抗性淀粉酶法制备及其特性与应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RS3(Resistant Starch Ⅲ)是膳食中抗性淀粉的主要组成部分,对人体具有重要的生理功能。作为一种新型的功能性食品原料,RS3制备方法和应用的研究成为近年来碳水化合物科学的热点课题。采用酶法制备抗性淀粉,不仅简化了工艺对设备和劳动强度的要求,而且无化学残留隐患,具有较高的安全性,符合当今食品加工发展的趋势,便于实现工业化生产。目前,就抗性淀粉制备方法而言,急需一种以低直链淀粉为原料制备高含量RS3的方法。本研究以我国丰富的淀粉资源——普通玉米淀粉为原料,利用α-淀粉酶内切淀粉长链、普鲁兰酶脱支的特性,对淀粉进行连续处理,通过对反应条件的选择和控制,不仅提高了抗性淀粉的得率,而且所制备的产品展现出良好的加工特性和功能特性。在此基础上,研制了感官特性良好的抗性淀粉饼干产品。
     采用用普鲁兰酶对普通玉米淀粉进行脱支处理,在单因素试验基础上,采用响应面法研究pH值、反应温度、反应时间和普鲁兰酶添加量对抗性淀粉得率的影响,试验显著性分析表明:各因素对玉米抗性淀粉得率的影响大小不同,依次为:普鲁兰酶添加量>反应时间>反应温度>pH值。其中普鲁兰酶添加量、反应时间、反应温度对反应的影响达到极显著程度,pH值在试验范围内对抗性淀粉得率也具有显著影响,且普鲁兰酶添加量与反应温度、反应温度与时间、反应温度与pH值有交互作用。普鲁兰酶法制备抗性淀粉的最优条件为:普鲁兰酶添加量12.8ASPU/g、反应时间32h、反应温度46.2℃、pH5.0。在此条件下,抗性淀粉得率为46.20%。与相关文献报道(32.4%)对比发现,利用优化后的工艺条件有效的提高了抗性淀粉的得率。
     在普鲁兰酶脱支处理前,用α-淀粉酶对玉米淀粉进行适当的水解,以提高普鲁兰酶脱支效率,增加抗性淀粉得率。研究结果表明:在温度90℃,pH5.5,α-淀粉酶添加量4.0u/g,水解15min后,用普鲁兰酶连续处理(12.8ASPU/g、反应时间32h、反应温度46.2℃、pH5.0),可以制备得到抗性淀粉含量约58.87%的产品。
     以玉米原淀粉、压热/冷却循环所制备的抗性淀粉做对照,对制备所得抗性淀粉的黏度、吸水性、和抗酶解性能进行测定,RS3显示出较低的黏度和吸水性,且具有良好抵抗胃酸和胰淀粉酶水解作用的特性。采用电镜扫描和差示扫描量热(DSC)法观察复合酶法制备玉米抗性淀粉的颗粒形态和热力学性质,结果表明:玉米淀粉经复合酶法处理后,形成更加致密层状晶体结构,表面形态结构与压热/冷却循环所得抗性淀粉差异较大;DSC分析表明:玉米淀粉经复合酶处理后,原有的晶体结构被破坏,直链分子重新排布,形成新的更为稳定的晶体结构;相变起始温度TO,峰值温度TP,终了温度TC和相变焓分别为110.9、143.5、171.9℃、132.3J/g,显著高于由压热/冷却循环所得抗性淀粉,表明复合酶所制备的抗性淀粉具有更高的热稳定性。
     采用紫外—可见吸收光谱、FT-IR、 HPSEC、X-RD)等分析技术对抗性淀粉形成的机理进行研究,结果表明:普通玉米淀粉经复合酶处理后,淀粉中直链淀粉比例明显提高,链长显著降低,重均分子量4983,重均聚合度31,分散度1.08,表明分子量分布具有较好的均匀性,高比例的直链淀粉、适当的链长和聚合度是抗性淀粉得率提高的主要原因。复合酶法制备所得抗性淀粉的晶型处于由B+V型向V型发生转变的状态,晶体结构的改变导致了RS3抗酶解性能的增加。
     模拟健康成人及婴儿肠道环境,对抗性淀粉在人体内的发酵特性进行研究,结果表明:抗性淀粉在人体肠道微生物作用下降解的主要产物为甲酸、乙酸、丙酸、丁酸等短链脂肪酸,丙酸含量最高;在两种不同的发酵环境中具有相同的产酸规律变化,即大多数短链脂肪酸是在发酵时间12h内产生的,产物中短链脂肪酸的含量随发酵时间延长和发酵液中抗性淀粉含量的增加而增加,在发酵时间6h~12h内,丁酸的含量增加的速率尤为显著。比较相同浓度的抗性淀粉在健康成人及婴儿肠道环境中同种脂肪酸的含量可以发现:由于肠道菌群种类和数量的变化,使得抗性淀粉在婴儿肠道环境中比成人具有更高发酵效率,各短链脂肪酸浓度明显增大。由此可知,健康婴儿肠道的微生物菌群的构成更有利于玉米抗性淀粉发酵产生短链脂肪酸。抗性淀粉在人体肠道环境中不仅具有较高的产生短链脂肪酸的性能,而且代谢产物中丁酸占短链脂肪酸的比例(16.7~30.0%)是传统的膳食纤维(5.0~8.0%)2~6倍。因此,RS3可以作为人体肠道菌生产丁酸的良好来源。
     以感官评分为指标,通过单因素和正交试验设计优化抗性淀粉饼干的最佳配方为:以低筋粉面粉100%为基准,抗性淀粉25.0%、植物油24.0%、蔗糖32.0%、膨松剂1.6%,全蛋液2.0%,食盐1.0%,水10.0%。在此配方条件下,对抗性饼干进行感官、理化和卫生指标测定,结果表明:抗性淀粉饼干色泽均匀、呈金黄色;外形完整,花纹清晰,厚薄基本均匀,无收缩、变形、起泡、裂痕现象;断面结构呈多孔状,细密,无大孔洞;香味纯正,口感松脆细腻、不黏牙、无颗粒感。其各项理化指标和卫生指标均符合饼干国家相应标准;抗性淀粉饼干的水解指数和血糖指数与对照组差异显著,属于中等血糖指数食品。
RS3, a major type of resistant starch in food, has important physiological functions in human body andexcellent food processing characteristics. As a new functional food ingredient, the study on RS3preparation and application has become a hot topic of carbohydrate science. Enzymatic preparation ofresistant starch reduces the requirements of traditional technology for temperature, pressure, equipment,and other conditions, leaves no chemical residues, and has higher safety, so it is in line with thedevelopment trend of food processing nowadays and can be industrialized easily. Currently, there is anurgent need for a method to prepare RS3from low amylose, and the prepared RS3should have goodprocessing characteristics and functions. In this study, starch was extracted from the corn that is commonlyseen in China as a raw material for starch and was then continuously processed using α-amylase (forincision of the long chains of starch) and pullulanase (for debranching). By selection and control of thereaction conditions, the yield of resistant starch was increased, and the prepared product showed goodprocessing characteristics and functional features. On this basis, the resistant starch product with goodorganoleptic properties and certain physiological effects on human body were developed.
