C fabric can swell at once when it reached water. Higher the graft ratio is batter the responsive intensity is and faster the responsive speed is. The responsive speed of AAm grafted fabric is faster than that grafted with AAc. The molecule weight of grafted chain is from several ten thousands to several hundred thousands. Increasing the molecule weight and frequency of grafted chain can avail to strengthen the fabric's immersion resistance. By a certain graft ratio the fabric's equilibrium rate of water permeation will reach
    nearly to 0 and higher graft ratio can no more prevent the minim filtration. In addition effects of concentration of NaCl, working water pressure, working water temperature and hydrolyzation of hydrogel on immersion resistant ability were also studied.In the case of fabric with closed density and yarn with same tex the plain structure is the best one for immersion resistance, twill second place and satin last. On the base of concept of hydraulic radius a model to calculate the water permeation rate at t time was built through Hagen-Poiseuille law and the factors affecting immersion resistance were analyzed theoretically. Accordingly the grafted fabric was processed with water repellent only on one surface and equational rate of water permeation was decreased further more.Finally, a double layer fabric of immersion suit was investigated primarily. The original double fabric represented a similar water-resistant phenomenon to the AAm grafted T/C fabric. And when the upper PET layer was faced to water flow the equational rate of water permeation is higher than it was backed. After the double fabric grafted with AAm the equational rate of water permeation is lower than the T/C fabric with closed graft ratio apparently.
引文
[1] 贺昌城,顾振亚.抗浸服及抗浸层面料概述,针织工业,2002,(3),92-95
    [2] 塩谷隆.纤维制品消费科学,1991,32(9),18-21
    [3] 中国航天,1997,6
    [4] Marcus P, Richards S. Effect of clothing insulation beneath an immersion coverall on the rate of body cooling in cold water. Aviat Space Environ Med, 1978, 499 (3), 480-483
    [5] Bagian JP, Kaufman JW. Effectiveness of the Space Shuttle anti-exposure system in a cold water environment. Aviat Space Environ Med, 1990, 61(8), 753-757.
    [6] White GR, Roth NJ. Cold water survival suits for aircrew. Aviat Space Environ Med, 1979, 50(10), 1040-1045
    [7] Tipton MJ. Laboratory-based evaluation of the protection provided against cold water by two helicopter passenger suits. J Soc Occup Med, 1991, 41(4), 161-167
    [8] Allan JR, Elliott DH, et al. The thermal performance of partial coverage wet suits. Aviat Space Environ Med, 1986, 57(11), 1056-1060
    [9] Donald E. Roberts, Murray P. Hamlet. Medical Aspects of Harsh Environments, vol. 1, Chapter13: Prevention of Cold Injuries, 411-427
    [10] Hayward JS, Eckerson JD. Physiological responses and survival time prediction for humans in ice-water. Aviat Space Environ Med, 1984, 55(3), 206-211
    [11] Tipton MJ, Vincent MJ. Protection provided against the initial responses to cold immersion by a partial coverage wet suit. Aviat Space Environ Med, 1989, 60(8), 769-773
    [12] Tipton MJ, Stubbs DA, et al. The effect of clothing on the initial responses to cold water immersion in man. J R Nay Med Serv. 1990, 76(2), 89-95
