蕨根淀粉理化性质及抗性淀粉制备工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蕨根中含淀粉20%~35%,是蕨根的主要组成物质。研究证明蕨根淀粉制品具有强身、健体、防癌、抗癌之功效,因此,开发前景十分广阔。本文以蕨根淀粉为原料,系统地研究了蕨根淀粉的基本理化性质和分子结构,并得出了压热法制备蕨根抗性淀粉的最佳工艺。主要结论如下:
     1.蕨根淀粉理化性质的研究
     运用扫描电镜、X-射线衍射仪、分光光度计、Brabender粘度计、差示扫描量热仪等仪器,对蕨根淀粉的颗粒形态、晶体类型、老化特性、流变学特性、糊化特性等进行了研究,并以玉米淀粉和马铃薯淀粉作对照。
     蕨根淀粉水分含量较低,灰分、蛋白质和粗脂肪含量均介于玉米淀粉和马铃薯淀粉之间,其组成成分为水分10.29%±0.17%、灰分0.31%±0.03%、蛋白质0.09%±0.01%、粗脂肪0.22%±0.02%。蕨根淀粉颗粒多数为卵圆形,部分为圆形和多边形,表面光滑无裂纹,平均粒径为14μm,粒径分布在7~28μm。蕨根淀粉颗粒的偏光十字接近于中心位置,且比较明显,多数呈十字型,部分呈“X”型,晶体结构属C型。
     蕨根淀粉糊的持水性和冻融稳定性较马铃薯淀粉差,但优于玉米淀粉,溶解度介于玉米淀粉和马铃薯淀粉之间。透光率为13.3%,较玉米淀粉和马铃薯淀粉差。蕨根淀粉糊放置7小时后澄清液体积百分比小,淀粉糊的凝沉性较弱。蕨根淀粉的老化值大于马铃薯淀粉小于玉米淀粉,且老化值受浓度的影响较大。
     蕨根淀粉糊的表观粘度随着温度的升高而降低;在一定的剪切力作用下,蕨根淀粉、玉米淀粉和马铃薯淀粉糊的表观粘度均随着剪切时间的增加而下降,表现为假塑性流体,属于剪切稀化体系,蕨根淀粉糊的剪切稀化现象较玉米淀粉和马铃薯淀粉弱。淀粉糊的Brabender粘度曲线表明:蕨根淀粉的峰值粘度明显高于玉米淀粉,略低与马铃薯淀粉,热稳定性和冷稳定性好。DSC图谱分析得出:蕨根淀粉的糊化温度较低,为58.94℃~71.73℃,其热焓值低于玉米淀粉和马铃薯淀粉,为12.86 J/g。
     蕨根淀粉凝胶表面脆性一般,不易破裂;内部的硬度不大,弹性很好,粘度大,在受到外力作用后,容易回复原有形状。
     2.蕨根淀粉分子结构的研究
     蕨根淀粉和玉米淀粉的直链淀粉含量分别为25.38%和20.33%,蕨根淀粉的直链淀粉含量较玉米淀粉高。
     碱液分散淀粉时的搅拌速度、直链淀粉从盐溶液中分离出来的速度、纯化时正丁醇和水的用量、离心速度和离心时的温度对直链淀粉和支链淀粉的分离及纯度有影响。
     用正丁醇重结晶法重结晶8次和5次可以得到纯度较高的蕨根直链淀粉和支链淀粉;蕨根直链淀粉和支链淀粉的分子量均小于玉米直链淀粉和支链淀粉。
     蕨根直链淀粉和支链淀粉与碘络合物的最大吸收波长分别为640nm和547nm;蕨根直链淀粉和支链淀粉的蓝值分别为0.91和0.13,均处于相应的分布范围内,表明纯化后的蕨根直链淀粉和支链淀粉的纯度较高。
     3.蕨根抗性淀粉制备工艺的研究
     压热法制备蕨根抗性淀粉的过程中,淀粉乳浓度、压热温度、pH值、压热时间和老化时间对蕨根抗性淀粉得率有不同程度的影响。通过三因素二次正交旋转组合设计,得出淀粉乳浓度、pH值、压热时间对蕨根抗性淀粉得率的影响大小次序为:淀粉乳浓度>pH值>压热时间。压热法制备蕨根抗性淀粉的最佳工艺条件为:淀粉乳浓度28.7%,pn值7.8,121℃压热处理38min,4℃老化24h,得到的蕨根抗性淀粉得率为10.94%。
     在淀粉乳浓度27.05%~28.02%,pH值7.48~8.00,压热时间29.68min~36.27min的优化参数条件下,蕨根抗性淀粉得率达8.5%以上的可能性有95%。
Occupying the proportion of about 35% in fern root, the starch is its main composition. Some researches have shown that fern root starch not only can strengthen our bodies, but also it has the function of preventing and killing cancers. Therefore, there is a vast range of prospects for exploiting fern root starch. With a view to that, the paper makes a systematic investigation of the physicochemical properties and the molecular structure of fern root starch, and deeply illustrates the best technology of making fern root resistant starch through autoclaving. The main results are as follows:
     1. Physicochemical properties of fern root starch
     Comparing with corn and potato starches, the granule shape, crystal type, retrogradation properties, rheological properties and gelatinization properties of fern root starch were studied by scanning electron microscope, X-ray diffraction, spectral photometer, Brabender viscosimeter and differential scanning calorimetry.