     Pullulanase was used for debranching common corn starch, and on the basis of single-factor test, theresponse surface method was adopted to investigate the effects of pH, reaction temperature, reaction time,and pullulanase amount on the yield of resistant starch. The significance analysis for this test showed thatthe effects of these factors on the yield of resistant corn starch were different, i.e. pullulanase amount>reaction time> reaction temperature> pH, wherein the effects of pullulanase amount, reaction time, andreaction temperature on the reaction reached a very significant degree, pH also had a significant effectwithin the test range, and there were interactions between pullulanase amount and reaction temperature,between reaction temperature and reaction time, and between reaction temperature and pH. The optimumconditions for resistant starch preparation with pullulanase were as follows: amount of pullulanase12.8ASPU/g, reaction temperature46.2℃, reaction time32h, pH5.0. Under the conditions, the yield ofresistant starch reached46.20%, increased as compared with the value recorded in the relevant literature(32.4%).
     Before being debranched with pullulanase, corn starch was properly hydrolyzed with α-amylase, topromote the efficiency of debranching and increase the yield of resistant starch. The results of this studyshowed that: the highest formation of RS (58.87%) was obtained under the following conditions: reactiontemperature90℃, pH5.5, reaction time15min, and amount of α-amylase4.0U/g.
     With the resistant starch prepared from native corn starch by hot pressing/cooling circulation methodas the control, the viscosity, water absorbability, and anti-enzymatic properties of the prepared resistantstarch were measured, and RS3showed relatively low viscosity and water absorbability and highresistances to gastric acid and pancreatic amylase. Electron microscope scanning and differential scanningcalorimetry (DSC) were employed to observe the particle morphology and thermodynamic properties of theresistant corn starch prepared with complex enzymes, and the results showed that after being processedwith complex enzymes, corn starch lost the original particle morphology and smoothness and formed alayered crystal structure that is more compact than before, displaying a significant difference from theresistant starch prepared by hot pressing/cooling circulation method with respect to surface morphology;DSC analysis showed that after being processed with complex enzymes, the original crystal structure ofcorn starch was destroyed, and the straight chain molecules were rearranged, to form a new crystalstructure that is more stable; the initial temperature TO, peak temperature TP, final temperature TC, andenthalpy of phase change were110.9℃,143.5℃,171.9℃, and132.3J/g, respectively, significantly higherthan those of the resistant starch prepared by hot pressing/cooling circulation method, indicating that theresistant starch prepared with complex enzymes has higher thermal stability.
     Visible absorption spectroscopy, infrared spectroscopy, X-ray diffraction high performance sizeexclusion chromatography (HPSEC), and other techniques were adopted to investigate the mechanism ofthe increases in the yield and resistance of resistant starch. The results showed that after common corn starch was processed with complex enzymes, the proportion of straight chain starch in the starch increasedsignificantly, and the chain length decreased significantly, with a weight-average molecular weight of4983,a weight-average degree of polymerization of31, and a dispersity of1.08, suggesting a narrow molecularweight distribution. High proportion of straight chain starch as well as appropriate chain length and degreeof polymerization constitute one of the important reasons for the increases in the yield and resistance ofresistant starch. In addition, the crystal of the resistant starch prepared with complex enzymes was in thetransformation from B+V form to V form, so the crystal structure change leads to improved anti-enzymaticproperties of RS3.
     The intestinal environments of healthy adults and infants were simulated to investigate thecharacteristics of fermentation of resistant starch in human body. The results showed that the maindegradation products of resistant starch under the effects of human gut microbes were formic acid, aceticacid, propionic acid, butyric acid, and other short-chain fatty acids, with propionic acid accounting for thehighest proportion; fatty acids were produced in the same way in the two different fermentationenvironments: most of the short-chain fatty acids were produced within12h of fermentation, the contentsof short-chain fatty acids increased as fermentation proceeded and the content of resistant starch in thefermentation liquid rose, and butyric acid content increased at a particularly significant rate. Aftercomparison between the contents of the same fatty acids produced by the same concentration of resistantstarch in the intestinal environments of healthy adults and infants, it is found that due to the changes in thetypes and quantities of gut microbes, the resistant starch was fermented more efficiently in infants than inadults, leading to significantly higher concentrations of short-chain fatty acids in infants. Therefore, thecomposition of gut microbes in healthy infants is more conducive to fermentation of resistant corn starchand production of short-chain fatty acids. Resistant starch in human intestinal environment can produceshort-chain fatty acids more efficiently, and of the short-chain fatty acids, butyric acid accounted for16.7-30.0%,2-6times that of butyric acid from conventional dietary fibers (5.0-8.0%). Therefore, resistantstarch can serve as a good source for butyric acid produced by human gut microbes.
     As a new functional food ingredient, the amount of resistant starch may have different effects on theorganoleptic properties of food and the addition of other ingredients. With the organoleptic score as theindex, single-factor and orthogonal experiments were carried out to design the optimum formula ofresistant starch biscuits: self-raising flour100%, RS25.0%, vegetable oil24.0%sugar32.0%leaveningagent1.6%, whole egg2.0%, salt1.0%, water10.0%. The organoleptic, physicochemical, and healthindices for resistant starch biscuits produced using the optimum formula were measured. The resultsshowed that the resistant starch biscuits had the advantages of uniform color (golden yellow), intactappearance, clear patterns, uniform thickness, no shrinkage, no deformation, no blistering, no cracking, fineinternal pores, pure flavor, crisp and delicate taste, no sticking to teeth, and no grainy taste. All thephysicochemical and health indices met national standards. The in vitro hydrolysis index and glycemicindex of resistant starch biscuits were measured, and the results showed significant differences from thecontrol group in terms of the hydrolysis index and glycemic index, so resistant starch biscuits are the foodwith moderate glycemic index.
引文
[1] Ring S G, Gee J M, Whittam M, et al. Resistant starch: Its chemical form in food stuffs and effectsondigestibility in vitro [J]. Food Chemistry,1988,28:97-109.