    [13] Steinman AM, Hayward JS, et al. Immersion hypothermia: comparative protection of anti-exposure garments in calm versus rough seas. Aviat Space Environ Med, 1987, 58(6), 550-558
    [14] Ducharme MB, Brooks CJ. The effect of wave motion on dry suit insulation and the responses to cold water immersion. Aviat Space Environ Med, 1998, 69(10), 957-964
    [15] 房瑞华.防寒抗浸服.中国劳动防护用品,1994,6
    [16] 刘克定.英军飞行员换新装——内抗浸服.国际航空,1991,(2),56-57
    [17] www.ventile.co.uk/index.html
    [18] www.ventile.co.uk/uses.html
    [19] www.plastiquarian.com/neopr.htm
    [20] heritage.dupont.com/touchpoints/tp_1930-2/depth.shtml
    [21] www.eng.utah.edu/~nairn/mse/students/MSE3410/Teflon/Gore-Tex.html
    [22] www.goremilitary.com/gow_product5.html
    [23] www.gore-tex.com
    [24] 贺昌城.天津工业大学博士毕业论文,2001.04,天津工业大学
    [25] www.brooks.af.mil/HSW/YA/YAP/nonchemsuit.htm
    [26] Immersion and rescue suits. Aaquta, 2004-2005
    [27] Mustang Survival. 2003,8
    [28] www.mustangsurvival.com/products
    [29] www.brooks.af.mil/HSW/YA/YAP/nonchemsuit.htm
    [30] www.goremilitary.com/ow_product5.html
    [31] www.equipped.com/nbaa_2001.htm
    [32] http://www.lifesupportintl.com/Anti-ExposureWorkSuit.htm
    [33] http://www.lifesupportintl.com/Anti-ExposureWorkSuit.htm
    [34] Rayfield.US4242769, 1981, 1, 6
    [35] Evert KR, Minn SC. US4137586.1979-06-02
    [36] Holger B. W084/0,366.1984-08-03
    [37] Buck WM. US5660572.1997-08-02
    [38] Glasa S. US5685455.1997-11-11
    [39] Jankowiak R. Lutocka JA, etc US4768128.1988-08-30
    [40] Steger RE. US5249999.1993-10-05
    [41] Loughlin KO. US5326297.1994-07-05
    [42] Ray E, Schmidt T. US5619751.1997-04-15
    [43] French CM. US5855497.1999-01-05
    [44] Allanach NI. GB2111842.1983-07-13
    [45] Wigutow, Jerald N. US6206744.2001-03-27
    [46] 毛妙珍.CN2438349Y.2001-07-11
    [47] 段仁山.CN21666618Y.1994-06-01
    [48] 高木俊宜.日本机械学会志,1993,96(4),77
    [49] Flory P J. Principles of Polymer Chemistry. New York, Cornell University Press, 1980
    [50] Tanaka T, Kokufuta E. Nature, 1991, (349): 400-401
    [51] 马光辉等。新型高分子材料,化学工业出版社,2003.3,北京
    [52] Kim Seon Jeong, Park Sang Jun, et al. Properties of smart hydrogels composed of polyacrylic acid/poly(vinyl sulfonic acid) responsive to external stimuli. Smart Materials and Structures, 2004, 13 (2), 317-322
    [53] Ito Y, Kotera S, Inada M, et al. Polymer, 1990,31, P2157-2161
    [54] 姚康德,成国祥.智能材料,化学工业出版社,2002,北京
    [55] Iwata H, Oodate M, Uyama Y, et al. Journal of Membrane Science, 1999, 55, P119-130
    [56] Miklós Zrinyi et al. Polymers for Advanced Technologies, 2001.12
    [57] SHAN SUN, ARTHUR F. T. MAK. Journal of Polymer Science: Part B: Polymer Physics, 2001, 39, P236-246
    [58] Zsolt Varga et al. Macromol. Symp. 2003, 200, P93-100
    [59] 姚康德,彭涛等.高分子通报,1994,6(2),P103-111
    [60] 陈莉.环境响应型智能高分子凝胶.天津工业大学学报,2004,23(4),83-87
    [61] SO YEON KIM, 1 SUNG MIN CHO, et al. Thermo-and H-Responsive Behaviors of Graft Copolymer and Blend Based on Chitosan and N-Isopropylacrylamide. Journal of Applied Polymer Science, 2000, 78, 1381-1391
    [62] 高青雨等.温度及pH敏感性N-乙烯基毗咯烷酮与丙烯酸β-羟基丙酯共聚物/聚(丙烯酸)互穿网络水凝胶的合成及其性能研究.高分子学报,2001,6,329-333
    [63] Nidhi Nath, Ashutosh Chilkoiti. Creating "smart" surfaces using stimuli responsive polymers. Advanced Materials, 2002, 14 (17), 1243-1247