     Fern root starch contained little water, and the contents of its ashes, proteins, and fats were between those of com and potato starches. It consisted of 10.29%±0.17% of water, 0.31 %±0.03% of ashes, 0.09%±0.01% of crude protein and 0.22%±0.02% of fat. Most of fern root starch granules were oval, and a few of them were round and polygon in shape, which were smooth and of no cracks. The granules were around 7~28μm in diameter, and their average diameter was 14μm. The granules had a clear malte cross, most of which appeared cross-shaped, but some of which appeared X-shaped in the center. The crystalline pattern of fern root starch was C type.
     Comparing with corn and potato starches, fern root starch was less transparent. Its freeze-thaw stability and solubility were between them. Deposited for seven hours, fern root starch paste had little sedimentation. The degree of retrogradation value was greater than that of potato starch, and smaller than that of corn starch. The starch concentration of the paste had great influence on its retrogradation value.
     The higher the temperature was, the lower the apparent viscosity of fern root starch paste becomed. Affected by certain shearing force, the apparent viscosity of fern root, corn and potato starch pastes would decrease as the shearing time increases. Appearing a kind of pseudoplastic fluid, they belong to shearing dilution system. Shearing dilution of fern root starch paste was weaker than that of corn and potato starches. The Brabender viscosity analyses of starch pastes indicated that the peak viscosity of fern root starch was obviously higher than that of corn starch, and a little lower than that of potato statch. Moreover, it had the property of good heat and cold paste stability. DSC thermograms of fern root starch showed that the gelatinization temperature, being from 58.94℃to 71.73℃, was slow ,and enthalpy, being 12.86 J/g, was lower than those of potato and corn starches.
     Being not easy to break, the surface of fern root starch gelatinization was not very brittle. Its inside was not very hard, but was elastic and of high viscosity. Affected by outside forces, fern root starch gelatinization was easy to return the original form.
     2. Molecular structure of fern root starch
     Being in the proportion of 25.38 %, the amylose content of fern root was more than that of corn starch, which was in the proportion of 20.33 %.
     The fractionation of amylose and amylopection, and their purity were affected by the blending speed of dispering starch in base solution, the velocity of separating amylose from saline solution, centrifugal speed and temperature.
     Highly pure amylose and amylopectin can be successfully separated from fern root starch by means of 1-butanol and re-crystallization for 8 times and 5 times. The molecular weights of fern root amylose and amylopectin is smaller than those of corn starch.
     Theλ_(max) of starch-iodine complexes of fern root amylose and amylopectin were 640nm and 547nm respectively. Being 0.91 and 0.13 respectively, the blue values were in the corresponding range, which indicated that fern root amylose and amylopectin were of high-purity.
     3. Preparation technology of fern root resistant starch
     In resistant preparation, the yield of fern root resistant starch was somewhat influenced by starch concentration, autoclaving temperature, pH value, autoclaving time and retrogradation time. The results of three-factor and two-dimensional revolving orthogonal combinatorial design showed that the subsequence of influence was like this: starch concentration>pH values >autoclaving time. The optimum of preparation process for fern root resistant starch was as follows: starch concentration being 28.7%, its pH being 7.8, the starch had been heated for 38minutes at 121℃,then retrograded for 24 hours at 4℃, and the yield was 10.94%.