    [2] Holm J, Bjorck I, Asp N G, et al. Starch availavility in vitro and in vivo after flaking, steam cooking andpopping of wheat [J]. Cereal Science,1985,3:193-206.
    [3] Englyst H. N, Trowel H, Southgate D, et al. Dietary fibre and resistant starch [J]. The American Journalof Clinical Nutrition,1987,46:873-874.
    [4] Eerlingen R C, Deceuninck M, Delcour J A. Enzyme-resistant starchⅡ: influnence of amylose chainlength on resistant starch formation[J]. Cereal Chemistry,1993,70(3):345-350.
    [5] Sajilata M G, Singhal R S, Kulkarni P R. Resistant starch-A review [J]. Comprehensive Reviews inFood Science and Food Safety,2006,5(1):1-17.
    [6] Escarpa A, Gonzalez M C, Morales M D, et al. An approach to the influence of nutrients and other foodconstituents on resistant starch formation [J]. Food Chemistry,1997,60(4):527-532.
    [7] Chandrashekar A, Kirleis A W. Influence of protein on starch gelatinization in sorghum [J]. CerealChemistry,1988,65(6):457-462.
    [8] Englyst H N, Kingman S M, Cummings J H. Classification and measurement of nutritionally importantstarch fractions [J]. European Journal of Clinical Nutrition,1992,46:33-50.
    [9] EURESTA. European Flair Concerted Action on Resistant Starch. Physiological implications of theconsumption of resistant starch in man [J]. European Journal of Clinical Nutrition,1992,46(Suppl2):1-3
    [10] Eerlingen R C, Delcour J A. Formation, analysis, structure and properties of type III enzyme resistantstarch [J]. Cereal Science,1995,22(2):129-138.
    [11] Gallant D J, Boucher B, Buleon A, et al. Physical characteristics of starch granules and susceptibilityto enzymatic degradation [J]. European Journal of Clinical Nutrition,1992,46(suppl2):3-16
    [12] Ranhotra G S, Geltoth J A, Glaser B K. Energy value of resistant starch [J]. Food Science,1996,61(2):453-455.
    [13] Guraya H S, James C, Champagne E T. Effect of cooling, and freezing on the digestibility ofdebranched rice starch and physical properties of the resulting material[J]. Starch,2001,53:64-74.
    [14] Woo K S, Seib P A. Cross-linked resistant starch: preparation and properties [J]. Cereal Chemistry,2002,79:819-825.
    [15] Jenkins D J A, Wolever T M S, Taylor R H, et al. Glycemic index of foods: a physiological basis forcarbohydrate exchange [J]. American Journal of Clinical Nutrition,1981,34:362-366.
    [16] Frost G, Leeds A A, Dore C J, et al. Glycemic index as a determinant of serum HDL-cholesterolconcentration [J]. Lancet,1999,353:1045-1048.
    [17] Diane M, Reader R D, Belinda S, et al. Glycemic and insulinemic response of subjects with type2diabetes after consumption of three energy bars [J]. Journal of the American Dietetic Association,2002,102(8):1139-1142.
    [18]王竹,杨月欣,周瑞华,等.抗性淀粉的代谢及对血糖的调节作用[J].营养学报,2003,25(2):190-195.
    [19] Hubert W, Lopez, Marie A, et al. Class2Resistant starches lower plasma and liver lipids and improvemineral retention in rats [J]. The Journal of Nutrition,2001,131(4):1283-1289.
    [20] Cheng H H, Lai M H. Fermentation of resistant rice starch produces propionate reducing serum andhepatic cholesterol in rats [J]. The Journal of nutrition,2000,130(8):1991-1995.
    [21] Younes H, Levrat M A, Demigne C, et al. Resistant starch is more effective than cholestyramine as alipid-lowering agent in the rat [J]. Lipids,1995,30(9):847-853.
    [22] Han K H, Sekikawa M, Shimada K, et al. Resistant starch fraction prepared from kintoki bean affectsgene expression of genes associated with cholesterolmetabolism in rats [J]. Experimental Biology andMedicine (Maywood),2004,229(8):787-792.
    [23] Park O J, Kang N E, Chang M J, et al. Resistant starch supplementation influences blood lipidconcentrations and glucose control in overweight subjects [J]. Journal of Nutritional Science andVitaminology,2004,50(2):93-99.
    [24] Behall K M, Scholfield D J, Yuhaniak I, et al. Diets containing high amylase vs amylopectin starch:effects on metabolic variables in human subjects [J]. American Journal of Clinical Nutrition,1989,49(2):337-344.
    [25] Behall K M, Howe J C. Effect of long term consumption of amylose vs amylopectin starch onmetabolic variables in human subjects [J]. American Journal of Clinical Nutrition,1995,61(2):334-340.
    [26] Rancon F, Fouchereau P M, Freychet P, et al. Effect of feeding and fasting on the early steps ofglucagons action in isolated rat liver cells [J]. Endocrinology,1999,98(3):755-760.
    [27] Schulz A G, Van A J M, Beynen A C. Dietary native resistant starch but not retrograded resistant starchraises magnesium and calcium absorption in rats [J]. The Journal of Nutrition,1993,123:1724-1731.
    [28]王竹,门建华,杨月欣,等.抗性淀粉对大鼠锌营养状况的影响[J].营养学报,2002,24(2):167-170.
    [29] Brown I, Warhurst M, Arcot J, et al. Fecal numbers of Bifidobacteria are higher in pigs fedBifidobacterium longum with a high amylose cornstarch than with a low amylose cornstarch [J]. TheJournal of Nutrition,1997,127:1822-1827.
    [30] Mallett A K, Bearne C A, Young P J, et al. Influence of starches of low digestibility on the rat caecalmicroflora [J]. British Journal of Nutrition,1988,60:597-604.
    [31] Cassidy A, Bingham S A, Cummings J H. Starch intake and colorectal cancer risk: An internationalcomparison [J]. British Journal of Cancer,1994,69:937-942.
    [32] Johnson I T, Gee J M. Resistant starch [J]. Nutrition&Food Science,1996,96:20-23
    [33] Pereira M A, Ludwig D S. Dietary fiber and body-weight regulation: Observations and mechanisms [J].Pediatric Clinics of North America,2001,48:969-980
    [34] Tagliabue A, Raben A, Heijnen M L, et al. The effect of raw potato starch on energy expenditure andsubstrate oxidation [J]. The American Journal of Clinical Nutrition,1995,61:1070-1075
    [35] Livesey G, Wilkinson J A, Roe M, et al. Influence of the phys-ical form of barley grain on thedigestion of its starch in the human small intestine and implications for health [J]. The American Journal ofClinical Nutrition,1995,61:75-81.