    [64] 刘文广,戚务勤.水凝胶研究的最新进展.高分子材料科学与工程.2002,18(5),54-57
    [65] Johnson, B.D., Beebe, D.J. et al. Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices. Materials Science and Engineering C, 2004, 24 (4), 575-581
    [66] Wiersma, Johnny A., Bos, Machiel, et al. High strength poly(meth)acrylamide copolymer hydrogels. Polymer Bulletin (Berlin), 1994, 33 (6), 615-622
    [67] Tanaka, Yoshimi, Gong, Jain Ping, et al. Novel hydrogels with excellent mechanical performance, Progress in Polymer Science,2005, 30 (1), 1-9
    [68] Xue, Wei, Champ, Simon, et al. Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic. European Polymer Journal, 2004, 40, 4, 703-712
    [69] Lopergolo, L. C., Catalani, L. H., et al. Development of reinforced hydrogels-I. Radiation induced graft copolymerization of methylmethacrylate on non-woven polypropylene fabric. Radiation Physics and Chemistry, 2000, 57, 3, 451-454
    [70] Chen, Ko-Shao, Chou, Chih-Wei. Surface grafting polymerization and crosslinking of thermosensitive NiPAAm hydrogels onto plasma pretreated substrates and drug delivery properties. Materials Science Forum, 2003, 4, 3267-3272
    [71] garlsson, J.O., Gatenholm, P. Cellulose fibre-supported pH-sensitive hydrogels. Polymer, 1999, 40, 2, 379-387
    [72] Xie, Jiangbing, Hsieh, You-Lo. Thermosensitive poly(N-isopropylacrylamide) hydrogels bonded on cellulose supports.. Journal of Applied Polymer Science, 2003, 89, 4, 999-1006
    [73] Arndt, Karl-Fr., Schmidt, Thomas et al High response smart gels: Synthesis and application.. Macromolecular Symposia, 2004, 207, 2, 257-268
    [74] Chen, Hong, Hsieh, You-Lo. Ultrafine hydrogel fibers with dual temperature-and pH-responsive swelling behaviors. Journal of Polymer Science, Part A: Polymer Chemistry, 2004, 429(24), 6331-6339
    [75] Kabiri, K., Omidian, H. et al. Novel approach to highly porous superabsorbent hydrogels: Synergistic effect of porogens on porosity and swelling rate. Polymer International, 2003, 52, 7, 1158-1164
    [76] 刘晓华,王晓工等.快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶Ⅰ.以CaCO3为成孔剂置备方法、表征及动力学研究.高分子学报,2002,6,354-357
    [77] Zhang, Gao-Qi, Zha, Liu-Sheng, et al. Rapid deswelling of sodium alginate/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels in response to temperature and pH changes, Colloid and Polymer Science, 2005, 283(4), 431-438
    [78] 单军.智能性高聚物水凝胶的种类及其合成方法.化工新型材料,1995,4:20-22,19
    [79] Grafting 'smart' onto polymer fibre. Smart Materials Bulletin, 2002, 9
    [80] 王槐三,寇晓康.高分子化学教程.科学出版社,2002,3,北京
    [81] 周其凤,胡汉杰.高分子化学.化学工业出版社,2001,10,北京
    [82] Halil ibrahim D., et al. Swelling-assited graft copolymerization of 4-vinyl pridine poly(ethylene terephthalate) film using a benzoyl peroxide initiator. J. Appl. Polym. sci.,1996,62,1161-1165
    [83] Ebhodaghe F., et al. Grafting acrylonitrile and acrylic acid monomers on cellulosic materials. J. Appl. Polym. sci.,1986,31,1275-1280
    [84] GULTEN GURDAG, et al. Graft copolymerization of acrylic aacid on cellulose:reaction kinetics of copolymerization. J. Appl. Polym. sci.,1997,66,929-934
    [85] Jong S.P, J. Appl. Poly. Sci., 69, 2213 (1998)
    [86] Young Chang Nho, Joon-Ha Jin.Graft polymerization of acrylic acid and methacrylic acid onto radiation-peroxidized polyethylene film in presence of metallic salt and sulfuric acid[J]. Journal of Applied Polymer Science, 1997, 63(9): 1101-1106
