新型岩土无机胶粘剂及其抗压强度性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对有机类胶粘剂在修建公路、铁路、水坝、建筑物等的工程建设中,存在施工麻烦、耐老化性差、收缩率较大,以及价格昂贵、污染环境且对人体健康有害等缺陷,研制了以无机材料为主的胶粘剂,即硅酸盐型胶粘剂。这种胶与岩土、混凝土的亲和性好、无毒无味、施工简便可靠,且成本低廉,它具有许多有机胶粘剂无法比拟的优点。
     在前期研究工作的基础上,确定了以水溶性硅酸钠为基料、氟硅酸钠或磷酸为固化剂的硅酸盐型无机胶粘剂,作为岩土胶粘剂较为理想。通过正交优化试验,优选出水溶性硅酸钠为高、低模各一半,氟硅酸钠的加入量需大于硅酸钠量的20%,磷酸的加入量为硅酸钠量的2%。
     对不同土质进行胶结试验,结果表明:岩土胶粘剂具有广谱粘接性,二氧化硅、以及一些长石类组成物对提高抗压强度起很大作用;对固化剂含量不同的胶粘剂与土壤进行胶结试验,结果表明:随着固化剂的增加,胶结土的抗压强度逐渐增大,当固化剂为5份时,抗压强度达到最大值,固化剂继续增加,抗压强度反而降低,说明固化剂对胶结土的胶结性能也起很大作用;对二氧化硅含量不同的胶结土进行抗压试验,结果表明:胶结土的抗压强度随着二氧化硅的增加而增大;对细土进行胶结,发现胶结细土的性能均优于胶结粗土的性能,岩土颗粒对胶结性能影响较大;并与同一细度的水泥进行比较。
    
    昆明理工大学硕士学位论文
    中文摘要
    对岩土胶粘剂与土壤进行胶结的抗渗性能、抗折强度试验
    结果表明:岩土胶粘剂与土壤胶结后,其渗透性差,抗渗性好,
    抗折强度也比较好。
     通过以上性能的分析,对岩土胶粘剂的胶结机理进行进一步
    的探讨。其实质上是水溶性硅酸钠与氟硅酸钠反应生成的二氧化
    硅溶胶转变为二氧化硅凝胶的过程,磷酸是提供H+使硅酸转变
    为硅酸凝胶,形成网状结构。
Since organic adhesives have many disadvantages such as constructing troublesomely, inferior aging resistance, large shrinkage, high price, polluting environment, harmful to people and so on, the inorganic adhesives (silicate adhesives) are studied. This kind of adhesive has good affinity with soil and concrete, and it is innocuity and savorless, and it can be constructed conveniently and reliably, and the price is low, so it has many incomparable properties that the organic adhesive can't reach.
    On the basis of previous study, it is ideal to choose silicate inorganic adhesive, in which water-solubility sodium silicate is used as essential material, sodium fluorosilicate or phosphoric acid is used as solidified agent, as soil adhesive. Through orthogonal test, the better is that the high and low modulus of sodium silicate account for one half respectively, the adding content of sodium fluorosilicate must be 20% more than sodium silicate, the adding content of phosphoric acid is 2% of sodium silicate.
    Adhesive experiments are made with different soil and the results indicate: soil adhesive has extensive adhesive, silicon dioxide and some substance of felspars play a great part in increasing compression strength. Adhesive experiments are made with adhesives of different solidified agent and soil, the results show: with the increase of solidified agent, compression strength
    