    [36] Wu H H C, Sarko A. The double-helical molecular structure of crystalline α-amylose [J].Carbohydrate Research,1978,61:7-26.
    [37] Eerlingen R C, Broeck V D, Delcour J A, et al. Enzyme resistant starch VI: Influence of sugars onresistant starch formation [J]. Cereal Chemistry,1994,71:472-476.
    [38]张春红.高直链玉米淀粉性质及其应用的研究[D]:沈阳农业大学,2006.
    [39] Lewandowicz G, Fornal J, Walkowski A. Effect of microwave radiation on physico-chemicalproperties and structure of potato and tapioca starches [J]. Carbohydrate Polymers,1997,34:213-220.
    [40] García-Alonso A, Saura-Calixto F, Delcour J A. Influence of botanical and processing on the formationof resistant starch type III [J]. Cereal Chemistry,1998,75(6),802-804.
    [41]吴红引,王泽南,张效荣,等.微波辅助酶法制备碎米抗性淀粉的工艺研究[J].食品科学,2010,31(18):203-205.
    [42] Brumovsky J O, Thomposn D B. Production of boiling-stable granular resistant starch by partial acidhydrolysis and hydrothermal treatments of high-amylose maize starch [J]. Cereal Chemistry,2001,78(6):680-689.
    [43] Chung H J, Jeong H Y, Lima S T. Effects of acid hydrolysis and defatting on crystallinity and pastingproperties of freeze–thawed high amylose corn starch [J]. Carbohydrate Polymers,2003,4:449-455.
    [44] Berry, C. S. Resistant starch: Formation and measurement of starch that survives exhaustive digestionwith amylolytic enzymes during the determination of dietary fibre [J]. Journal of Cereal Science,1986,4:301-314.
    [45]李光磊,李新华,金锋.马铃薯抗性淀粉的制备条件分析[J].沈阳农业大学学报,2005,36(4):491493.
    [46]朱旻鹏,李新华,刘爱华.玉米抗性淀粉的制备及其性质的研究[J].粮油加工与食品机械,2005,(5):80-82.
    [47] Tovar J, Melito C. Steam-cooking and dry heating produce resistant starch in legumes [J]. Journal ofAgricultural and Food Chemistry,1996,44:2624-2645.
    [48]赵凯,张守文,杨春华,等.玉米抗性淀粉提取过程中的影响因素研究[J].化学世界,2005,7:415-419.
    [49] Alejandro A S, Emmanuel F H, Juscelino T. Resistant starch-rich powders prepared by autoclaving ofnative and lintnerized banana starch: partial characterization [J]. Starch,2005,57:405-412.
    [50]李新华,崔静涛.抗性淀粉工业化生产工艺的优化研究[J].食品工业,2008,3:205-209.
    [51]李光磊,李新华.抗性淀粉应用特性研究[J].中国粮油学报.2007,22(6):78-81.
    [52]刘亚伟,张杰.抗性淀粉制备工艺研究[J].食品与机械,2003,1:19-20
    [53] Sievert D, Pomeranz Y. Enzyme-resistant starch.I. characterization and evaluation by enzymatic,thermoanalytical, and microscopic methods [J]. Cereal Chemistry,1989,66(4):342-347.
    [54] Szczodrak J, Pomeranz Y. Starch-lipid interactions and formation of RS in high-amylose barley [J].Cereal Chemistry,1992,69(6):626-632.
    [55]林杨,赵新淮.酶法制备抗性淀粉新工艺的研究[J].食品工业科技,2009,3:258-260.
    [56] Kim J H, Tanhehco E J, Ng P K W. Effect of extrusion conditions on resistant starch formation frompastry wheat flour [J]. Food Chemistry,2006,99:718723.
    [57] Unlu E, Faller J F. Formation of resistant starch by a twin-screw extruder [J]. Cereal Chemistry,1998,75(3):346-350.
    [58] July C A O, Rosal A, Gonz S, et al. Resistant starch production from mango starch using asingle-screw extruder [J]. Journal of the Science of Food and Agriculture,2005,85:2105-2110.
    [59]潘元风.蚕豆抗性淀粉的测定、制备和性质研究[D].暨南大学:2007.
    [60]张华东,张淼,沈晓萍,等.微波酶法制备RS3型玉米抗性淀粉工艺参数优化研究[J].食品科学,2007,28(4):237-240.
    [61] Wen Q B, Lorenz K J, Matin D J, et al. Carbohydrate digestibility and resistant starch of steamedbread [J]. Starch,1996,48(5):180-185.
    [62]程永刚,李晓玺,姚汝华.抗性淀粉制备及其功能[J].粮食与油脂,2002,11:25-29.
    [63] German M L, Blumenfeld A L, Guenin Y V, et al. Structure formation in systems containing amylose,amylopectin and their mixtures [J]. Carbohydrate Polymers,1992,18:2734.
    [64]张钟,魏小波.玉米抗消化淀粉的制备及物理性质研究[J].食品科学,2004,25(9)121-124.
    [65]张莉.抗性淀粉制备工艺及其理化性质研究[D].合肥工业大学:2005.
    [66]阮少兰,刘亚伟,阮竞兰.大米抗性淀粉制备工艺研究[J].粮食与饲料工业,2005,7:16-17.
    [67]丰凡,张国权,宫凤秋,等.荞麦抗性淀粉制备及其对小麦粉流变学特性的影响[J].粮食与饲料工业,2007,(2):17-19.
    [68]李新华,崔静涛,钟彦,等.玉米抗性淀粉制备工艺的优化研究[J].食品科学,2008,6:186-189.
    [69]林杨,赵新淮.高直链玉米淀粉制备抗性淀粉的技术改进及成品分析[J].农业工程学报2008,24(11):284-287.
    [70] Nakamura N, Watanabe K, Horikoshi K. Purification and some properties of alkaline pullulanase froma strain of Bacillus No.202-1, an alkalophilic microorganism [J]. Biochimicaet Biophysica Acta,1975,397:188-193.
    [71] Maeda I, Nikuni Z. Purification of a debranching enzyme (R-enzyme) from malted barley, and the roleof the enzyme in the digestion of starch granules during the germination of barley seeds[J]. CarbohydrateResearch,1978,61(1):309-320.
    [72]丁文平,丁霄霖.普鲁兰酶和β-淀粉酶对大米支链淀粉回生影响的研究[J].中国粮油学报,2003,18(1):13-16.
