废橡胶粉的杂化改性及其对水泥基材料结构与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的发展,产生了大量的废弃橡胶轮胎。废橡胶的处理和资源化再利用引起了众多研究工作者的关注。其中,废橡胶粉在水泥基材料中的应用逐渐成为一个研究热点。该研究一方面可以减少废橡胶在堆积与处理时所产生的环境污染,另一方面,橡胶良好的弹性可以改善水泥基材料的抗冲击、抗冻、抗渗、吸声、保温、隔热等性能。但是,由于废橡胶粉的憎水性,使其与水泥基材料的相容性差,造成强度大幅下降,极大地限制了其应用。本研究通过对废橡胶粉进行杂化改性处理,改善橡胶粉与水泥基材料的相容性,进而减小其对水泥基材料强度等性能的不利影响,拓展掺橡胶粉水泥基材料的应用领域和范围,这对废橡胶的综合利用及特种水泥基材料的开发具有极其重要的意义。
     采用正硅酸乙酯(TEOS)或硅酸钠为反应前躯体,并引入含亲水基团的有机硅氧烷,通过溶胶-凝胶(sol-gel)法制备了杂化改性胶粉。运用红外光谱(FT-IR)、热重分析(TGA)、固体核磁共振(NMR)29Si谱分析、电子探针显微分析仪(EPMA)、扫描电子显微镜(SEM)等测试方法,对杂化改性胶粉表面结构、亲水性变化等进行了分析与表征。结果表明:通过杂化改性,在胶粉内部生成了Si-O-Si的杂化网络并与胶粉互穿,同时在其表面引入了大量的亲水羟基(-OH),杂化改性胶粉表面的接触角由94°降低至68°,亲水性提高。
     以掺杂化改性橡胶粉水泥砂浆为研究对象,分析了杂化改性橡胶粉对砂浆强度、弹性模量、干燥收缩、抗冲击、抗渗、吸声和保温隔热等性能的影响。试验结果表明:与目前国内外报道的掺氢氧化钠改性胶粉、偶联剂改性胶粉等砂浆强度相比,杂化改性胶粉砂浆强度提高幅度明显。杂化改性反应前驱体的种类和掺量对掺改性胶粉砂浆的强度影响很大。当TEOS用量为5phr时,制得的杂化改性胶粉TRP掺入水泥砂浆后,砂浆28天抗压、抗折强度分别较对比样提高了51.4%和29.2%;当硅酸钠用量为6phr时,制得的杂化改性胶粉SRP掺入水泥砂浆后,砂浆的28天抗压、抗折强度分别提高了48.8%和17.2%。TEOS是sol-gel法中常用的反应前躯体,但其价格较高,且有一定的毒性;相比而言,硅酸钠也具有很好的改性效果,且价格便宜、安全环保,因此,选用硅酸钠来改性胶粉具有性价比优势,目前未见相关研究报道。
     对橡胶粉砂浆的性能研究发现,与未加入橡胶粉的砂浆相比,掺9%的SRP砂浆抗冲击性能提高了近7倍;掺7%的SRP砂浆平均吸声系数提高了17%,且导热系数降低了67%;掺0.8%的SRP砂浆抗渗压力提高了40%,而掺2%的SRP砂浆抗渗压力提高了180%。
     用SRP制得防水型砂浆稠化粉,配制了强度等级为M10、抗渗等级为P10的普通干混防水砂浆,其水泥用量仅为12.8%,砂浆性能完全符合国家标准要求。与常用的防水添加剂相比,添加剂成本可减少50%左右。这进一步说明,SRP可在砂浆中起到提高抗渗性能、增加保水性、提高粘结强度的作用。该研究为杂化改性橡胶粉作为水泥基材料的功能性改性剂的应用奠定了一定的理论和技术基础。
     XPS分析结果表明,杂化改性胶粉表面的Si-O-Si结构与水泥浆中的钙、硅在水化早期形成了Si-O-Ca结构。通过对橡胶-水泥浆体界面的微观形貌观察和界面粘结力分析发现,该产物与水泥的水化产物发生化学键合,从而使橡胶粉与水泥石紧密地结合在一起,杂化改性橡胶与水泥浆体的界面粘结强度提高了3倍。进一步分析表明,杂化改性胶粉与水泥浆体界面通过化学键结合,阻断了硬化水泥浆体毛细孔,从而提高了渗透压力。论文提出了杂化改性橡胶粉与水泥在各水化阶段的反应示意图,深入地分析了杂化改性橡胶粉对水泥砂浆性能的改善作用及其机理。
With the development of automobile industry large amounts of waste rubber tires are produced all around the world. More and more researchers have concerned on the application of crumb rubber powder in cement-based materials. This is of great interest because it can reduce the environment pollution caused by waste rubber. Besides, cement-based materials containing rubber is superior to conventional ones with following advantages, such as lower density, higher toughness and impact resistance, enhanced ductility and better sound insulation and so on. But it is also found a fatal weakness that is a sharp decline in the strength of cement-based materials incorporating rubber powder, because the surface of rubber is hydrophobic and is not compatible with cement-based materials. This greatly limits the application of waste rubber in cement-based materials. Therefore, the modification of rubber powder is one of the key techniques associated with its application in cement-based materials. With improved performance, modified rubber powder may serve as a functional additive of cement-based materials. Thus, it is of prime importance for comprehensive utilization of rubber powder and preparation of functional cement-based materials.