    
    
    increases gradually. When it is five portions, compression strength can reach maximal value, if solidified agent continues to increase, compression strength decreases instead; it can illustrate that the solidified agent has a great influence on the adhesive properties of adhesive soil. Compression tests on adhesive soil of different silicon dioxide are made and the results show: compression strength increases with the increase of silicon dioxide content. The tests of cementation with thin soil show that the properties of adhesive thin soil are superior to those of adhesive thick soil, so the size of soil grain affects adhesive properties a lot. The comparable tests with cement of the same size are also made.
    The cementation experiments are made on impermeability and flexural strength and the results indicate: after cementation of soil adhesive and soil, it has good impermeability and flexural strength.
    Through the above analyses of properties, the adhesive mechanism is further studied. The essence of which is that the silicon dioxide sol produced through the reaction of water-solubility sodium silicate and sodium fluorosilicate is changed into silicon dioxide gel, and phosphoric acid supplies H+ to turn silicic acid into silicic acid gel so as to form reticular structure.
引文
[1] 梁波,张清江,廖碧娥.一种用于混凝土修补的无机粘结胶的性能及应用.武汉水利电力大学学报,1999,32(5):78~80.
    [2] 余叔藩编译.沥青玛蹄脂碎石(SMA)混合料的设计与铺筑.交通部重庆公路科学研究所,1999,5.
    [3] 赵希英,燕魁,贺映滨等.正交试验优化硅酸盐土壤胶粘剂配制的研究.化学与粘合,2002,5,201~202.
    [4] 候万国,孙德军,张春光编著.应用胶体化学.北京:科学出版社,1998.
    [5] 中国科学院土木建筑研究所研究报告.水热硅酸盐研究.科学出版社,1960.
    [6] 李华,缪昌文,金志强编著.水泥混凝土路面修补技术.北京:人民交通出版社,1995.
    [7] 向明 蔡燎原 张季冰编.胶粘剂基础与配方设计.北京:化学工业出版社,2002,1.
    [8] 田建中,金日镇,辛雨源.无机粘合剂发展概况.精细化工,1989,6(3):15~17.
    [9] Maurice Bowtell. Adhesive Age,1998, 41(4): 53~54.
    [10] Maurice Bowtell. Adhesive Age,1998,41(2): 51~52.
    [11] Maurice Bowtell. Adhesive Age,1998,41(8): 68~69.
    [12] Tom Math. Adhesive Age,1998,41(1): 26~27.
    [13] David,Nick. Adhesive Age,1998,41(5): 32~34.
    
    
    [14] 汪学明.复合磷硅酸盐无机胶粘剂的研制.贵州工学院学报,1993,22(2):34~40.
    [15] 邱宪法,孙树民.建筑结构胶粘剂的发展.胶粘剂,2003,1:13~15.
    [16] Tom kauffman, Jim Chappell, Marga Aeevedo, Mark Mitry.Adhesive Age,1998, 41(6): 29~33.
    [17] Jack Chambers,Timothy Moore, Lee Huber et al. Adhesive Age, 1998, 41(8): 24~27.
    [18] 程时远,李盛彪,黄世强编著.胶粘剂.北京:化学工业出版社,2000,8.
    [19] Masao Yamanonchi, J. Adhesive and Sealant Council. Inc. 1990, 19(3): 115~141.
    [20] 刘华萨,陈显君.L—1建筑无机胶的性能及其应用前景.粘接,2001,22(5):41~42.
    [21] Giorgio Squinzi, J. Adhesive and Sealant Council. Inc. 1990,19(3):91.
    [22] Beffrey Back, J. Adhesive and Sealant Council. Inc. 1990,19(3): 79.
    [23] 王孟钟 黄应昌 主编.胶粘剂应用手册.北京,化学工业出版社,1987.3.
    [24] Graig Glotfelter. Adhesive Age,1997,40(3): 50~55.
    [25] Richard A. Miller, Gregg M. Althen. Adhesive Age, 1996, 39(11): 21~26.
    [26] 陈秀勤,安丽思,顾学民.硅酸盐无机粘合剂的固化机理探讨.粘接,1990,11(4):5~8.
    