    [73] CHOI H J, SHIN S I, CHUNG K M, e tal. Structural characteristics of slowly digestible waxysorghum starch as affected by modification process [C]. IFT Annual Meeting and Food Expo, Anaheim,California,2002.
    [74]SHIN S I, CHOI H J, CHUNG K M, et al. Slowly digestible starch from debranched waxy sorghumstarch: preparation and properties [J]. Cereal Chemistry,2004,81(3):404-408.
    [75] HAN X Z, AO Z H, JANASWAMY S, et al. Development of alowglycemicmaizestarch: preparationand characterization[J]. Bio macromolecules,2006,7:1162-1168.
    [76] Harmeet S G, Charle J, Elaine T C. Effect of enzyme concentration and storage temperature on theformation of slowly digestible starch from cooked debranched rice starch[J]. Starch,2001,53(4):131-139.
    [77]赵凯,张守文,方桂珍.抗性淀粉的生理功能及在食品工业中的应用[J].哈尔滨商业大学学报(自然科学版),2002,06:661-663.
    [78]张文青,张月明,杨月欣.抗性淀粉——功能性食物成分[J].国外医学卫生学分册,2005,04:232-235.
    [79] Zabidi M A, Aziah N. Aziz A. In vitro starch hydrolysis and estimated glycaemic index of breadsubstituted with different percentage of chempedak (Artocarpus integer) seed flour [J]. Food Chemistry,2009,117:64-68.
    [80] Korus J, Witczak M, Ziobro R, et al. The impact of resistant starch on characteristics of gluten-freedough and bread [J]. Food Hydrocolloids,2009,23:988-995.
    [81] Bustos M C, Perez G T, León A E. Sensory and nutritional attributes of fibre-enriched pasta [J].LWT-Food Science and Technology,2011,44:1429-1434.
    [82] Laguna L, Salvador A, Sanz T, et al. Performance of a resistant starch rich ingredient in the baking andeating quality of short-dough biscuits [J]. LWT-Food Science and Technology,2011,44:737-746
    [83] Alejandro A S, Sonia G. S, Apolonio V T, et al. Slowly digestible cookies prepared from resistantstarch-rich lintnerized banana starch [J]. Journal of Food Composition and Analysis,2007,20:175-181
    [84]贾君,石彦国,任露泉.高膳食纤维RS饼干的研究[J].食品科技,2004,1:57-59.
    [85] Gelencsér T M, Gál V, Hódsági M R. et al. Evaluation of quality and digestibility characteristics ofresistant starch-enriched pasta [J]. Food and Bioprocess Technology,2008,1(2):171-179
    [86] Chen L, Li X, Pang Y, et al. Resistant starch as a carrier for oral colon-targeting drug matrix system [J].Journal of Materials Science: Materials in Medicine,2007,18:2199-2203.
    [87] Béchard S R, Levy L, Clas S D. Thermal, mechanical and functional properties of cellulose acetatephthalate (CAP) coatings obtained from neutralized aqueous solutions [J]. International Journal ofPharmaceutics,1995,114:205-213.
    [88] Williams III R O, Liu J. Influence of processing and curing conditions on beads coated with anaqueous dispersion of cellulose acetate phthalate [J]. European Journal of Pharmaceutics andBiopharmaceutics,2000,49:243-252.
    [89] Dimantov A, Kesselman E, Shimoni E. Surface characterization and dissolution properties of highamylase corn starch–pectin coatings [J]. Food Hydrocolloids.2004,18:29-37.
    [90] Dimantov A, Kesselman E, Shimoni E. Surface characterization and dissolution properties of highamylase corn starch–pectin coatings [J]. Food Hydrocolloids,2004,18:29-37.
    [91] Iyer C, Kailasapathy K. Effect of co-encapsulation of probiotics with prebiotics on increasing theviability of encap sulated bacteria under in vit ro acidic and bile salt conditions and in yogurt [J]. Journal ofFood Science,2005,70(1):18-23.
    [92] Muthukumarasamy P, Allan W P, Holley R A. Stability of lactobacillus reuteri in different types ofmicrocapsules [J]. Journal of Food Science,2006,71(1):20-24.
    [93] Khalida S, Georgia G, Reynolds N. Encapsulation of probioticbacteria with alginate-starch andevaluation of survival in simulated gastrointestinal conditions and in yoghurt [J]. International Journal ofFood Microbiology,2000,62(12):47-55.
    [94]陈光,高俊鹏,王刚,等.抗性淀粉的功能特性及应用研究现状[J].吉林农业大学学报,2005,27(5):578-581.
    [95]李素玲.绿豆抗性淀粉的制备及性质研究[D].华南理工大学,2011.
    [96] Ares G, Baixauli R, Sanz T, et al. New functional fibre in milk puddings: Effect on sensory propertiesand consumers’ acceptability [J]. LWT-Food Science and Technology,2009,42:710-716.
    [97]王洪燕,周惠明.抗性淀粉制备方法的研究[J].粮油加工,2006,8:85-87.
    [98]柯炳繁,谭向勇.我国玉米加工转化现状及发展对策[J].中国农村经济,1998,6:22-26.
    [1] Sajilata M G, Singhal R S, Kulkarni P R. Resistant starch-A review [J]. Comprehensive Reviews inFood Science and Food Safety,2006,5(1):1-17.
    [2] Lewandowicz G, Fornal J, Walkowski A. Effect of microwave radiation on physico-chemical propertiesand structure of potato and tapioca starches [J]. Carbohydrate Polymers,1997,34:213-220.
    [3] García-Alonso A, Saura-Calixto F, Delcour J A. Influence of botanical and processing on the formationof resistant starch type III [J]. Cereal Chemistry,1998,75(6),802-804.
    [4]吴红引,王泽南,张效荣,等.微波辅助酶法制备碎米抗性淀粉的工艺研究[J].食品科学,2010,31(18):203-205.
    [5] Brumovsky J O, Thomposn D B. Production of boiling-stable granular resistant starch by partial acidhydrolysis and hydrothermal treatments of high-amylose maize starch [J]. Cereal Chemistry,2001,78(6):680-689.
    [6] Chung H J, Jeong H Y, Lima S T. Effects of acid hydrolysis and defatting on crystallinity and pastingproperties of freeze–thawed high amylose corn starch [J]. Carbohydrate Polymers,2003,4:449-455.
    [7] Shen G J, Srivastava K C, Saha B C. et al. Physiological and enzymatic characterization of a novelpullulan-degrading thermophilic Bacillus strain3183[J]. Applied Microbiology and Biotechnology,1990,33(3):340-344.
