橡实淀粉加工特性的变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步、经济的发展、人们生活水平的提高,传统种植的粮食作物已越来越不能满足国民的需要,人们追求食物的绿色、营养、保健,这些都促使我国的食品行业要进一步开发利用野生食物资源。野生淀粉植物种类繁多,蕴藏量大,分布广泛,开发利用价值极高,因此挖掘天然植物资源,势在必行,也成为了一种新潮流。橡实是最大的木本粮食资源,近几十年来,橡实的食用价值引起植物学家的兴趣,一些科研单位和生产管理部门对橡实种质资源分布、加工利用做了一些研究。国外有植物学家曾预言,橡实将成为未来的“粮食作物”和天然保健食品。
     本研究以4种野生橡实淀粉为材料,采用多因素控制对橡实淀粉进行高压处理、超微粉碎处理、湿热处理,系统研究高压处理、超微粉碎处理、湿热处理以及各因素对橡实淀粉加工特性影响变化规律,为开发利用这一丰富野生淀粉资源提供理论依据。
     采用X-衍射仪、Brookfield DV-II+粘度计、TA-XT2i质构仪等先进设备测定处理后淀粉的晶体特性、粘度、凝胶等特性,用采方差分析、回归拟合、响应面分析、灰色系统理论评价等方法进行科学系统分析,得到如下主要结论:
     (1)高压处理对橡实淀粉的晶体特性、粘度特性、流变特性、溶解特性、透光率、酶解率、回生特性、凝胶特性、凝沉特性有极显著影响。
     高压处理时淀粉的含水率对橡实的粘度、流变特性的剪切应力、溶解特性的膨润力、回生率、凝胶体的粘结性的影响呈正相关关系,即其值随高压处理时的含水率增加而增加,而对淀粉晶体结晶度、溶解特性的溶解度、酶解率、凝胶体的硬度、脆性、粘合性、咀嚼性的影响正好相反。高压处理时淀粉的含水率对透光率的影响呈山峰形,含水率55%是透光率的峰值。而对凝沉率的影响正好相反。高压处理的压力大小对淀粉流变特性的剪切应力、淀粉凝胶体的粘结性的影响呈正相关关系,即其值大小随压力加大而增加;而淀粉的结晶度、回生率的影响正好相反。
     高压处理的压力大小对淀粉的溶解度、酶解率、粉凝胶体回复性的影响曲线呈马鞍形,压力在150-350 MPa之间是其鞍部的峰值。而对淀粉的粘度特性、流变特性的剪切应力、溶解特性的膨润力、透光率、凝胶体的脆性、凝沉率的影响正好相反,呈凹槽形。
     高压处理需水分参与下经一定压力时间积累实现淀粉变性,在一定条件下压力不足时可以通过增加保压时间来补偿。
     (2)超微粉碎处理在一定时间内,不会改变淀粉的晶体类型,超过这一极限淀粉晶体就会转化成非晶体状态。淀粉的溶解特性、酶解率、淀粉凝胶体的硬度、粘合性、咀嚼性、回复性随超微时间延长而升高,而淀粉的晶体晶粒大小、结晶度、淀粉粘度、剪切应力、淀粉透光率、回生特性、淀粉凝胶体的粘结性则随超微时间延长而降低。
     用淀粉粒径大小表示对超微粉碎淀粉特性的影响,可降低超微时间表示函数的级次,即由用超微时间表示的生长函数降为用淀粉粒径大小表示的线性函数。
     (3)湿热处理能改变淀粉的晶体特性、粘度特性、流变特性、溶解特性、透光率、酶解率、回生特性、凝胶特性、凝沉特性。湿热处理的含水率、温度、处理时间对淀粉综合影响力的顺序为:含水率>处理时间>处理温度,即可得出湿热处理对橡实淀粉特性的影响是要在水的参与下,通过时间的积累来实现的。
     在湿热处理温度和处理时间一定时,橡实淀粉的结晶度、粘度、溶解度、酶解率和淀粉凝胶体的硬度、脆性、粘附性、弹性、粘合性、咀嚼性、回复性、粘结性随湿热处理时的含水率的增加而降低;橡实淀粉的流变剪切应力、膨润力、透光率、回生特性等表现则正好相反。
     在湿热处理的含水率和处理时间一定时,橡实淀粉的结晶度、粘度、剪切应力、膨润力、酶解率和淀粉凝胶体的弹性、回复性与湿热处理的温度呈负相关关系。而淀粉的溶解度、透光率、回生特性、凝沉特性则呈正相关关系。淀粉凝胶体的硬度、脆性、粘附性、粘合性、咀嚼性与处理温度呈抛物线关系,处理温度100℃是其峰值。
     在湿热处理的含水率和处理温度一定时,橡实淀粉的剪切应力、溶解度、膨润力、酶解率与处理的时间呈负相关关系。而淀粉的结晶度、粘度、透光率、回生特性则呈正相关关系。淀粉凝胶体的硬度、脆性、粘附性、粘合性、咀嚼性、回复性与处理时间呈抛物线关系,处理时间1h是其峰值。
     与目前淀粉研究比较,本研究有如下主要创新:
     (1)高压处理需水分参与下经一定压力时间积累实现淀粉变性,在一定条件下压力不足时可以通过增加保压时间来补偿,完善了高压处理淀粉的理论系统。
     (2)用淀粉粒径大小表示对超微粉碎淀粉特性的影响,可降低超微时间表示函数的级次,即由用超微时间表示的生长函数降为用淀粉粒径大小表示的线性函数。
     (3)湿热处理的含水率、温度、处理时间对淀粉综合影响力的顺序为:含水率>>处理时间处理温度。
     (4)提出了用粘度仪测定淀粉的回生特性的新方法。
     本文较为系统地研究三种物理方法对淀粉加工特性的影响,为淀粉的深加工提供了较丰富理论基础,但是在研究过程中作者认为在以下三个方面应进一步加强后续研究和思考:
     (1)由于高压处理会产生升温现象,建议在今后的高压处理研究中应考虑温度这一因素。
     (2)超微粉碎的载体等因素对淀粉特性有一定的影响,如果深入超微粉碎对淀粉加工特性时,应考虑载体因素。
     (3)淀粉热力特性是一个比较重要加工特性,建议加强这方面的研究。
With the increasing of the society, economy and people's life, the traditional crops can not be satisfied. And the food industry has to develop and utilize wild resources to satisfy people's requirement to the food, which is non-pollution, nutrition and health. The wild starch plants have plenty varieties, vast numbers, common distribution, and excellent useful values. Therefore, it is necessary to develop natural plants resources, which is becoming modern fashion. The acorn is the largest woody crops resources. In recent several ten years, the botanists pay their attention to the edible value of the acorn, and some research and industry departments studied the distribution and process of the acorn resources. A foreign botanist predicted that the acorn would be the crops and natural healthy food in the future.
     The effects of high pressure treatment, micronization treatment, heat moisture treatment on the processing regularities of 4 kinds of wild acorn starches were studied, which provides the academic basis to develop them.
     The crystal properties, adhesiveness and gelling of the treated starches were measured by using X-ray diffraction, Brookfirld DV-II+ viscosimeter, and TA-XT2i texture analyzer. The key conclusions were summarized with variance analysis, regression fitting, response analysis and grey system theory evaluation.