     On the optimized conditions, starch concentration being 27.05 %~28.02%, pH being 7.48~8.00, autoclaving time being 29.68min~36.27min, the possibility reached above 8.5% of the fern root resistant starch's yield was 95 %.
引文
[1]蔡自建,陈炼红,刘鲁蜀.蕨根淀粉分离及颗粒性质研究[J].西南民族大学学报(自然科学版),2005,31(6):936-938
    [2]潘航宇.蕨粉与葛粉[J].家庭中医药,2005,12(5):53-53
    [3]刘媛,程治英,龙春林等.蕨类植物的综合利用价值[J].西南园艺,2006,6(34):39-41
    [4]阿衣木姑阿布拉,苏力坦 阿巴白克力.蕨类植物的综合利用价值[J].生物技术通讯,2006,3:480-483
    [5]刘文英.蕨菜及蕨根粉的加工利用[J].云南农业科技,1999,4:33
    [6]戴锡玲,李新国.药用蕨类植物资源研究及其开发利用[J].资源开发与市场,2003,1(6):397-399
    [7]黄能慧 李诚秀,李玲等.蕨粉的实验研究Ⅱ[J].贵阳医学院学报,1998,12,23(4):332-334
    [8]刘喜军,李青山,富彦珍.蕨淀粉的开发与应用[J].化工时刊,1999,9:20-22
    [9]曹清明,钟海雁,李忠海等.蕨根淀粉糊化温度测定及影响因素研究[J].食品与机械,2007,5,23(3):16-19
    [10]杨海荣,李忠海,钟海雁.蕨的加工利用现状及发展展望[J].湖南林业科技,2005,32(6):61-63
    [11]王文平,周文美.蕨根粉条的研制[J].食品科技,2004,2:30-31
    [12]周文美.即食蕨粉羹的研制[J].食品工业(上海),2003,24(6):37-38
    [13]储召华,郝佳霞.氧化淀粉粘合剂制备工艺的研究[J].黑龙江农垦师专学报,2000,14(1):78-80.
    [14]Raeker,M.D.,Gaines,C.S.,Finney,P.L.,Donelson,T.Granules Size Distribution and Chemical Composition of Starches from Soft Wheat Cultivars[J].Cereal Chem.,1998,5:721-728
    [15]Lindeboom N,Peter R C,Analytical,Biochemical and Physicochemical Aspects of Starch Granule Size,with Emphasis on Small Granule Starches[J].Starch,2004,56:89-99
    [16]刘亚伟.淀粉生产及其深加工技术[M].北京:中国轻工业出版社,2001:194-215
    [17]姚大年,浏广田.淀粉理化特性、遗传规律及小麦淀粉与品质的关系[J].粮食与饲料工业,1997.2:36-38
    [18]张本山,张有全,杨连生等.玉米、木薯及马铃薯淀粉颗粒微晶结构及性质的研究[J].食品科学,2001,22:11-14
    [19]二国二郎,淀粉科学手册[M].轻工业出版社,1980:163-165
    [20]胡强,孟岳成.淀粉糊化和回生的研究[J].食品研究与开发,2004,25(5):63-65
    [21]谢碧霞,钟秋平,谢涛等.淀粉的特性与应用研究现状及发展对策[J].经济林研究,2004,22(4):61-64
    [22]张力田.淀粉的糊化和淀粉糊[J].淀粉与淀粉糖,2001,3:1-3
    [23]张璐.淀粉的糊化以及测定方式的发展与探讨[J].粮食与饲料工业,2001,8:43-45
    [24]江美都,顾振宇,王强林等.板栗淀粉加工特性的研究[J].中国粮油学报,2001,16(6):55-58
    [25]钟丽玉,俞霄霖,洪丹等.大米糊化特性曲线探讨[J].无锡轻工业学报,1988,7(2):27-29
    [26]李向红.γ菱角淀粉理化特性的研究及其改性淀粉的开发[D].湖南:湖南农业大学,2004:13-14
    [27]杜先锋,许时婴,王璋.淀粉糊的透明度及其影响因素的研究[J].农业工程学报,2002,1(18):129-131
    [28]于天峰.马铃薯淀粉的糊化特性、用途及品质改良[J].中国马铃薯,2002,19(4):223-225
    [29]Craig S A,Maningat C C,Seib P A,et al.Starch Paste Clarity[J].Cereal Chem,1989,66(3):173-182
    [30]赵思明,熊善柏,张声华.淀粉糊物系及其老化特性研[J].中国粮油学报,2001,16(2):18-21
    [31]王琴,陈文青,温其标.银杏淀粉流变特性的初探[J].食品科学2006,27(9):93-96
    [32]袁超,刘亚伟.小麦淀粉流变学特性分析[J].粮食与油脂,2005,2:18-19
    [33]宁正祥,赵谋明.食品生物化学[M].广州:华南理工大学出版社,1999:2