    [8] Nair S U, Singhal R S, Kamat M Y. Induction of pullulanase production in Bacillus cereus FDTA213[J].Bioresource Technology,2007,98(4):856-859.
    [9]赵凯,许鹏举,谷广烨.3,5-二硝基水杨酸比色法测定还原糖含量的研究[J].食品科学,2008,29(08):534-536.
    [10]关杨,王可兴,陆文彬,等.压热法制备荞麦抗性淀粉工艺优化[J].食品科学,2007,28(8):219-223.
    [11] Goni I, Garcia-Diz L, Manas E, et al. Analysis of resistant starch: A method for foods and foodproducts [J]. Food Chemistry,1996,56:445-449.
    [12] Escarpa A, Gonza lez M C, et al. An approach to the influence of nutrients and other food constituentson resistant starch formation [J]. Food Chemistry,1997,60:527-532.
    [13] Roy A, Messaoud E B, Bejar S. Isolation and purification of an acidic pullulanase type II from newlyisolated Bacillus sp. US149[J]. Enzyme and Microbiology Technology,2003,33:720-724.
    [14] Wu, S J, Chen H C, Tong Q Y, et al. Preparation of maltotriose by hydrolyzing of pullulan withpullulanase [J]. European Food Researchand Technology,2009,229:821-824.
    [15] Kriegshauser G, Liebl W. Pullulanase from the hyperthermophilic bacterium Thermotoga maritime:Purification by β-cyclodextrin affinity chromatography [J]. Journal of Chromatography B,2000,737:245-251.
    [16] Swamy M V, Seenayya G. Thermostable pullulanase and α-amylase activity from Clostridiumthermosulfurogenes SV9-Optmization of culture conditions for enzyme production [J]. ProcessBiochemistry,1996,31:157-162.
    [17] Kuroiwa T, Shoda H, Ichikawa S, et al. Immobilization and stabilization of pullulanase fromKlebsiella pneumoniae by a multipoint attachment method using activated agar gel supports [J]. ProcessBiochemistry,2005,40:2637-2642.
    [19] Badal C, Saha J, Zeikus G. Novel highly thermostable pullulanase from thermophiles [J]. Trends inBiotechnology,1989,7:234-239.
    [20]余清,许慧星,肖小蓉,等.基于响应面分析法优化的乌饭树叶总黄酮提取条件[J].食品科学,2008,24(1):93-98.
    [21]肖卫华,韩鲁佳,杨增玲,等.响应面法优化黄芪黄酮提取工艺的研究[J].中国农业大学学报,2007,12(5):52-56.
    [22]易建华,朱振宝.响应面优化酶法提取芹菜黄酮工艺研究[J].食品科学,2009,30(10):92-96.
    [23]林杨,赵新淮.酶法制备抗性淀粉新工艺的研究[J].食品工业科技,2009,30(3):258-260.
    [1] Escarpa A, González M C, Maňas E, et al. Resistant starch formation: Standardization of ahigh-pressure autoclave process [J]. Journal of Agricultural and Food Chemistry,1996,44:924-928.
    [2] Sievert D, Pomeranz Y. Enzyme-resistant starch. I. Characterization and evaluation by enzymatic,thermoanalytical, and microscopic methods. Cereal Chemistry,1989,66,342-347.
    [3] Eerlingen R C, Deceuninck M, Delcour J A. Enzyme-resistant starchⅡ: influnence of amylose chainlength on resistant starch formation [J]. Cereal Chemistry,1993,70(3):345-350.
    [4] Russel C L, Berry P S, Greenwell P. Characterization of resistant starch from wheat and maize [J].Journal of Cereal Science,1989,9(1):1-15.
    [5]林杨,赵新淮.高直链玉米淀粉制备抗性淀粉的技术改进及成品分析[J].农业工程学报2008,24(11):284-287.
    [6] Gupta R, Gigras P, Mohapatra H, et al. Microbial α-amylases: a biotechnological perspective[J]. ProcessBiochemistry,2003,11(38):1599-1616.
    [7] Herman K, Song Y, Jane J. Effect and mechanism of ultrahigh hydrostatic pressure on the structure andproperties of starches [J]. Carbohydrate Polymers,2002,47:233-244.
    [8] Eerlingen R C, Crombez M, Delcour J A. Enzyme-resistant starch.I. quantitative and qualitativeinfluence of incubation time and temperature of autoclaved starch on resistant starch formation [J]. CerealChemistry,1993,70(3):339-344.
    [9]关杨,王可兴,陆文彬,等.压热法制备荞麦抗性淀粉工艺优化[J].食品科学,2007,28(8):219-223.
    [10] Kim M J, Choi S J, Shin S I, et al. Resistant glutarate starch from adlay: Preparation and properties [J].Carbohydrate Polymers,2008,74:787-796.
    [11] Chanvrier H, Uthayakumaran S, Appelqvist I A M, et al. Influence of storage conditions on thestructure, thermal behaviour and formation of enzyme-resistant starch in extruded starches [J]. Journal ofAgricultural and Food Chemistry,2007,55:9883-9890.
    [12] Mun S H, Shin M. Mild hydrolysis of resistant starch from maize [J]. Food Chemistry,2006,96:115-121.
    [13] Sivaramakrishnan S, Gangadharan D, Nampoothiri K M, et al. α-Amylases from microbial sources-anoverview on recent developments [J]. Food Technol. Biotechnol,2006,44(2):173-184.
    [14] Gill R, Kaur J. A thermostable glucoamylase from a thermophilic Bacillus sp.: characterization andthermostability [J]. Journal of Industrial Microbiology and Biotechnology,2004,3:540-543.
    [15] Coronado M, Vargasa C, Hofemeister J, et al. Production and biochemical characterization of anα-amylase from the moderate halophile Halomonas meridiana[J]. FEMS Microbiol. Lett,2000,183:67-71.
    [16] Primarini D, Yoshiyuki O. Some enzyme properties of raw starch digesting amylases fromStreptomyces sp [J], Starch,2000,52:28-32.
    [17] Gogoi B K, Bezbaruah R L, Pillai K R, et al. Production, purification and characterization of anα-amylase produced by Saccharomycopsis fibuligera [J]. Journal of Applied Microbiology,1987,63:373-379.
    [18] Lee S K, Mun S H, Shin M S. Enzyme-resistant starch from mild acidtreatment maize starches [J].Korean Journal of Food Science and Technology,1997,29:1309-1315.
    [19] Szczodrak J, Pomeranz Y. Starch and enzyme-resistant starch from highamylose barley [J]. CerealChemistry,1991,68(6):589-596.