     (1) The high pressure treatment effected on crystal properties, viscosity properties, rheological properties, Solubility properties, transparence, enzyme hydrolysis, retrogradation property, gelling and retrogradation property notably.
     With high pressure treatment, the effects of the moisture content on adhesiveness, shear stress, bentonite power, retrogradation and cohesiveness were positive skewed. In another words, their values increased with the increasing of the moisture content. And the effects of the moisture content on crystallinity, Solubility, enzyme hydrolysis, and hardness, fracturaturaility, gumminess and chewiness of the gell were opposite to the above ones. The effects of the moisture content on transmission showed as a slope, and the highest value showed up when the moisture content was 55%. And its effects on retrogradation were opposite. The effects of pressure on shear stress and gumminess were positive skewed, and their values increased with the pressure increasing. And the effects on crystallinity and retrogradation were opposite.
     The effects curve of the pressure on dissolution, enzyme hydrolysis and resilience of the powder gel showed as a saddle, and the highest value showed up when the pressure was 150~350 MPa. And its effects on adhesiveness, shear stress, bentonite power, transparence, fracturability and retrogradation were opposite, which was a fillister.
     The properties of starch changed with the condition of the moisture and proper time under high pressure. And it can be achieved by prolonging time if pressure is not big enough.
     (2) The crystal can not be changed only if the time of the micronization treatment is long enough. The solubility, enzyme hydrolysis, hardness, gumminess, chewiness and resilience increased with the prolonging treatment time, and the crystal size and rate, adhesiveness, shear stress, transparence, retrogradation and cohesiveness decreased with the prolonging treatment time.
     Using the diameter of the starch to indicate the effects of the micronization on the starch properties can decrease the times of the micronization time in a funtion. In another words, the function can become a linear one by using starch diameter instead of a growth function by using micronization time.
     (3) The heat moisture treatment can change crystal properties, viscosity properties, rheological properties, solubility properties, transparence, enzyme hydrolysis, retrogradation property, gelling and retrogradation property. The increased order of the effects of moisture content, temperature and treatment time on the starch was moisture content, time and temperature. The effects of the heat moisture treatment on the starch were achieved by the time accumulating participated by water.
     Under certain temperature and time, the crystal, viscosity, solubility, enzyme hudrolysis of the starch, and the hardness, fracturability, adhesiceness, springiness, gumminess, chewiness, resilience and cohesiveness of the gel decreased as the moisture contents increasing. And the reflection of the shear stress, bentonite power, transparence and retrogradation property were the opposite.
     Under certain temperature and time, the crystal, viscosity, shear stress, bentonite power, enzyme hydrolysis of the starch, and the springiness and resilience of the gel were appositive skewed with the temperature of the treatment. And the solubility, transparence, retrogradation and retrogradation property were positive skewed. The hardness, fracturability, adhesiveness, gumminess and chewiness showed a parabolic curve with the temperature, and the highest value showed up when the temperature was 100℃.