    [87] Fabienne P. E. et al. Macromol. Chem. Phys. 2000, 201,212
    [88] OH HYUN KWON et al.J. Appl. Polym. Sci., 1999, 72, 659
    [89] K.M. EI. Salmawi et al. Polymer International, 1997, 42,225
    [90] 陈捷.预辐射聚丙烯纤维接枝丙烯酸的研究.核技术,1999 (21),9:539-543
    [91] 陈代涛等.电子束预辐照丙烯酸与丙烯酸的接枝共聚合.高分子学报。2000,2(1):32-35
    [92] 唐黎明等.聚乙烯-丙烯酸接枝物的制备及表征.天津大学学报,1996,29 (2):273-277
    [93] 幕内惠三.聚合物辐射加工(孟永红译).科学出版社,2003,3,北京
    [94] BMME 112/APPL 161-Biomaterials (Fall 2001)
    [95] Carlos E., et al. J. Materials. Sci, Marerial in Medicine 2003,14, 187
    [96] Plasma Surface Modification In Biomedical Applications. www.astp.com
    [97] P.K. Chu. Materials Science and Engineering R 2002, 36, 143
    [98] Jons Hilborn et al. Mat. Res. Soc. Symp. 2000, 629, FF4.1.1
    [99] V. Michel et al. J. Appl. Polym. Sci., 1998, 70, 359
    [100] Young M.L. et al. J. Appl. Polym. Sci., 1996, 61, 1245
    [101] S. Mishima et al. J. Appl. Polym. Sci., 1999, 73, 1835
    [102] Hongyuan Wang et al. J. Appl. Polym. Sci. Part A, 1998, 36, 2247
    [103] Fabienne Poncin-Epaillard, Bruno Chevet et al. Modification of Isotactic polypropylene by a cold plasma or an electron beam and grafting of the acrylic acid onto these activated polymers. J. Appl. Polym. Sci: 1994, 53,1291-1306
    [104] Kyung Wha Oh et al. Journal of Applied Polymer Science, 2001, 81, 684-694
    [105] Tktem H Ayhan, N Seventekin E Piskin. Modification of polyester fabrics by in suit plasma or post-plasma polymerization of acrylic acid. J.S.D.C, 1999,115,274-279
    [106] Jianqin Liu, Maolin, Zhai, et al. Pre-irradiation grafting of temperature sensitive hydrogel on cotton cellulose fabric. Radiation Physics and Chemistry, 1999, 55, 55-59
    [107] Chen Ko-Shao, Tsai Jui-Che, et al. Effects of additives on the photo-induced grafting polymerization of N-isopropylacrylamide gel onto PET film and PP nonwoven fabric surface. Materials Science and Engineering C, 2002, 20, 203-208
    [108] Katchalaky A. J. Polym. Sci., 1951, (7): 393
    [109] Derissi D. Polymer Gels. New York, Plenum Press, 1991
    [110] 沈新元,王珏.pH值伸缩响应中空凝胶纤维的研制.99高分子学术论文报告会论文集(中),上海,1999,4-8
    [111] Curt Biberdort. Adaptable 'skin', The Warrior, Hay-June, 2002, 3-4
    [112] William K. Walsh. Intelligent, Stimuli-Sensitive Fibers and Fabrics. Annual Report, 1999, 9
    [113] He Changcheng, Gu, Zhenya. Studies on acrylic acid-grafted polyester fabrics by electron beam preirradiation method. Ⅱ. Novel intelligent immersion-resistant and moisture-permeable fabrics. Journal of Applied Polymer Science, 2003, 89 (14), p3939-3943
    [114] He Changcheng, Gu, Zhenya. Studies on acrylic acid-grafted polyester fabrics by electron beam preirradiation method. Ⅰ. Effects of process parameters on graft ratio and characterization of grafting products. Journal of Applied Polymer Science, 2003, 89 (14), p3931-3938
    [115] Changcheng He, Zhenya Gu. Studies on the electron beam irradiation and acrylic acid grafted PET film. Radiation Physics and Chemistry, 2003, 68, p873-874 (SCI, EI检索)
    [116] 赵华侨.等离子体化学与工艺.中国科学技术大学出版社,1993
    [117] Ian Holme. Attractions of a Dry Alternative. International Dyer, 2003, 5:7-8
    [118] 马卫华等.等离子体在合成纤维表面改性中的应用[J].广西化纤通讯,1995,1:53-56;