    
    [27] 周有英.无机盐工艺学.北京:化学工业出版社,1995.
    [28] H.Saimang,Scholze H,黄照柏译.陶瓷学(上册):基本理论及重要性质.北京:轻工业出版社,1989,19.
    [29] 贺孝先,赵希英,杨喜昆等.相异土质的岩土对胶结后抗压强度的影响.昆明理工大学学报,2002,27(5):113~116.
    [30] 罗嘉运编.岩土工程及路基.北京:中国铁道出版社,1997.
    [31] 赵志缙.新型混凝土及其施工工艺.北京:中国建筑工业出版社,1996.
    [32] 施惠生主编.无机材料实验.上海:同济大学出版社,2003,3.
    [33] 马礼敦.X射线粉末衍射全谱拟合(二).理学X射线衍射仪用户协会论文选集,1996,(2):1.
    [34] 周上祺.X射线衍射分析原理、方法、应用.重庆:重庆大学出版社,1991.
    [35] 赵希英,贺孝先,王时越等.硅酸盐无机胶粘剂与胶结土壤抗压强度关系的研究.昆明理工大学学报,2001,26(3):115~118.
    [36] H.Saimang,Scholze H,黄照柏译.陶瓷学(上册).北京:轻工业出版社,1989,41~43.
    [37] F.Lieban,席耀忠译.硅酸盐结构化学.北京:中国建筑工业出版社,1989,208~209.
    [38] 王晓钧,陈悦,钟白茜等.水泥中(SiO_4)~(4-)四面体聚合态结构与抗压强度的关系.钻井液与完井液,1997,14(2):12~
    
    
    [39] 向才旺,郭俊才,姚大喜主编.水泥应用.北京:中国建材工业出版社,1999,10.
    [40] 胡宏泰.水泥的制造和应用.济南:山东科学技术出版社,1994.
    [41] 谢峥,黎思幸.碾压混凝土渗透系数的研究.红水河,1999,19(9):50—53.
    [42] 速宝玉,张祝添,胡云进.碾压混凝土渗透性的评价指标及其间关系初探.红水河,2002,21(2):55—56.
    [43] 伍洪标主编.无机非金属材料实验.北京:化学工业出版社,2002,6.
    [44] 肖卫东 程时远编著.密封胶粘剂.北京:化学工业出版社,2002,1.
    [45] Miska K M.Second Generation Acrylic Adhesives at Lower Cost. Materials Engineering. 1976, 84(5): 40~42.
    [46] Spearman BP, Hutchinson JD.Post Vulcanization Bondind Techniques, Adhesive Age. 1974,7(4): 30~33.
    [47] Buchan S.Rubber to Metal Bonding. Crosby lock word & son, 1959.
    [48] St.Cyr M.Aohesive Bonding of Berglium. Proeeodings. 15th Nafional SAMPE Symposium and Exhitifion. Vol15. Maferials and Process for the 70's. Los Angles. CA. 1969. 719-731.
    [49] Landrock Arthur H. Adhesives Technology Handbook.New Jersey: Noyes Publications, 1985, 4~7.
    [50] Dimler L, Thimin K. Plaste and Kauts chuk, 1964,1.
    
    
    [51] 王任芳.改性氟硅酸—水玻璃固砂胶粘剂的研制.粘接,2000,(2):20.
    [52] Phillips Chemical company. Barflesville. OK. Adhesives for Bonding polypheylene sulfide. Technical Seruice Memorandum. 1979. 283.
    [53] 朱元光 张翠琴编著.混凝土的胶结密封与修补.北京:中国铁道出版社,1994.
    [54] Stevevt Bloembergen Ina J. Melennan, Scott E. Cassar, et al. Adhesive Age.1998,41(2): 20~24.
    [55] Allan H.Bergman,Samuel M.Berkowitz et al. Adhesive Age, 1997, 40(1): 18~25.
    [56] 徐勇,张婉琴,宫全美等.石灰土作为铁路路基填料的研究.岩石力学与工程学报,2001,20(增1)1015~1017.
    [57] 徐又或,季金华.JS-无机凝胶的特性和工业应用.江苏地质,1993,17(3-4):214~219.
    [58] 张季如,陈超敏,管昌生.路面水泥混凝土质量检测的X射线衍射分析.广西工学院学报,2001,12(4):29~32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700