    [20] Jirapa P, Anchanee U, Onanong N, et al. Debranching enzyme concentration effected onphysicochemical properties and α-amylase hydrolysis rate of resistant starch type III from amylose ricestarch [J]. Carbohydrate Polymers,2009,78:5-9.
    [21] Chung H J, Jeong H Y, Lima S T. Effects of acid hydrolysis and defatting on crystallinity and pastingproperties of freeze-thawed high amylose corn starch [J]. Carbohydrate Polymers,2003,54:449-455.
    [1] Chandrashekar A, Kirleis A W. Influence of protein on starch gelatinization in sorghum [J]. CerealChemistry,1988,65(6):457-462.
    [2] Szczodrak J, Pomeranz Y. Starch-lipid Interactions and formation of RS in high-amylose barley [J].Cereal Chemistry,1992,69(6):626-632.
    [3] Eerlingen R C, Jacobs H, Delcour J A. Enzyme-resistant starch.V. Effect of retrogradation of waxymaize starch on enzyme susceptibility [J]. Cereal Chemistry,1994,71(4):351-355.
    [4]罗志刚,高群玉.抗性淀粉制备研究[J].粮食与饲料工业,2006,(3):19-21.
    [5]关杨,王可兴,陆文彬,等.压热法制备荞麦抗性淀粉工艺优化[J].食品科学,2007,28(8):219-223.
    [6] Shih F F, Daigle K W. Gelatinization and pasting properties of rice starch modified with2-octen-1-ylsuccinic anhydride[J]. Nahrung/Food,2003,47:64-67.
    [7] HAN J A, BEMILLER J N. Preparation and physical characteristics of slowly digesting modified foodstarches[J]. Carbohydrate Polymers,2006,25(7):1-9.
    [8] Pérez E, Breene W, Bahnassey Y. Gelatinization profiles of Peruvian carrot, cocoyam and potatostarches as measured with the Brabender Viscoamylograph, Rapid Viscoanalyzer, and Differential ScanningCalorimeter [J]. Starch,1998,50(1):14-16.
    [9]朱旻鹏,李新华,刘爱华.玉米抗性淀粉的制备及其性质的研究[J].粮油加工与食品机械,2005,5:79-92.
    [10]中华人民共和国药典委员会.中华人民共和国药典[M].北京:化学工业出版社,2005.
    [11]付蕾,田纪春,汪浩.抗性淀粉理化特性研究[J].中国粮油学报,2009,24(5):58-62
    [12] Shi Y C, Capitani T, Trzasko P, et al. Molecular structure of a lowamylopectin starch and otherhigh-amylose maize starches [J]. Journal of Cereal Science,1998,27:289-299.
    [13] Moorthy S N. Extraction of starches from tuber crops using ammonia [J]. Carbohydrate Polymers,1991,16:391-398.
    [14] Sang S K, Oui W K, Dong C K. Physicochemical characteristics of chalky kernels and their effects onsensory quality of cooked rice [J]. Cereal Chemistry,2000,77(3):376-379.
    [15] Bao J S, Xing J, Phillips D L, et al. Physical properties of octenyl succinic anhydride modified rice,wheat, and potato starches[J]. Journal of Agricultural and Food Chemistry,2003,51:2283-2287.
    [16] Wolever T M S, David J A, Alexandra L J. The glycemic index: methodology and clinical implication[J]. The American Journal of Clinical Nutrition,1991,54:864-865.
    [17] Spence K E, Jane J. Chemical and physical properties of ginkgo (Ginkgo biloba) starch [J].Carbohydrate Polymers,1999,40:261-269.
    [18] Zhao X H, Lin Y. The impact of coupled acid or pullulanase debranching on the formation of resistantstarch from maize starch with autoclaving–cooling cycles [J]. European Food Research and Technology,2009,230:179-184.
    [19] Chung Y L, Lai H M. Molecular and granular characteristics of corn starch modified by HCl-methanolat different temperatures [J]. Carbohydrate Polymers,2006,63:527-534.
    [20] Htoon A, Shrestha A K, Flanagan B M, et al. Effects of processing high amylose maize starches undercontrolled conditions on structural organisation and amylase digestibility [J]. Carbohydrate Polymers,2009,75:236-245.
    [21] Guraya H S, James C, Champagne E T. Effect of cooling, and freezing on the digestibility ofdebranched rice starch and physical properties of the resulting material [J]. Starch/Starke,2001,53(2):64-74.
    [22]吴航,冉祥海,张坤玉,等.红外光谱法研究交联淀粉的退化行为[J].高等学校化学学报,2006,27(4):775-778.
    [23] Chung H J, Hoover R, Liu Q. The impact of single and dual hydrothermal modifications on themolecular structure and physicochemical properties of normal corn starch [J]. International Journal ofBiological Macromolecules,2009,44:203-210.
    [24] Morales A F, Estrada M J, Escobedo R M. Determination of the structural changes by FT-IR, Raman,and CP/MAS13C NMR spectroscopy on retrograded starch of maize tortillas [J]. Carbohydrate Polymers,2012,87:61-68.
    [25] VanSoest J J G, Tournois H, DeWit D, et al. Short-range structure in (partially) crystalline potato starchdetermined with attenuated total reflectance Fourier-transform IR spectroscopy [J]. Carbohydrate Research,1995,279:201-214.
    [26] Buléon A, Colonna P, Planchot V, et al. Starch granules: structure and biosynthesis [J]. InternationalJournal of Biological Macromolecules,1998,23:85-112.
    [1] Charalampopoulos D, Wang S, Pandiella S S, et al. Application of cereals and cereal components infunctional foods: a review [J]. International Journal of Food Microbiology,2002,79:131-141.
    [2] Reilly K H, Rombeau J L. Metabolism and potential clinical applications of short-chain fatty acids [J].Clinical Nutrition,1993,12:97-105.
    [3] Hold G L, Schwiertz A, Aminov R I, et al. Oligonucleotide probes that detect quantitatively significantgroups of butyrate-producing bacteria in human feces [J]. Applied and Environmental Microbiology,2003,69(7):4320-4324.
    [4]李可洲,李宁,黎介寿,等.短链脂肪酸对大鼠移植小肠作用的研究[J].肠外与肠内营养,2000,7(3):159-161.
    [5] Rolandelli R H, Koruda M J, Settle R G, et al. The effect of enteral feedings supplemented with pectinon the healing of colonic anastomoses in the rat [J]. Surgery,1986,1986,99:703-707.
    [6] Kripke S A, Fox A D, Berman J M, et al. Stimulation of intestinal mucosal growth with intracolonicinfusion of short-chain fatty acids [J]. Journal of Parenteral and Enteral Nutrition,1989,13(2):109-116.