     Under certain moisture content and temperature, the shear stress, solubility, bentonite power and enzyme hydrolysis were appositive skewed with the treatment time. And the crystal, viscosity, transparence and retrogradation property were positive skewed. The hardness, fracturability, adhesiveness, gumminess, chewiness and retrogradation showed a parabolic curve with the treatment time, and the highest value showed up when the time was 1 h.
     The innovations in this study are as below:
     (1) The properties of starch changed with the condition of the moisture and proper time under high pressure. And it can be achieved by prolonging time if pressure is not big enough, which completed the theory system of treating starch with high pressure.
     (2) Using the diameter of the starch to indicate the effects of the micronization on the starch properties can decrease the times of the micronization time in a funtion. In another words, the function can become a linear one by using starch diameter instead of a growth function by using micronization time.
     (3) Under the heat moisture treatment, the increased order of the comprehensive effects of moisture content, temperature and treatment time on the starch was moisture content, time and temperature.
     (4) Using viscosimeter to measure the retrogradation property of the starch is put forward firstly.
     The effects of three kinds of physical methods on the process properties of the starches were studied systematically, which supplied plenty theory method for further process of the starches. However, three topics below should be continued:
     (1) The temperature will increase with the high pressure treatment, therefore, temperature should be noticed.
     (2) The carrier of micronization will influence the starch properties, and it should be noticed when further studying the starch process properties.
     (3) The heat properties of the starch is one of the important process properties, and it should be focused on.
引文
[1]刘延奇,于九皋,孙秀萍.B型淀粉球晶的制备及表征[J].精细化工,2004,21(2):137-140.
    [2]张正茂,史俊丽,赵思明,等.超微细化大米淀粉的形貌与润涨特性研究[J].中国粮油学报,2007,22(2):40-44.
    [3]R.J.惠斯特,J.N.贝密勒,E.F.帕斯卡尔.淀粉的化学与工艺学[M].北京:中国食品出版社,1985.
    [4]付陈梅,阐建全,陈宗道,等.微孔淀粉研究进展[J].粮食与油脂,2003,(1):9-11
    [5]顾正彪.我国淀粉及其深加工工业现状和发展趋势[J].食品与饲料工业,2002,(8):7-9.
    [6]姜锡瑞.酶制剂应用技术[M].北京:中国轻工业出版社,1996.26-28.
    [7]刘亚伟.玉米淀粉生产及转化技术[M].北京:化学化业出版社,2003,3.
    [8]张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2002,3.
    [9]吴建平.抗消化淀粉的研究进展及其应用前景[J].食品与发酵工业,1999(2):16-19.
    [10]何钢,谢碧霞,谢涛.淀粉品质特性研究进展[J].经济林研究,2003,21(4):112-116.
    [11]李秀娟,杨萍,钟敏,等.龙眼核淀粉颗粒性质的研究[J].食品工业科技,2003,24(6):17-19.
    [12]吴雪辉,黄永芳,谢治芳,等.百合淀粉颗粒结构与性质研究[J].食品科学,2004,25(2): 43-45.
    [13]李兆丰,顾正彪,洪雁.豌豆淀粉的研究进展[J].食品与发酵工业,2003,29(10):70-74.
    [14]高群玉,周俊侠,张力田.豌豆淀粉颗粒性质的研究[J].粮食与饲料工业,1998(6):42-45.
    [15]徐志祥,高绘菊.板栗淀粉特性研究进展[J].食品研究与开发,2004,25(6):6-8.
    [16]李志西,毛加银,张莉,等.板栗淀粉颗粒特性研究[J].中国粮油学报,1999(3):15-17.
    [17]姚远,丁霄霖,吴加根.淀粉回生研究进展[J].中国粮油学报,1999(2):24-31.
    [18]P Lebail, H Bizot, A Buleon. B-type to A-type Phase Transition in Short Amy lose Chains[J]. Carbohydrate Polymers,1993,2, (2-3):99.
    [19]宋志刚,王建华,王汉忠,等.粉葛淀粉的理化特性[J].应用化学,2006,23(9):974-977.
    [20]阂燕萍,陈宗道,钟耕,等.藕淀粉的加工性能研究[J].农业工程学报,2007,23(1):259-263.
    [21]黄强,罗发兴,杨连生.淀粉颗粒结构的研究进展[J].高分子材料科学与工程,2004,20(5):19-23.
    [22]L.S. Collado, L. B. Mabesa, C. G. Oates. Bihon-Type Noodles from Heat-Moisture-TreatedSweet Potato Starch [J]. Journal of Food Science,2001, 66 (4):604-609.
    [23]Galvez FCF, Resrreccion AVA, Ware Go. Process Variables, Gelatinized Starch and Moisture Effects on Physical Properties of Mungbean Noodles [J].Journal of Food Science,1994,59(5):378-381,386.
    [24]Kim WS, Wiesenborn DP. Starch Noodle Quality as Related to Potato Genotypes [J]. Journal of Food Science,1996,61:248-252.
    [25]姚献平,郑丽萍编著.淀粉衍生物及其在造纸中的应用技术[M].北京:中国轻工业出 版社,1999,1-19.
    [26]徐廷丽.百合淀粉理化性质及漂白工艺的研究[D].株洲,中南林学院,2003.