     In this study, rubber powder (RP) as a cross-linked elastomer was hybrid modified by sol-gel method under swelling condition with reactive precursor tetraethyl orthosilicate (TEOS) or sodium silicate, respectively, and also inducting organic siloxane with hydrophilic groups. Then the hydrolysis and condensation reactions took place in situ and the hybrid modified rubber powder TRP (modified with TEOS) and SRP (modified with sodium silicate) were produced. The structures of the obtained products were investigated with Fourier Transform Infrared Spectroscopy (FTIR), Thermalgravimetric Anylsis (TGA), Nuclear Magnetic Resonance (NMR) of 29Si, Electron Probe Microanalysis (EPMA), Scaning Electron Microscope (SEM) and so on. The results show that Si-O-Si hybrid network has interpenetrated through the network of RP and a lot of hydrophilic groups–OH have also inducted onto the surface of RP at the same time. Contact angle of water on the surface of modified rubber powder is decreased by 26o (from initial 94o to 68o). The surface of RP has been turned from hydrophobic to hydrophilic.
     Cement mortar specimens with hybrid modified rubber powder addition were prepared and cured to definite ages, thereafter their strength, elastic modulus, shrinkage, impact toughness, impermeability, sound absorption and thermal insulation properties were tested. Compared to the mortars with RP, NaOH modified rubber powder (HRP) and coupling agent modified rubber powder (CRP), the mortar with hybrid modified rubber powder has the highest compressive and flexural strength. It is found that the type and content of precursor of hybrid modified rubber powder have greatly effect on the strength of cement mortar. When TEOS addition is 5phr, the 28day compressive and flexural strength of TRP-cement mortar is increased by 51.5% and 29.0% respectively, compared with that of RP-mortar. On the same way, the 28day compressive and flexural strength of SRP-cement mortar is enhanced by 48.8% and 17.2% respectively with 6phr sodium silicate. In comparison to TEOS, sodium silicate is cheaper, more safety and environment friendly. So in this study researches were mainly performed on cement mortars with SRP addition in the subsequent experiments.
     In addition, the results show the anti-impact performance of SRP-cement mortar with 9% SRP addition is increased by 7times, while the average sound absorption coefficient of SRP-cement mortar with 7% SRP addition is improved by 17%, at the same time, its thermal conductivity is decreased by 67%. Furthermore, compared with the reference specimens the anti-permeability pressure of the mortar with 0.8% SRP addition is increased by 40% and that of mortar with 2% SRP addition is improved by 180%.
     It is expected that the hybrid modified rubber powder can be used as a new additive in the production of functional cement-based materials. Using SRP one kind of thickening powder applied for making waterproof mortar was prepared, with it and only 12.8% cement addition, dry-mixed waterproof mortar with strength grade of M10 and impermeability level of P10 was prepared. Compared to using common waterproof additive, production cost of the dry-mixed waterproof mortar is reduced by about 50%. This shows SRP can also find its application in the production of dry-mixed waterproof mortar by increasing impermeability, water retention and adhesive strength and reducing production cost as well.