    [119] 叶先科 张开.低温等离子体改性聚合物膜的原理[J].高分子通报,1991,2:76-80
    [120] 郑梅等.等离子体对高分子材料表面改性过程机理的研究现状及存在的问题[J].表面技术,1998,27(5):5-8
    [121] 马於光,杨梅林等.等离子体辐照的聚乙烯表面接枝交联共聚合.高等学校化学学报,1992,2,278-280
    [122] 陈国荣 张开.等离子体接枝聚合在高分子材料表面改性中的应用[J].高分子材料,1991,(4):37-40
    [123] Ging Ho Hsiue, Chee Chan Wang. Functonalizaton of polyethylene surface using plasma-induced graft copolymerization of acrylic acid. J. Polym. Sci.:Part A:Polym. Chem.,1993,31,3327-3337
    [124] Yasuda. H., Hsu. T. S.. Some aspects of plasma polymerization of fluorine-containing organic compounds. Journal of Polymer Science, Polymer Chemistry Edition, 1977, 15o(10), 2411-2425
    [125] Wu, Yunying, Inoue, Yasushi, et al. Low temperature deposition of transparent ultra water-repellent thin films by microwave plasma enhanced chemical vapor deposition. Materials Research Society SymposiumProceedings, 2002,711,283-288
    [126] Shenton, M.J., Stevens, G.C.. Surface modification of polymer surfaces: Atmospheric plasma versus vacuum plasma treatments. Journal of Physics D: Applied Physics, 2001, 34(18),p 2761-2768
    [127] T. Bahners, et al. Plasma treatment under atmospheric pressure for continuous hydrophobic and oleophobic modification of textiles. Technical textile, 2001,44(4),114-115
    [128] Hildegard Sung. Plasma Pre-treatment of textile for Improvement of dying processes. International Dyer: 2003, 5:20-23
    [129] Growing Potential of Plasma Technology. International Dyer, 2003, 5: 15-17
    [130] 李敏等.细旦涤纶的氧等离子体改性清洁工艺研究.环境与开发,2000,15 (1):22-24
    [131] 6、李敏等.氧和氮等离子体改性细旦涤纶的清洁工艺比较.环境科学研究,2000,13 (2):9-11
    [132] 张庆等.低温等离子体对聚酯织物改性效果研究.合成纤维工业,1997,20 (4):9-11
    [133] 顾彪等.无声放电对聚酯织物表面的等离子体接枝改性.大连理工大学学报,1999,39 (6):726-729
    [134] Charles Tomasion, J.J. Cuomo, C.B. Smith. Plasma treatment of textiles. Journal of coating fabrics, 1995, 25, 115-127
    [135] 万昌秀等.氮气等离子体改性PET编织材料抗细菌粘附研究.四川大学学报,2000,32 (1):33-36
    [136] 柯勤飞等.PBT熔喷非织造布的等离子体接枝改性工艺及性能研究.中国纺织大学学报,2002,26 (1):32-36
    [137] Hochart. F., De Jaeger, R.. Graft-polymerization of a hydrophobic monomer onto PAN textile by low-pressure plasma treatments. Surface and Coatings Technology, 2003,165(2),201-210
    [138] M. Strobel, C.S. Lyons, et al. Plasma surface modification of polymers:relevance to adhesion, Utrecht, The Netherlands, 1994,3-39
    [139] W. Michaeli, K. Telgenbscher, J. Striffler, et al. Broad range variation in surface tension by plasma-polymerized coatings on polymethyl methacrylate. Surface and coatings technology, 1993,59,338-342
    [140] 笪有仙等.表面冷等离子体改性对纤维抗拉强度的影响.复合材料学报,1992,9 (4):83-86
    [141] 施来顺等.CF_4-CH_4等离子体表面阻燃改性聚丙烯途径的探索.科学通报,1998,43 (7):775-779;
    [142] Tony Herbert. Atmospheric Pressure Plasma liquid Deposition. International Dyer, 2003, 5:11-13
    [143] Plasma treatment under atmospheric pressure for continuous hydrophobic and oleophobic modification of textiles. Technical Textile: 2001, 44 (4): 114-115
    [144] Whole Garment Treatment is Aim of Research. Plasma Treatment, 2003,5: 24-25
    [145] Ioan I.N. et al.;Textile Res. J., 2000,70,1-7
    [146] Jane E.F. et al.;Analytica Chimica Acta, 1983,155, 139-150
    [147] Keiji F. et al.;J. Appl. Polym. Sci. Part A, 1993,31,1035-1043
    [148] M. Suzuki, A. Kishida, et al. Graft Copolymerization of Acrylamide onto a Polyethelene suface pretreated with a glow discharge. Macromol.,1986,19,1804-1808