    [27]刘亚伟主编.淀粉生产及其深加上技术[M].北京冲国轻工业出版社,2001,194-215.
    [28]吴东孺.糖类的生物化学[M].北京:高等教育出版杜,1988.
    [29]顾雪蓉,陆云.高分子科学基础[M].北京:化学工业出版社,2003.
    [30]夏延斌.食品化学[M].北京:中国轻工业出版社,2001.
    [31]韩雅珊.食品化学[M].北京:中国农业大学业出版社,1998.
    [32]S. HSU, S. LU, C. HUANG. Viscoelastic Changes of Rice Starch Suspensions During Gelatinization[J]. Journal of Food Science,2000,65 (2):215-220.
    [33]张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2001.
    [34]李浪,周平,杜平定.锭粉科学与技术[M].郑州:河南科技出版社,1994.
    [35]陈楚,张云芳,王守海.单粒稻米直链淀粉含量测定法的改进[J].安徽农业科学,2005,33(2):196-197.
    [36]刘红疆,贾贵儒,李里特.稻谷直链淀粉快速检测的新方法[J].食品工业科技,2004,25(11):144-145.
    [37]李忠海,徐廷丽,孙昌波.3种百合淀粉主要理化性质的研究[J].食品与发酵工业,2005,31(5):5-8.
    [38]黄伟坤,唐英章,黄焕昌,等.食品检验与分析[M].北京:中国轻工业出版社,2000.
    [39]杨光,丁霄霖.直链淀粉定量测定方法的研究[J].食品工业,2000,(4):40-41.
    [40]天津轻工业学院生物化学教研室.食品化学实验(内部教材).1991,4:66-69.
    [41]赵萍,巩慧玲,赵瑛.不同品种马铃薯淀粉及其直链淀粉、支链淀粉含量的测定[J].2004,30(1):76-78.
    [42]王春霞,孙领霞,刘满英.双波长分光光度法测定河北省多种粮豆作物中直、支链淀粉含量[J].光谱实验室,1999,16(3):259-261.
    [43]J. S Bao, Y. Z Cai, H. Corke. Prediction of Rice Starch Quality Parameters by Near-Infraed Reflectance Spectroscopy[J].Journal of Food Science,2001, 66 (7):936-939.
    [44]Delwiche SR, Mckenzie ks, Webb BD. Quality Characteristics in Rice by Near-Infrared Reflectance Analysis of Whole-Grain Milled Samples[J]. Cereal Chemistry,1996,73:257-263.
    [45]Windham W, Lyon BG, Champagne ET, et al. Prediction of Cooked Rice Texture Quality Using Near-Infrared Reflectance Analysis of Whole-Grain Milled Samples[J]. Cereal Chemistry,1997,74:626-632.
    [46]Villareal CP, Cruz NMD, Juliano B0. Rice Amylose Analysis by Near-Infrared Transmittance Spectroscopy[J]. Cereal Chemistry,1994,71:292-296.
    [47]Delwiche SR, Bean MM, Webb BD, et al. Apparent Amylose Content of Milled Rice by Near-Infrared Reflectance Spectrophotometry[J]. Cereal Chemistry,1995, 72:182-187.
    [48]杨光,丁霄霖.直链淀粉提纯方法的研究[J].食品工业,2000(3):4-5.
    [49]H Chiou, M Martin, M Fitzgerald. Effect of purification methods on rice starch Structure[J].Starch/S take,2002,54:415-420.
    [50]杜先锋,许时婴,王璋.葛根直链淀粉和支链淀粉分离纯化的研究团.食品与发酵工业,1998,24(4):18-22
    [51]吉宏武,丁霄霖.马铃薯直链淀粉与支链淀粉的分离方法[J].食品科伎,2000(6):6-7.
    [52]敖自华,王璋,许时婴.银杏淀粉的分离和纯化[J].食品科学,2001,22(1):23-25
    [53]张林维.番薯淀粉组分的分级分离[J].食品科学,1999,20(3):15-18.
    [54]Scott J, Mcgrance, et al. A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products[J]. Starch,1998,50 (4):158-163
    [55]Christine E Jarvis. Simultaneous, Rapid, Spectrophotometric Determination of Total Starch, Amylose and Amylopectin [J]. J. Sci Food Agric,1993,63:53-57.
    [56]杜先锋,许时婴,王璋.葛根直链淀粉分子量的测定[J].合肥工业大学学报(自然科学版),2001,24(2):203-206.
    [57]杨光,丁霄霖.抗性淀粉分子量分布的研究[J].中国粮油学报,2000,15(5):50-53
    [58]Tetsuya Yamada, Keizi Suzuki, Hirotaka Katuzaki, et al. GPC Profile Change of Potato Starch with Extrusion Processing[J]. Starch,1990,42 (6):217-223.
    [59]曹清明.蕨根淀粉理化及加工特性的研究[D].长沙:中南林业科技大学,2005,12.
    [60]江美都,顾振宇,王强林,等.板栗淀粉加工特性的研[J].中国粮油学报,2001,16(6): 55-58.
    [61]张玉成,王换玉.高压食品加工技术[J].食品工业科技,1995,(5):60.
    [62]陈晋阳,黄卫.食品高压处理方法的研究和应用[J].化工时刊,2002,2:1-3.