    [7] Sowa Y, Sakai T. Butyrate as a model for "gene-regulating chemoprevention and chemotherapy”[J].Biofactors,2000,12:283-287
    [8] Chen Y X, Fang J Y, Lu J, et a1. Regulation of histone acetylation on the expression of cellcycle-associated genes in human colon cancer cell lines [J]. Zhonghua Yi Xue Za Zhi,2004,84(8):312-317.
    [9] Chen Z Y, Rex S, Tseng C C. Krüppel-like factor4is transactivated by butyrate in colon cancer cells [J].Journal of Nutrition,2004,134(4):792-798.
    [10] Brown L, Rosner B, Willett W W, et al. Cholesterol-lowering effects of dietary fiber: a meta-analysis[J]. American Journal of Clinical Nutrition,1999,69:30-42.
    [11] Kahlon T S, Woodruff C L. In vitro binding of bile acids by rice bran, oat bran, barley and β-glucanenriched barley [J]. Cereal Chemistry,2003,80:260-263.
    [12] Kalra S, Jood S. Effect of dietary barley β-glucan on cholesterol and lipoprotein fractions in rat [J].Journal of Cereal Science,2001,31:141-145.
    [13] Drzikova B, Dongowski G, Gebhardt E, et al. The composition of dietary fibre-rich extrudates from oataffects bile acid binding and fermentation in vitro [J]. Food Chemistry,2005,90:181-192.
    [14] Nilsson A C, Ostman E M, Holst J J, et al. Including indigestible carbohydrates in the evening meal ofhealthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after asubsequent standardized breakfast [J]. Journal of Nutrition,2008,138:732-739.
    [15] Elkhalifa A O, Schiffler B, Bernhard R. Effect of fermentation on the starch digestibility, resistantstarch and some physicochemical properties of sorghum flour [J]. Molecular Nutrition&Food Research,2004,48:91-94.
    [16] Mahadevamma S, Shamala T R, Tharanathan R N. Resistant starch derived from processed legumes:in vitro and in vivo fermentation characteristics [J]. International Journal of Food Sciences and Nutrition,2004,55:399-405.
    [17]林杨,赵新淮.抗性淀粉的体外产酸发酵研究[J].食品与发酵工业,2008,34(11):44-47.
    [18]谭力,鞠先,黎介寿.生物样品中短链脂肪酸的提取与测定[J].色谱,2006,24(1):81-87.
    [19] Mortensen P B, C lausen M R. Short-chain fatty acids in the human colon: relation to gastrointestinalhealth and disease [J]. Scandinavian Journal of Gastroenterology,1996(Suppl),216:132-148
    [20]曾艳华.中性大蒜果聚糖调节肠道菌群功能体外发酵研究[D].暨南大学:2010.
    [21]张铁涛,徐云升,武天明.青香蕉抗性淀粉体外发酵特性研究[J].农产品加工·学刊,2011,2:11-14.
    [22] Ahmed R, Segal I, Hassan H. Fermentation of Dietary Starch in Humans [J]. The American Journal ofGastroenterology,2000,95(4):1017-1020.
    [23] Lebet V, Arrigoni E, Amad R. Measurement of fermentation products and substrate disappearanceduring incubation of dietary fibre sources with human faecal flora [J]. Wissenschaft und-Technologie,1998,3l (5):473-479.
    [24]耿珊珊.短链脂肪酸对结肠肿瘤细胞增殖分化的影响[J].肠外与肠内营养,2005,12(5):295-298.
    [25] Hedemann M S, Knudsen B K E. Resistant starch for weaning pigs-Effect on concentration of shortchain fatty acids in digesta and intestinal morphology [J]. Livestock Science,2007,108(13):175-177.
    [1] Jenkins D J, Wolever T M, Taylor R H, et al. Glycemic index of foods: a physiological basis forcarbohydrate exchange [J]. American Journal of Clinical Nutrition,2002,76(1):264-265.
    [2] Brand-Miller J. The glycemic index as a measure of health and nutritional quality: An Australianperspective [J]. Cereal Foods World,2007,52:41-44.
    [3] Jenkins, A. L. The glycemic index: Looking back25years [J]. Cereal Foods World,2007,52:50-53.
    [4] Wolever T M S, Mehling C. High-carbohydrate-low-glycemic index dietary advice improves glucosedisposition index in subjects with impaired glucose tolerance [J]. British Journal of Nutrition,2002,87:477-487.
    [5] Aparicio-Saguilán A, Sáyago-Ayerdi S G, Vargas-Torres A, et al. Slowly digestible cookies preparedfrom resistant starch-rich lintnerized banana starch [J].Journal of Food Composition and Analysis,2007,20:175-181.
    [6] Ares G, Baixauli R, Sanz T, et al. New functional fibre in milk puddings: Effect on sensory propertiesand consumers’ acceptability [J]. LWT-Food Science and Technology,2009,42:710-716.
    [7] Hilliam M. Future for dairy products and ingredients in the functional foods market [J]. AustralianJournal of Dairy Technology,2003,58:98-103.
    [8] Verbeke W. Functional foods: consumer willingness to compromise on taste for health?[J]. FoodQuality and Preference,2006,17:126-131.
    [9]李加兴,李伟,陈双平,等.猕猴桃粗纤维低糖饼干的研制[J].食品科学,28:642-646.
    [10] GB/T5009.3-2010,食品中水分的测定[S].
    [11] GB/T5009.56-2003,糕点卫生标准的分析方法[S].
    [12] GB/T4789-2010,微生物学检测方法[S].
    [13] Go i I, García-Alonso A, Saura-Calixto F. A starch hydrolysis procedure to estimate glycemic index[J]. Nutrition Research,1997,17:427-437.
    [14] Brennan C S, Kuri V, Tudorica C M. Inulin-enriched pasta: effects on textural properties and starchdegradation [J]. Food Chemistry,2004,86:189-193.
    [15] GB/T20980-2007,饼干的标准[S].
    [16]衣杰荣,姚惠源.低血糖指数食品的研究进展[J].粮食与饲料工业,2001,4:41-43.
    [17] Feri M, Siddhuraju P, Becher K. Studies on the in vitro starch digestibility and the glycemic index ofsix different indigenous rice cultivars from the Philippines [J]. Food Chemistry,2003,83:395-402.
    [18] Hu P S, Zhao H J, Duan Z Y, et al. Starch digestibility and the estimate glycemic score of differenttypes of rice differing in amylose contents [J]. Journal of Cereal Science,2004,40:231-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700