    [149] Hiroo Iwata, Akio Kishida, et al. Oxidation of polyethylene surface by corona discharge and the subsequent graft polymerization. J. Polym. Sci: part A: Polym. Chem., 1988, 26,33,9-3322
    [150] 邱晔,王真等.微波等离子体诱导聚乙烯表面接枝甲基丙烯酸甲酯.高等学校化学学报,1998,19 (3),489-491
    [151] 伍乃娟,胡建芳等.等离子体处理和接枝共聚改性PET纤维表面的光电子谱研究.8-11
    [152] Simionescu C. I. et al. Makromol. Chem. Suppl., 1984, 8, 17
    [153] 高洁,汤烈贵.纤维素科学,科学出版社,北京,1999
    [154] Flaque, C., Montserrat, S.. Vinylic graft copolymers of cellulose. I. Effects of monomer concentrations and crystallinity index of cellulosic substrate on grafting vinyl acetate onto cotton. Journal of Applied Polymer Science, 1991, 42(11), 3051-3057
    [155] 黄德绣,薛永青等.高吸水性树脂——淀粉—丙烯酸钠接枝共聚物的合成及性能研究.高分子材料科学与工程,1991,1,105-108
    [156] Eromosele, Ighodalo Clement. Graft copolymerization of acrylonitrile onto cotton cellulose by potassium permanganate-thioacetamide redox system. Journal of Applied Polymer Science, 1994,51(10), 1817-1821
    [157] EL-Rafie, M.H., Zahran, M.K, et al. Cellulose thiocarbonate-ferric nitrate redox system induced graft copolymerization of vinyl monomers on to cotton fabric. Polymer Degradation and Stability, 1993, 42, 3,223-230
    [158] Mondal Ibrahim H.. Graft copolymerization of nitrile monomers onto sulfonated jute-cotton blended fabric. Journal of Applied Polymer Science, 2003, v87(14), 2262-2266
    [159] 翟茂林,李军,刘建琴,伊敏,哈鸿飞;NIPAAm在棉纤维织物上预辐射接枝共聚机理研究;辐射研究与辐射工艺学报,1999,17,140
    [160] 陈杰瑢.铈盐引发丙稀酰胺在棉纤维上接枝共聚合反应的研究.陕西师范大学学报(自然科学版),1997,25 (3),73-75
    [161] Hassanpour S..Radiation grafting of styrene and acrylonitrile to cellulose and polyethylene. Radiation Physics and Chemistry, v 55, n 1, Jun 1, 1999, p 41-45
    [162] Shukla S.R., Athalye, A.R.. Graft-copolymerization of glycidyl methacrylate onto cotton cellulose. Journal of Applied Polymer Science, 1994,54(3), 279-288
    [163] Guthrie J.T., Tune, P.D.. Preparation, characterization, and application of cellulose-MMA graft copolymers. Ⅰ. The aqueous-based preparation of cellulose-MMA graft copolymers. Journal of Polymer Science, Part A: Polymer Chemistry, 1991,29(9), 1301-1312
    [164] Khandekar Keerti, Gupta K. C.. Acrylamide-methylmethacrylate graft copolymerization onto cellulose using ceric ammonium nitrate. Journal of Macromolecular Science-Pure and Applied Chemistry, 2003,40(2),155-179
    [165] Khandekar Keerti, Gupta K.C.. Graft copolymerization of acrylamide-methylacrylate comonomers onto cellulose using ceric ammonium nitrate. Journal of Applied Polymer Science, 2002,86(10), 2631-2642
    [166] Graczyk Tomasz, Hornof Vladimir. Graft copolymerization of cellulose initiated by ceric salts: effect of reaction conditions on the consumption of ceric ion. Journal of Polymer Science, Part A: Polymer Chemistry, 1988,26(8), 2019-2029
    [167] KUBOTA H, OGIWARA Y. Graft copolymerization onto cellulose by ceric ion initiator system. Effects of kind of acid and irradiation with ultraviolet light. J Appl Polym Sci, 1970, 14(10),2611-2618
    [168] Gupta K.C., Sahoo Sujata. Ceric ion initiated grafting on cellulose from binary mixture of acrylonitrile and methylacrylate. Journal of Macromolecular Science-Pure and Applied Chemistry, 2000,37(5), 447-468