     The result shows that the interfacial adhesive strength between SRP and cement mortar is increased by 3 times in comparison to that of reference specimens. Morpological observations confirm that the hydration product between SPR and cement mortar is C-S-H gel, thus, interpenetrating networks structure of C-S-H gels is formed, leading to improvement of interfacial adhesive strength. The results of XPS indicate that the O-Si-OH group on SRP’s surface can react with Ca and Si in hydrating cement paste and generate Si-O-Si and Si-O-Ca group, which makes the rubber powder and the cement paste combine closely together by chemical bonds. To sum up, SRP itself and the bond between SRP and cement paste block the capillary pores of hardened cement paste so as to improve impermeability of cement mortar. As a result, it has been originally put forwarded that the reaction model of hybrid modified rubber powder with hydrating cement during different hydration stages, and the effect and mechanism of SRP on cement mortar performance.
引文
[1]李岩,张勇,张隐西.废橡胶的国内外利用研究现状[J].合成橡胶工业, 2003, 26(1):59-61.
    [2]何永峰,刘玉强.废旧硫化胶粉的利用[J].弹性体, 2000, 10(4):35-38
    [3]李志澄.胶粉的活化与改性[J].橡胶工业, 1997, 44(10): 619-621
    [4]黄发荣,陈涛,沈学宁.高分子材料的循环利用[M].北京:化学工业出版社, 2000: 231-238
    [5]邱清华,贾德民,王飞镝.废胶粉利用研究进展[J].橡胶工业,1997, 11: 691- 695
    [6]中华人民共和国2009年国民经济和社会发展统计公报,中华人民共和国国家统计局,2010年2月25日
    [7]曾玉珍,廖正环.废旧轮胎在国外道路工程中的应用[J].国外公路,2000,22(1):39- 42
    [8]毕莲英.室温状态下粉碎废旧轮胎[J].世界橡胶工业,1998,25(2):39-40
    [9] G. Menning. Concepts for reclaim of rubber waste in Europe [J]. Plastic, Rubber and composites Processing and Applications, 1998, 27(7):38-41
    [10]何永峰.浅谈胶粉的应用(一)[J].再生资源研究,2002,01:19-24
    [11]黄立本,谷育生,黄敬.粉末橡胶[M] .北京:化学工业出版社,2003:53-56
    [12]桥本孝.废轮胎粉末的利用方法[J ] .橡胶参考资料,2000,30(7):59-63
    [13]沈俊龙,黄宏波等.橡胶的再生及利用[J].弹性体,2001,11(2):53-56
    [14]董诚春.废橡胶资源综合利用[M].北京:化学工业出版社,2003: 23-28
    [15]庾晋,白杉.废旧轮胎回收利用现状和利用途径[J].橡塑技术与装备, 2003,29(9):11-18
    [16]马舒文编译.环境亲合性再循环方面的创意[J].现代橡胶技术,2003, 30(6):12-18
    [17]何永峰,刘玉强.废旧硫化胶粉的利用[J].弹性体,2000 ,10(4) :35-39
    [18]李春田.活性胶粉的表面处理方法及其应用[J].橡胶工业,1992,39 (12) : 753-757
    [19]李志澄.胶粉的活化与改性[J].橡胶工业,1997,44 (10):619-623
    [20]郭宝春,邱清华,贾德民.共轭三组分互穿聚合物网络的力学性能和形态-酯/聚甲基丙烯酸甲酯/废胶粉体系.华南理工大学学报(自然科学版)[J], 2000,28(3):27-31
    [21]贾德民,戴志晟.共轭三组分互穿聚合物网络在胶粉改性中的应用[J] .橡胶工业,1990,37 (9):516-520
    [22]范仁德.废橡胶综合利用技术[M].北京:化学工业出版社, 1989:121-132
    [23] Bernard Bauman著,李志伟译.表面改性橡胶粒子在胶鞋中的应用[J].橡胶工业,1999,46(4):425-429
    [24]赵素合,白国春,刘秋华.胶粉“核-壳”活化改性:壳改性[J ].合成橡胶工业, 1998, 21(3) :153-157
    [25]赵素合,白国春,刘秋华.胶粉“核-壳”活化改性:核改性[J].合成橡胶工业,1997,20(6): 353~356
    [26] Rajalingam P , Baker W. E. The role functional polymers in ground rubber tire-polythylene composite [J]. Rubber Chem. Technol, 1992 , (5):908-914
    [27]邱清华,郭宝春,贾德民.胶粉的分析研究[J].弹性体, 2002 , 12(4) : 47-49.