    [63]马力.食品常温超高压处理的研究现状与发展前景[J].四川农业大学学报,1996,13(3):381-386,402.
    [64]何月娥.国外食品加工中高压处理技术的现状与动向[J].食品与机械,1993,33(1):38-40.
    [65]陈寿鹏.食品高压装置[J].食品科学,1996,17(11):55.
    [66]陆勤丰.高压处理技术在食品生产中的应用[J].湖州职业技术学院学报,2004,(1):81-83.
    [67]张建新,杜双奎,段旭昌.超高压处理对太白葛根淀粉理化特性的影响[J].农业工程学报,2007,23(4):269-271.
    [68]左春柽,张守勤,马成林,等.高压处理玉米淀粉的x射线衍射图谱分析[J].农业工程学报,1997,13(2):206-210.
    [69]叶怀义,邵延文,徐倩.高压对玉米淀粉糊化特性的影响[J].食品科学,1997,18(10):33-34.
    [70]李汴生,曾庆孝,彭志英.高压处理后大豆分离蛋白溶解性和流变特性的变化及其机理[J].高压物理学报,1999,13(1)22-27.
    [71]徐倩,邵延文,叶怀义.高压处理玉米淀粉糊化特性[J].黑龙江商学院学报(自然科学版),1999,15(3):9-12,24.
    [72]叶怀义,杨素玲,叶暾昊.高压对淀粉糊化特性的影响[J].中国粮油学报,2005,15(1):10-13.
    [73]胡晓丹,王建中,王晓楠.高压处理技术在食品工业中的应用[J].粮食与食品工业,2001,2:27-29.
    [74]李汴生,曾庆孝.食品的低温高压处理技术及其研究进展[J].食品与发酵工业,2000,27(1): 59-64。
    [75]黄惠忠.分析科学现代方法丛书—纳米材料分析[M].北京:化工出版社,2003.
    [76]李支霞,方世辉.超微粉在食品应用中的研究进展[J].茶业通报.2004.26(4):175-17.
    [77]盖国胜,徐政.超细粉体过程中物料的理化特性变化及应用[J].粉体技术,1997(6).
    [78]张憨,王亮.超微粉碎在食品加工中的研究进展[J].无锡轻工大学学报,2003,22(4):106-110.
    [79]张立德.超微粉碎制备与应用技术[M].北京:中国石化出版社,2001.23-77.
    [80]Young B D, Bryson A W, Van vliet B M. An evaluation of the technigue of polygonal harmonies for the characterization of Darticle shape[J]. Powder technol, 1990,63:157 159.
    [81]王亮.超微粉碎技术在食品加工中的应用[J].现代商贸工业,2004,(1):47-48.
    [82]JANE J. Preparation and properties of small-particle corn starch[J]. Cereal Chem.,1992(3).
    [83]李凤生.超细粉体技术.北京:国防工业出版社,2000.
    [84]姚怀芝,姚惠源.籼朱淀粉超微扮体的制备[J].食品科技,2003,(7):17-19.
    [85]胡飞,陈玲.微细化马铃薯淀粉的理化性质[J].无锡轻工大学学报,2002,21(5): 452-455.
    [86]胡飞,李平凡,陈玲.微细化马铃薯淀粉流变性质的研究[J].粮食与饲料工业,2002,(7):4143.
    [87]胡飞,陈玲.微细化马铃薯淀粉在微生物降解过程中形貌及结构变化的研究[J].食品与发酵工业,2002,28(12):5-9.
    [88]姚怀芝,涂清荣,姚惠源.籼米淀粉超微粉体的理化性质[J].食品工业,2003,(5):9-10.
    [89]姚怀芝,姚惠源.籼米淀粉超微粉体的制备及其性质[J].中国粉体技术,2003,(6):23-25.
    [90]潘思轶,等.不同粒度超微粉碎米粉理化特性研究[J].食品科学.2004(5):58-62.
    [91]赵海军,史建新.超微粉碎技术在食品加工中的应用[J].农产品加工,2004,2:28-29.
    [92]邓丹雯,黄赣辉.粉碎造粒新技术及其在食品工业中的应用[J].江西食品工业,2004,(4): 25-26.
    [93]Hoover, R., Manuel, et al. The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches[J]. Cereal. Sci,1996,23,153-162.
    [94]Hoover, R., Vasanthan, et al. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches[J]. Carbohydr Res,1994,252,33-53.
    [95]Lauro M. Suortti T. et al. Annealing of Starch at Intermediate Water Content[J]. Starch,1991(43):227-231.
    [96]Hjemstad E T. Potato Starch Properies by Controlled Heating in Aqueous Suspension[J]. U S Patent:3,578,497,1971.
    [97]Abraham, T.E. Stabilization of paste viscosity of cassava starch by heat-moisture treatment[J]. Starch,1993,45,131-135.
    [98]Hoover R, et al. The Effect of Annealing on the Physicochemical Properties of Wheat, Oat, Potato and Lentil Starches [J]. Food Boochem,1994(17):305-325.
    [99]Jacobs H, Eerlingen R C, et al. Impact of Annealing on the Susceptibility of Wheat. Potato and Pea Starches to Hydrolysis with Pancreatin[J]. Carbohydr Res,1997(305):193-207.