    [169] McDowall D. J., Gupta, B. S.,et al. Comparison of the properties of ceric ion and preirradiated acrylic acid grafts to rayon fibers. Polymer Journal, 1987,19(5), 643-648
    [170] GULTEN GURDAG, GAMZE GUCLU, SAADET OZGUMUS. Graft copolymerization of acrylic acid onto cellulose: effects of pretreatments and crosslinking agent;J. Appl. Polym. Sci.: 2001, 80, 2267
    [171] N. Chansook, S. kiatkamjornwong;Ce (Ⅳ)-initiated graft polymerization of acrylic acid onto poly(ethylene terephthalate) fiber;J. Appl. Polym. Sci.,2003, 89, 1952
    [172] Haiqing Liu, You-Lo Hsieh;Surface methacrylation and graft copolymerization of ultrafine cellulose fibers;J. Polym. Sci: Part B: Polym. Phy.: 2003, 41, 953
    [173] S.B. Vitta, E.P. Stahel, V.T. Stannett. J. Macromol. Sci. Chem.,1985,22,597
    [174] S.B. Vitta, E.P. Stahel, V.T. Stannett. The preparation and properities of acrylic and methacrylic acid grafted cellulose prepared by ceric ion initiation. Ⅱ. water retention properties. J. Appl. Polym. Sci.,1986,32,5799-5810
    [175] S.B. Vitta, E.P. Stahel, V.T. Stannett. The preparation and properities of acrylic and methacrylic acid grafted cellulose prepared by ceric ion initiation. Ⅲ. Some physical, mechanical, and ion exchange properties. J. Appl. Polym. Sci.,1989,38,503-510
    [176] Kbhodaghe F. Okieimen, Justus E. Ebhoaye. Grafting acrylonitrile and acrylid acid monomers on cellulosic materials. J. Appl. Polym. Sci.,1986,31,1275-1280
    [177] M.J. Fernandez, I. Casinos, G.M. Guzman. Grafting of vinyl acetate-methyl acrylate mixture onto cellulose, effect of ceric ion and nitric acid concentrations. J. Appl. Polym. Sci.,1990,41,2221-2240
    [178] Williams J.L., V.T. Stannett. J. Appl. Polym. Sci.,1979,23,1265
    [179] E. Bianchi, A. Bonazza, E. Marsano, et al. Free radical grafting onto cellulose in homogeneous conditions. 2. Modified cellulose-methyl methacrylate system. Carbohydrate Polym.,2000,41,47-53
    [180] Pradeep Das, C.N. Sailia. Homogeneous graft copolymerization of acrylonitrile onto high α-cellulose in a dimethyl acetamide and lithium chloride solvent system. J. Appl. Polym. Sci.,2003,89,630-637
    [181] Maha M. Lbrahim, Eman M. Flefel, and Waleed K. EL-Zawawy. Cellulose memebranes grafted with vinyl monomers in a homogeneous system. Polym. Adv. Technol.,2002,13,548-557
    [182] B.S. Gupta, D,J, Mcdowell, and V.T. Stannett. A morphological examination of ceric ion and preirradiation acrylic acid-grafted rayon fiber. J. Appl. Polym. Sci.,1994,53,1221-1235
    [183] 李婕,郑天勇,杨俊霞.织物结构对织物透气性能影响的研究.天津纺织工学院学报,1998,17 (4),92-95
    [184] 刘剑宇,吴坚.机织物紧密度与纱线密度对织物透气性的影响.大连轻工业学院学 报,2001,20 (3),218-220
    [185] 姚穆,施楣捂,蒋素婵。织物湿传导理论与实际的研究,第一报:织物的湿传导过程与结构的研究.西北纺织工学院学报,2001,6,1-8
    [186] Liu Liying, Liu Min. Effect of fabric surface properties on moisture transport properties. J, Qingdao. Univ., 2001, 16 (2), 24-27
    [187] 高鸿宾.有机化学导论.天津大学出版社,1995,11,天津
    [188] T. Yasukawa, Y. Sasaki, and Murakami. J. Polym. Sci. Polym. Chem. Ed.,1973,11, 2547
    [189] Bhatacharyya S. N., Maldas D. Molecular weight distribution of the graft copolymer comprising mixtures of styrene and acrylamide on cellulose acetate film by means of gel permeation chromatography. J. of Appl. Polym. Sci., 1986, 31, (6), 1671-1676
    [190] 武海良.基于微波长中的淀粉固相接枝浆料研究.天津工业大学,博士学位论文,2003,12
    [191] 严瑞瑄.水溶性高分子.化学工业出版社,2001,5,北京.