    [28]刘春生,朱涵,李志国,张军,袁琳.橡胶细集料水泥砂浆基本性能研究[J].混凝土, 2005,139:38-42
    [29]李悦, Yunping Xi.橡胶集料水泥砂浆和混凝土的性能研究.混凝土, 2006, 6: 45-47
    [30]陈波,张亚梅,陈胜霞,张才华.橡胶混凝土性能的初步研究[J].混凝土, 2004, 12: 37-39
    [31] Khatib, Z.K., Bayomy, F.M. Rubberized Portland cement concrete [J]. ASCE Journal of Materials in Civil Engineering, 1999, 11 (3): 206–213.
    [32]于利刚,刘岚,余其俊.废橡胶粉的改性对砂浆力学性能的影响[J].混凝土, 2009, 4: 98-100
    [33] Fedroff D., Ahmad S., Savas B.Z. Mechanical properties of concrete with ground waste tire rubber [C]. Transportation Research Board, 1996:66-72.
    [34] Eshmaiel Ganjian, Morteza Khorami, Ali Akbar Maghsoudi. Scrap-tyre-rubber replacement for aggregate and filler in concrete [J]. Construction and Building Materials,2009,23:1828–1836
    [35] A. Benazzouk, O. Douzane, K. Mezreb, M. Queneudec. Physico-mechanical properties of aerated cement composites containing shredded rubber waste [J]. Cement & Concrete Composites, 2006,28:650–657
    [36] Eldin N.N., Senouci A.B. Rubber-tire particles as concrete aggregates [J]. Journal of Materials in Civil Engineering, 1993. 5 (4): 478–496.
    [37] Topcu, I.B. The properties of rubberized concrete [J]. Cement and Concrete Research,1995, 25 (2): 304–310.
    [38] Raghvan, D., Huynh, H., Ferraris, C.F. Workability, mechanical properties and chemical stability of a recycled tire rubber-filled cementitious composite[J]. Journal of Materials Science, 1998, 33 (7): 1745–1752
    [39]罗琦,黄少文,胡秀霞,徐玉华,曾亮.橡胶粒子改性水泥混凝土的耐久性能[J].南昌大学学报,2007,12(4):340-343.
    [40]亢景付,张振利,韩春翠.等强条件下橡胶粉对碾压混凝土强度与变形性能的影响[J].复合材料学报,2009,26(4):155-159
    [41]王旻,朱涵,刘爱军. CL30橡胶轻集料混凝土应力应变全曲线试验研究[J].粉煤灰综合利用, 2008,6:17-19
    [42]严捍东,麻秀星,黄国晖.废橡胶集料对水泥基材料变形和耐久性影响的研究现状[J].化工进展, 2008, 3: 395-396
    [43] Fedroff D, Ahmad S, Savas B Z. Mechanical properties of concrete with ground waste tire rubber[C]. Washington.DC. transportation research board.tansportation research report No.1532,1996
    [44] Hernandez-Olivares F,Barluenga G,Bollati M,et al. Static and dynamic behaviour of recycled tyre rubber-filled concrete [J]. Cement and Concrete Research,2002,32(10):1587-1596.
    [45]陈振富,柯国军,胡绍全.橡胶混凝土小变形阻尼研究[J].噪声与振动控制,2004(3):32-34.
    [46]董建伟,袁琳,朱涵.橡胶集料混凝土的试验研究及工程应用[J].混凝土,2006,7:69-71.
    [47]郭灿贤等.用于水泥混凝土的废轮胎胶粉的改性方法研究[J].混凝土,2006,1:60-62
    [48]柯国军,郭长青,胡绍全,陈振富.混凝土阻尼比研究[J].建筑材料学报, 2005 , 7(1):35-40
    [49] Savas, B.Z., Ahmad, S., Fedroff, D.. Freeze–thaw durability of concrete with ground waste tire rubber [J]. Transportation Research Board, 1996, 1574: 80–88.