    [34]丁文平,王月慧,夏文水.脉冲核磁共振和DSC测定淀粉回生的比较研究[J].粮食与饲料工业,2006,1:43-44
    [35]Zeng M,Morris C F,Batey I L,Wrigley C W.Sources of Variation for Starch Gelatinization,Pasting and Gelation Properties in wheat[J].Cereal Chemistry,1997,74(1):63-71
    [36]黄华宏.甘薯淀粉理化性质研究[D].杭州:浙江大学,2002:10-11
    [37]Cheetham N W H,Tao L P.The Effects of Amylase Content on Amylose Molecular Size and on The Average Chain Length of Maylopectin in Maize Starches[J].Carbahydrate Polymers,1997,33:251-261
    [38]韩文凤,邱泼,孙庆杰等.淀粉凝胶研究进展[J].粮食与饲料工业,2006,7:26-27
    [39]Fredriksson H,Silverio J,Andersson R,et al.The Influence of Amylose and Amylopectin Characteristics on Gelatinization and Retrogradation Properties of Different Starches[J].Carbohydrate Polymers,1998,35:119-134
    [40]丁文平,蒲萍萍,丁霄霖.大米淀粉理化指标对其凝胶特性的影响[J].无锡轻工大学学报,2002,21(5):477-480
    [41]梁灵,魏益民,张国权等.小麦淀粉凝胶质构特性研究[J].中国食品学报2004,4(3):33-38
    [42]Hanashiro I,Takeda Y.Examination of Number-average Degree of Polymerization and Molar-based Distribution of.Amylose by Fuorescent Labeling with 2-aminopyridine[J].Carbohydrate Research,1998,30 6(3):421-426
    [43]姚远,丁霄霖,吴加根.淀粉回生研究进展(I)回生机理、回生测定方法及淀粉种类对回生的影响[J].中国粮油学报,1999,14(2):24-31
    [44]卢敏,殷涌光.稻米直链淀粉研究进展[J].食品科技,2005,8:5-7
    [45]Lelivere J,Lewis J A and Marsden K.The Size and Shape of Smylopectin:A Study Using Analytical Ultracentrifugation[J].Carbohydr.Res.1986,153:195-203
    [46]Jay-lin Jane.支链淀粉的结构及其对淀粉性质的影响[J].木薯精细化工,2002,1:19-21
    [47]张力田.支淀粉和链淀粉的分离[J].淀粉与淀粉糖,1980(1):1-7
    [48]Gabriela G and Walther B.Starch Fractions as Examples for Nonrandomly Branched Macromolecules[J].Carbohydrate Research,1997,30:45-53
    [49]姚新灵.内源淀粉特性比较研究[J].世界科技研究与发展,2000,23(3):48-51
    [50]刘亚伟.淀粉生产及其深加工技术[M].北京:中国轻工业出版社,2001:45
    [51]R L惠斯特勒.淀粉的化学与工艺学[M].北京:中国食品出版社,1987:13
    [52]Paul Colonna,Christiane Mercier.Macromolecular Structure of Wrinkled and Smooth Pea Starch Components[J].Carbohydrate Research,1984,126:233-247
    [53]Takeda Y,Hizukuri S,Juliano B O.Purification and Structure of Amylose from Rice Starch[J].Carbohydrate Research,1986,148:299-308
    [54]Lamartine F.Hood,Christiane Mercier.Molecular Structure of Unmodified and Chemically Modified Maniac Starches[J].Carbohydrate Research,1978,61:53-66
    [55]Yasuhito Takeda,Kanako Shirasaka,Susumu Hizukuri.Examination of The Purity and Structure of Amylose by Gel-permeation Chromatography[J].Carbohydrate Research,1984,132:83-92.