    [100]Jacobs H, et al. Evaluation of the Impact of Annealing on Gelatinization at Intermediate Water Content of Wheat and Potato Starches:a Differential Scanning Calorimetry and Small-angle X-ray Scattering Study [J].Carbohydr Res,1998(306):1-10.
    [101]罗志刚,高群玉,杨连生.湿热处理对淀粉性质的影响[J].食品科学,2005,26(2):50-54.
    [102]赵凯,张守文,方桂珍,等.湿热处理对玉米淀粉颗粒结构及热焓特性的影响[J].食品与发酵工业,2004,30(10):17-20.
    [103]罗志刚,高群玉,杨连生.湿热处理对淀粉分子结构的影响[J].食品科技.2004(7):14-16,20.
    [104]周秀琴.高食物纤维淀粉特性及其应用[J].粮食与油脂,1998,(3):5354.
    [105]肖玲,朱华跃,杜予民.湿热处理对壳聚糖/明胶共混膜结构与抗水性能的影响[J].武汉大学学报(理学版),2005,51(2):185-189.
    [106]戴军,顾正彪,唐忠.阻酶淀粉特性及影响因素综述[J].商业科技开发,1996,(1):14-18.
    [107]阮少兰刘亚伟阮竞兰.大米抗性淀粉制备工艺研究[J].粮食与饲料工业.2005(7):16-17.
    [108]刘亚伟张杰.酸解—水热处理对甘薯抗性淀粉形成的影响研究[J].食品科学.2003,24(6):41-45.
    [109]刘亚伟张杰.抗性淀粉制备工艺研究[J].食品与机械.2003(1).-19-20.
    [110]盛国华.湿热处理高直链玉米淀粉—难消化性淀粉在食品加工中的应用[J].淀粉与淀粉糖,2001(4):13-17.
    [111]Richard A Gross, Carmen Scholz. Biopolymers from Polysaccharides and AgroProteins (M).American Chemistry Society, WashingtonC,2001.
    [112]Feng M,Gao M,Abdel-Aal ESM, et al. Seperation and characterization of A-and-Type starch granules in wheat endosperm[J]. Cereal Chem,1999,73(3):375-379
    [113]Leloup V M, Colonna P, Ring S G. a-Amylase adsorption on starch crystallites [J]. Biotechnology and Bioengineering.1991,38:127-134.
    [114]Jacobs H, Mischenko N, Koch M H J, et al. Evaluation of the impact of annealing on gelatinisation at intermediate water content of wheat and potato starches: A differential scanning calorimetry and small ansle X-ray scattering study[J]. Carbohydrate Research.1998,306:1-10.
    [115]Paris M, Bizot H, Emery J, et al. Crystallinity and structuring role of water in native and recrystallized starches by 13CCP-MAS NMR spectroscopy:1: Spectral decomposition[J]. Carbohydrate Polymers,1999,39:327-339.
    [116]Waigh T A, Donald A M, Florian Heidelbach, et al. Analysis of the native structure of starch granules with small angle X-ray micmfoeus scattering[J]. Biopolymers, 1999,49:91-105.
    [117]Shin S I, Kim H J, Ha H J, et al. Effect of hydrothermal treatment on formation and structural characteristics of slowly digestible non-pasted granular sweet potato starch[J]. Starch/St(a)rke,2005,57:421-430.
    [118]S. Hug-Iten, F. Escher, and B. Conde-Petitl. Structural Properties of Starch in Bread and Bread Model Systems:Influence of an Antistaling α-Amylase[J]. Cereal Chemistry,2001,78(4):421-428.
    [119]Planchot V, Colonna P, Buleon A. Enzymatic hydrolysis of a-glucan crystallites[J].Carbohydr Res,1997,298(4):319-326.
    [120]Helbert W, Chanzy H, Planchot V, et al. Morphological and structural features of amylose spherocrystals of A-type[J]. int J Biol Macromol,1993,15:183-187.
    [121]Wang L F, Wang Y-J. Structure and physicochemical properties of acid-thinned corn, potato and rice starches[J]. Starch/Storke,2001,53(11):570-576.
    [122]M. Sikora, L. Juszczak, M. Sady, et al. Use of Modified Starches as Thickeners of Cocoa Syrups[J]. Food Science and Technology International, 2004,10(5):347-354.
    [123]Xiaohong Shi,James N.Bemiller. Aqueous leaching of derivatized amylose from hydroxypropylated common corn starch granules[J]. Starch/Starke,2002,54, 16-19.
    [124]Soest J J G, Hulleman S H D. de Wit D. et al Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity[J]. Carbohydrate Polymers.1996,29(5):225-232.
    [125]Ramkumar D H S, Bhattacharya M Effect of crystallinity on the mechanical properties of starch/synthetic polymer blends[J]. Journal of Materials Science,1997,32(10):2565-2572.
    [126]Rindlav Asa Hulleman, Stephan H D, Gatenholm PattiFormation of starch flints with varying crystallinity[J]. Carbohydrate Polymers,1997,34(1-2):25-30
    [127]L. M. Hallberg and P. Chinachoti. A Fresh Perspective on Staling:The Significance of Starch Recrystallization on the Firming of Bread[J]. Journal of Food Science,2002,67(3):1092-1096.