    [192] V. F. Kurenkov, H.-G. Hartan, and F. I. Lobanov. Alkaline hydrolysis of polyacrylamide. Russi. J. Appl. Chem.,2001,74(4),543-554]
    [193] 杨菊萍,聂贵权.水解聚丙烯酰胺分子量的表征.功能高分子学报,2000,13 (4),427-430
    [194] 方道斌,陈方.热重法测定水解聚丙烯酰胺的水解度.高等学校化学学报,1985,6 (2),183-186
    [195] Meiling Ye, Dong Han, and Lianghe Shi. Studies on determination of molecular weight for ultrahigh molecular weight partially hydrolyzed polyacrylamide. J. Appl. Polym. Sci.,1996,60,317-322
    [196] 虞志光.高聚物分子量及其分布的测定.上海科学技术出版社,1984,上海
    [197] 谢缅诺维奇,T.C.赫拉莫娃,.聚合物物理化学手册[M].中国石化出版社,1995,北京(闫家宾 张玉崑译)
    [198] 姚穆.纺织材料学,纺织工业出版社,1993,6,北京
    [199] J.O. Karlsson, A Henriksson, and J. Michálek et al. Control of cellulosesupported hydrogel microstructures by three-dimensional graft polymer ization of glycol methacrylates. Plymer, 2000,41,1551-1559
    [200] 马德柱,何平笙,徐种德等.高聚物的结构与性能.科学出版社,1999,北京
    [201] 翟茂林,哈鸿飞.水凝胶的合成、性质及应用.大学化学,2001,16 (5),24-29
    [202] 林海琳,崔英德,尹国强.电解质影响凝胶溶胀行为的研究进展——水的状态和凝胶的溶胀收缩.化学世界,2004,3,157-161
    [203] Hajime Muta, Susumu Kawauchi and Mitsuru Satoh. Ion-specific swelling behavior of uncharged poly(acrylid acid) gel. Colloid Polym. Sci.,2003,282,149-155
    [204] 陈先法,施亚钧.交联聚丙烯酰胺凝胶溶胀性能研究.化工装备技术,1991,12,1-4
    [205] 惠建斌,赵博欣,刘会洲等.中和反应、聚丙烯酸(盐)与质子敏感型智能水凝胶.化学通报,1999,7,50-53
    [206] Ghanshyam S. Chauhan, Swati Mahajan. Structure aspects and nature of swelling medium as equilibrium swelling determinants of acrylamide ande cellulosic-based smart hydrogels. J. Appl. Polym. Sci.,2002,85,1161-1169
    [207] 童真,刘新星.聚电解质凝胶的结构与体积相变.功能高分子学报,1993,6 (3),260-266
    [208] 织物结构与设计.中国纺织出版社,北京
    [209] 周庆.新型医用(血液)屏蔽织物的研究.天津纺织工学院博士学位论文,1999
    [210] Kuo-Lun Tung, Jia Shyan Shiau, and Ching-Jung Chuang et al. CFD analysis on fluid flow through multifilament woven filter cloths. Separa. Sci. Techn.,2002,37(4),799-821
    [211] Bruncher B. Caractérisation et Critères de Choix des Tissus Métalliqes Filtrants. Infos Chim.,1981
    [212] Chan A.W.,Hwang S..Anisotropic in plane permeability of fabric media. Polym. Engng. Sci.,1991,31,1233-1239
    [213] 朱庆勇,李毅.一个多孔有机织物热湿传递过程的数学模型.计算力学学报,2003,20 (6),641-648
    [214] Robertson, A.F..Air porosity of open weave fabrics. Text. Res. J.,1950,20, 838-857
    [215] Van den Brekel, L.D.M.,de Jong. E.J..Hydrodynamics in packed textile be-ds. Text. Res. J.,1989,59,433-440
    [216] Lu W.M.,Tung K.L., and Hwang K.J..Fluid flow through basic weaves of monofilament filter cloth. Text. Res. J.,1996, 66(5), 311-323
    [217] 周光坰,严宗毅,许世雄等.流体力学,高等教育出版社,2000,6,北京
    [218] 王其,翟函,薛斌.不同截面纤维的毛细管特性研究.合成技术及应用,2003,18 (3),3-7
    [219] 王达健,陈书荣,张雄飞等.多孔介质孔隙模型及其应用——毛细管束模型.计算机与应用化学,2001,18(5),429-432
    [220] 陶乃杰.染整工程(第四册),纺织工业出版社,1991,北京,p133-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700