    [56]Jane J,Chen J.Effect of Amyloe Molecular Size and Amylopectin Branch Chain Length on Paste properties of Starch[J].Cereal Chemistry,1992,69:60-65
    [57]敖自华,王璋,许时婴等.银杏淀粉的分离纯化[J].食品科学,2001,22(1):23-25
    [58]Judith Marlet.Comparison of Invitro and Invivo Measures of Resistant Starch in Selected Grain Products[J].Cereal chemistry,1996,73(1):63-68
    [59]王萍.抗性淀粉功能及在食品中应用[J].粮食与油脂,1999,4:53-54
    [60]陈光,高俊鹏,王刚等.抗性淀粉的功能特性及应用研究现状[J].吉林农业大学学报,2005,27(5):578-581
    [61]Ous Y.Sturdy of Possible Role of Dietary Fiber in Lowering Postprandial Serum Glucose[J].Journal of Agricultural and Food Chemistry,2001,9(1):312-316
    [62]王忠华.抗性淀粉形成的影响因素研究进展[J].食品工业科技,2007,28(7):216-219
    [63]Faraji A,Vasanthan T,Hoover R.The effect of extrusion cooking on resistant starch formation in waxy and regular baley flours[J].Food Research,2004,37:517-522
    [64]Kishida T,Nogami H,Himeno S,et al.Heat moisture treatment of high amylose corn starch increases its resistant starch content but not its physiologic effects in rats[J].Journal of Nutrition,2001,131:2716-2721
    [65]Parchure A A,Kulkami P R.Effect of Food Processing Treat merits on Generation of Resistant Starch[J].International J Food Science Neutral,1997,48(4):257-260
    [66]Longton J,Legrys GA.DSC Studies on The Crystallinity of Aging Wheat Starch Gels[J].Starch,1981,33(12):410-414
    [67]衣杰荣,姚惠源.温度对抗性淀粉形成的影响[J].粮食与饲料工业,2001,8:37-38
    [68]余焕玲,阚建全,陈宗道.影响抗性淀粉形成因素[J].粮食与油脂,2001,4:29-31
    [69]李光磊.抗性淀粉的制备及特性研究[D].沈阳:沈阳农业大学,2006:14-15
    [70]Chandrashekar A,Kirleis A W.Influence of protein on starch gelatinizationinsorghum[J].CerealChemistry,1988,65(6):457-462
    [71]Escarpa A,Gonzalez,M C,Manas E J.An approach to the influence of nutrients and other food constituents on resistant starch formation[J].Journal of Agricultural Food Chemistry,1997,60(4):527-532
    [72]Eliasson A C,Finstad H,Ljunger G.A study of starch- lipid interactions for some native and modified maize starch[J].Starch,1988,40:95-100
    [73]Kaur K,Singh N.Amylose- lipid complex formation during cooking of rice flour[J].Food Chemistry,2000,71:511-517
    [74]赵凯,张守文,方桂珍.抗性淀粉的生理功能及其在食品工业中的应用[J].哈尔滨商业大学学报(自然科学版),2002,18(6):661-663
    [75]李晓玺,温其标.抗酶解淀粉的研究进展及其在食品工业中的应用[J].武汉工业学院学报,2000(3):14-16
    [76]吴建平.抗消化淀粉的研究进展及其应用前景[J].食品与发酵工业,1998,25(2):66-70