    [128]Krystyna Ciesla, Ewa Gwardys, Tadeusz Zoltowski. Changes of relative crystallinity of potato starch tinder gamma irradiation[J]. Starch,1991, 43(7):251-253.
    [129]Per Muhrbeck. on scrystallinity in cereal and tuber starches [J]. starch.1991, 43:347-348.
    [130]陈小明,蔡继文.单晶结构分析原理与实践[M].北京:科学出版社,2003.
    [131]张俐娜,薛奇,莫志深,等.高分子物理近代研究方法[M].武汉:武汉大学出版社,2003.
    [132]陈璥.淀粉的一项重要物理指标——粘度[J].淀粉与淀粉糖,2003,(1):1-6
    [133]瑞萍,叶英旭.淀粉类浆料的粘度测定[J].棉纺织技术,1999,27(9):522-525.
    [134]陈家明.淀粉和变性淀粉的粘度测定方法[J].纸,1999(1):26-28.
    [135]程科,陈季旺,许永亮,等.大米淀粉物化特性与糊化曲线的相关性研究[J].中国粮油学报,2006,21(6):4-8.
    [136]谭洪卓,谷文英,谢岩黎,等.甘薯淀粉粉团的流变行为研究[J].中国粮油学报,2006,21(4):76-80.
    [137]谭洪卓,谷文英,刘敦华,等.甘薯淀粉糊的流变特性[J].食品科学,2007,28(1):58-63.
    [138]赵安庆,张晓宇.淀粉粘度测定方法综述[J].甘肃联合大学学报(自然科学版),2005,19(2):87-88,58.
    [139]卢玉栋,吴宗华.糊化条件对淀粉溶解度及性能的影响[J].中国造纸学报,2003,18(1):94-96.
    [140]李向红,邓放明,刘展.菱角淀粉主要性质的研究[J].湖南农业大学学报(自然科学版),2004,30(4):363-366.
    [141]李建林,朱永义.黑米糊化特性的研究[J].中国粮油学报,2001,16(3):22-25
    [142]A Chandrashekar and A. W. Kirleis. Influence of protein on starch gelatinization in sorghum[J]. Cereal Chem,1988,65 (6):457-462.
    [143]顾正彪.淀粉糊的透明度[J].淀粉与淀粉糖,1991,1: 32-35.
    [144]Craig S A, Maningat C C, Seib P A, et al. Starch paste clarity [J]. Cereal Chem.,1989,66(3):173-182.
    [145]杜先锋,许时婴,王璋.淀粉糊的透明度及其影响因素的研究[J].农业工程学报,2002,18(1):129-131.
    [146]黄祖强,陈渊,童张法,等.机械活化对玉米淀粉的直链淀粉含量及老化特性的影响[J].食品与机械,2007,23(1):12-14,30.
    [147]李晓玺,温其标.抗酶解淀粉的研究进展及其在食品工业中的应用[J].食品工业,2000,21(3):72-74.
    [148]卢声字,温其标.抗酶解淀粉的酶分析方法[J].粮食与饲料工业,2000,2:43-44
    [149]唐联坤.淀粉糊化、老化特性与食品加工[J].陕西粮油科技,1996,21(3):26-29.
    [150]TRI Agus Siswoyo, Naofumi Morita. Influence of Acyl Chain Lengths in Mono and Diacyl-sn-glycerophosphatidylcholine on Gleatinization and Retrogradation of Starch[J]. Agric. Food Chem.,2001,49:4688-4693.
    [151]赵思明,熊善柏,张声华.淀粉糊物系及其老化特性研究注[[J].中国粮油学报,2001,16(2):18-21.
    [152]Fredrisson H, Slivefio J, AndelT-oson R, et al. llle Influence of Amylose and Amylopectin Characteristics on Gelatinization and Retrogradation Properties of Diferent Starches[JJ. carbOhydr Poly,1998,35:119-134.
    [153]丁文平,王月慧,夏文水.淀粉的回生机理及其测定方法[J].粮食与饲料工业,2004(12):28-30.
    [154]邓宇.淀粉化学品及其应用[M].北京:化学工业出版社,2002.
    [155]Li L, Zhou F, Du F D(李浪,周平,杜平定编著).Starch Science and Technology(淀粉科学与技术)[M], Zhenzhou:Henan Science Press,1998,23-24. (in Chinese)
    [156]朱帆,徐广文,丁文平.DSC法研究小麦淀粉与面粉糊化和回生特性[J].食品科学,2007,28(4):279-282.
    [157]卞希良,邬应龙,夏凤清.淀粉糊凝沉特性的研究[J].粮油食品粮,2005,13(6):46-48.
    [158]姚远,丁霄霖,吴加根.淀粉回生研究进展(Ⅰ)回生机理、回生测定方法及淀粉种类对回生的影响[J].中国粮油学报,1999,14(2):24-31.
    [159]T Lu, J Jane, P L Keeling. Temperature effect on retrogradation rate and crystalline structure of amylose[J]. Carbohydr. Polym.,1997,33:19-26.