    [77]BILIADERS CG.The Structure and Interactions of Resistant Starch with Food Constituents[J].Physio.Ph armacol,1991,69:60-78
    [78]郑建仙.低能量食品[M].北京:中国轻工业出版社,2001:25-30
    [79]GB5497-85
    [80]GB12086-89
    [81]GB5512-85
    [82]李秀娟,杨萍,钟敏等.龙眼核淀粉颗粒性质的研究[J].食品工业科技,2003,6:17-19
    [83]熊文雯,高群玉,李琳.扁豆淀粉性质的研究[J].食品科技,2004,10:20-23
    [84]吴雪辉,何淑华,谢炜琴.薏米淀粉的颗粒结构与性质研究[J].中国粮油学报,2004,3(19):35-37
    [85]李忠海,徐廷丽,孙昌波等.3种百合淀粉主要理化性质的研究[J].食品与发酵工业,2005,31(5):5-8
    [86]朱乐敏.关于胡萝卜淀粉特性的研究[J].食品工业科技,2005,6:99-100
    [87]R.Hoover,G.Swamidas,L.S.Kok.Composition and Physicochemical Properties of Starch from Pearl Millet Grains[J].Food Chemistry,1996(4):355-367
    [88]徐明生,吴磊燕,吴少福.葛根淀粉物理特性研究[J].江西农业大学学报(自然科学版),2002,8(4):484-486
    [89]唐联坤.淀粉糊化、老化特性与食品加工[J].陕西粮油科技,1996,21(3):26-29
    [90]张守文.大米陈化过程中的质量变化及品质改良的研究[J].中国粮油学报,1997,1(12):10-15
    [91]于长筹.酸改性淀粉流变学特性研究及其在凝胶型糖果中的应用[D].广州:华南理工大学,2005:18
    [92]袁超,刘亚伟.小麦淀粉流变学特性分析[J].粮食与油脂,2005,2:18-22
    [93]张元超,李伟雄,黄立.赤小豆淀粉性质的研究[J].食品科学,2006,27(3):45-47
    [94]孙忠伟,张燕萍.芋头淀粉糊的粘度性质[J].无锡轻工大学学报,2004,23(6):68-72
    [95]黄华宏,陆国权,舒庆尧.高色素甘薯淀粉糊化特性的基因型差异[J].作物学报,2005,5(31):92-96
    [96]丁文平,王月慧,夏文水.脉冲核磁共振和DSC测定淀粉回生的比较研究[J].粮食与饲料工业,2006,1:43-44
    [97]潘明.马铃薯淀粉和玉米淀粉的特性及其应用比较[J].中国马铃薯,2001,4:222-226
    [98]刘洁,刘亚伟.直链淀粉与支链淀粉的分离方法[J].粮食与饲料工业,2005,2:15-17
    [99]孙成斌.直链淀粉于支链淀粉的差异[J].黔南民族师范学院学报,2000(2):36-38
    [100]倪小英.浅谈稻米直链淀粉含量的测定[J].粮食科技与经济,2006,4:46
    [101]袁建,杨晓蓉,王肇慈.稻米直链淀粉含量测定方法的研究[J].粮食贮藏,2000,1:38-43
    [102]谢涛,陈建华,谢碧霞.橡实直链淀粉与支链淀粉的分离纯化[J].中南林学院学报,2002(6):30-34
    [103]杜先峰,王璋,许时婴.葛根直链淀粉和支链淀粉分离纯化的研究[J].食品与发酵工业1998,24(4):18-21
    [104]洪雁,顾正彪,刘晓欣.直链淀粉和直链淀粉纯品的提取及鉴定[J].食品工业科技,2004,4:86-88
    [105]史俊丽.超微细化大米淀粉的制备和性质研究[D].武汉:华中农业大学,2005:14
    [106]吉宏武,丁霄霖.马铃薯直链淀粉与支链淀粉的分离方法[J].食品科技,2000,6:6-7
    [107]冷明新,郑淑芳,王涛.马铃薯全粉蓝值的测定[J].山西食品工业,2001,4:39-40
    [108]Englyst HN,Andersen V,Cummings J H.Starch and Non-starch Polysaccharides in Some Cereal Foods[J].Sci Food Agric,1983,34,1434-1440
    [109]Euresta.European Flair-concerted Action on Resistant Starch,news letter Ⅳ,September,human nutrition department[M].Wageningen,The Netherlands:Wageninggen Agriculture University,1993:2
    [110]张钟,魏小波.玉米抗消化淀粉的制备及物理性质研究[J].食品科学,2004,25(9):121-124
    [111]聂凌鸿,王志芳.马铃薯抗性淀粉的制备及其性质[J].安徽农业科学,2007,35(16):4928-4929.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700