    [160]毛羽扬.影响淀粉类食物老化的因素[[J].粮食科技与经济,1999,5:34-36.
    [161]W Zhang, D S Jackson. Retrogradation behavior of wheat starch gels with differing molecular profiles[J]. Journal of Food Science,1992,57(6):1428.
    [162]M R Jacobson, M Obarmi, J N Bemiller. Retrogradation of starches from different botanical sources[J]. Cereal Chem.,1997,74(5):511-518.
    [163]顾正彪.淀粉的糊化和问生[J].淀粉与淀粉糖,1992,1:32-34.
    [164][美]尼马著.食品化学[M].王璋译.北京:中国轻上业出版社,1991.
    [165]张燕萍,檀亦兵.用差示量热扫描方法研究米粉糊的老化[J].无锡轻工大学学报,2000,19(1):69-71.
    [166]金茂国,吴嘉根,吴旭初.粉丝生产用淀粉性质及其与粉丝品质关系的研究[J].无锡轻工大学学报,1995,14(4):307-311.
    [167]赵国荣,姚人年,董召荣,等.淀粉性状研究在谷物品质育种中作用(综述)[J].安徽农业大学学报,1997,24(3):317-319.
    [168]高群玉,周俊侠,张力田.粉丝化学和工艺技术研究进展[J].食品研究与开发,1996,17(2): 10-13.
    [169]张力田.淀粉的营养[J].淀粉与淀粉糖,2000,3:1-3.
    [170]胡芳名,李建安.湖南省主要橡子资源综合开发利用的研究[J].中南林学院学报,2000,20(4):41-45.
    [171]杨儒钦.橡子酿造白酒技术[J].中国林副特产,1991(4):28-33.
    [172]杜连起,李香艳.橡子的综合开发利用[J].林业科技开发,1996(1):28-29.
    [173]刘振西.栎树资源及其开发利用[J].湖南林业科技,1994,21(3):64-66.
    [174]祁承经,林亲众.湖南树木志[M].湖南省科学出版社,2001.
    [175]中国树木志编辑委员会.中国树木志(第二卷)[M].北京:中国林业出版社,1985.
    [176]李世华方存幸.云南的橡实资源[J].云南农业科技.1994(6):17-17.
    [177]陈宗元,刘秀湘,王国兴,等.橡子仁的综合利用[J].林产化工通讯,1997(3):33-34.
    [178]朗萍,张忠慧,黄宏文.中国西南地区栗属资源现状及开发利用对策[J].武汉植物学研究,1999(增刊):123-127.
    [179]刘青山,李忠荣,孟凡清.加强蒙古栎资源的开发利用[J].中国林副特产,2001,56(1): 55.
    [180]王守本,费维烈,刘中文.柞树副产物的利用价值[J].中国林副特产,1991(1): 42.
    [181]胡芳名,李建安.湖南省栋类资源开发利用研究[J].经济林研究,1999(2):1-5.
    [182]李建强,张敏华.湖北山毛棒科修订[J].武汉植物学研究,1998(3):241-251.
    [183]端木忻.江西省壳斗科资源的综合利用[J].林产化工通讯,1995(1):34-35.
    [184]张莉,郭妹荣,张向阳,等.河南省天然栎类资源可持续经营探讨[J].中南林业调查规划,2003,22(1):11-13.
    [185]郑诚乐,吴少华,余文琴,等.锥栗果实营养成分分析与品质的模糊评判[J].福建林学院学报2003,23(4):293-296.
    [186]端木沂.我国栋属资源的综合利用[J].河北林学院学报,1994(2):177-181.
    [187]端木忻.我国青冈属资源的综合利用[J].北京林业大学学报,1995(2):109-110.
    [188]端木忻.我国拷属资源的综合利用[J].林产化工通讯,1996(5):38-40.
    [189]Takuya Shimada. Nutrient compositions of acorns and horse chestnuts in relation to seed-hoarding[J]. Ecological Research,2001,6 (4):803-808.
    [190]Schwartz Daniel P., Rady AlyH. Determination and occurrence of oxo fatty acids in fats and oils[J]. J. Am. oil Chem. Soc,1990,67(10):635-41.
    [191]赵文恩,韩雅珊,邵德益,等.橡子利用的研究(Ⅲ)—橡实淀粉的特性[J].林产化学与工业,1996,16(2):69-74.
    [192]谢碧霞,谢涛.锥栗和茅栗淀粉颗粒的特性[J].中南林学院学报,2003,23(2):22-25.
    [193]谢碧霞,谢 涛.橡实淀粉多晶体系结晶度测定[J].食品科学,2004,25(1):56-58
    [194]焦剑,雷渭媛.高聚物结构、性能与测试[M].北京,化学工业出版社,2003,733.
    [195]莫志深,张宏放.晶态聚合物结构和X-射线衍射[M].北京,科学出版社,2003,228-229.
    [196]Moo-Yeol Baik, Kwang-Joong Kim, Ki-CheolCheon, et al. Recrystallization kinetics and glass transition of rice starch gel system[J]. Agric Food Chem, 1997,45:4242-4248.
    [197]RivaM, FessasD, SchiraldiA. Starch retrogradation in cooked pasta and rice. Cerea Chem[J].2000,77(4):433-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700