    [50] Benazzouk, A., Queneudec, M. Durability of cement–rubber composites under freeze thaw cycles[C]. Proceedings of the International Conference on Sustainable Concrete Construction, 2002: 356–362.
    [51] Paine, K.A., Dhir, R.K., Moroney, R., Kopasakis, K. Use of crumb rubber to achieve freeze thaw resisting concrete. [C] Proceedings of the International Conference on Concrete for Extreme Conditions, 2002: 486–498.
    [52]张亚梅,陈胜霞,孙伟.橡胶粉对混凝土在水和NaCl溶液中的抗冻性的影响研究[R].广州:第九届全国水泥和混凝土化学及应用技术会议,2005
    [53]李光宇.橡胶粉混凝土抗冻性能试验研究[J].混凝土,2008,4:60-62
    [54]王雯,刘爱军,朱涵.橡胶轻集料混凝土耐久性初步研究[J].粉煤灰综合利用,2008,2: 3-5
    [55]李清海,史新亮,孙蓓,管学茂.橡胶微粒路面混凝土抗冻性研究[J].混凝土与水泥制品,2008,10:21-23
    [56]刘学艳,刘彦龙,杨宝珍,潘晓静,吴丽艳.胶粒混凝土在道路工程中的应用[J].东北林业大学学报,2006, 34(3): 111—112
    [57]赵志远,弹性橡胶混凝土动态响应研究[D].东南大学,硕士学位论文,2007
    [58]李悦, Yunping Xi.废橡胶改性混凝土的研究[C].广州:第九届全国水泥和混凝土化学及应用技术年会,2005
    [59]王立燕,王超,张亚梅,马爱斌.运用声发射技术研究橡胶混凝土疲劳损伤过程[J].东南大学学报(自然科学版),2009,39(3):574-579
    [60] F. Herna′ndez-Olivares, G. Barluenga, B. Parga-Landa, M. Bollati, B. Witoszek. Fatigue behaviour of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements [J]. Construction and Building Materials,2007,21:1918–1927
    [61] Ali R. Khaloo, M. Dehestani, P. Rahmatabadi. Mechanical properties of concrete containing a high volumeof tire–rubber particles [J]. Waste Management,2008,28,(12):2472-2482
    [62] Tantala, M.W., Lepore, J.A., Zandi, I. Quasi-elastic behavior of rubber included concrete[R]. Philadelphia:Proceedings of the12th International Conference on Solid Waste Technology and Management, 1996
    [63] Ali, A.H. Non-destructive evaluation of rubbermodified concrete[R]. New York: Proceedings of a Special Conference, ASCE, 1997
    [64] Topcu, I.B., Avcular, N. Analysis of rubberized concrete as a composite material[J]. Cement and Concrete Research, 1997, 27 (8): 1135-1139.
    [65] Topcu, I.B., Avcular, N. Collision behaviors of rubberized concrete[J]. Cement and Concrete Research, 1997, 27 (12): 1893-1898.
    [66] Fattuhi, N.I., Clark, N.A. Cement-based materials containing tire rubber[J]. Journal of Construction and Building Materials, 1996, 10 (4): 229-236.
    [67] Segre, N., Joekes, I. Use of tire rubber particles as addition to cement paste[J]. Cement and Concrete Research, 2000, 30 (9): 1421-1425.
    [68]胡鹏,朱涵.掺橡胶细粒混凝土的渗透性与微观结构[J].混凝土与水泥制品,2007,2:4-7
    [69]张伟.橡胶集料混凝土渗透性机理研究[J].天津建设科技,2010,1:34-39
    [70] Piti Sukontasukkul. Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel [J]. Construction and Building Materials,2009,23(2):1084-1092
    [71]史巍,张雄,陆沈磊.橡胶粉水泥砂浆隔声性能研究[J].建筑材料学报,2005,10,8(5): 553-557
    [72] Eldin, N.N., Senouci, A.B. Rubber-tire particles as concrete aggregates [J]. ASCE Journal of Materials in Civil Engineering, 1993 , 5 (4): 478–496.
    [73] Rostami, H., Lepore, J., Silverstraim, T., Zundi, I. Use of recycled rubber tires in concrete[C]. Proceedings of the International Conference on Concrete 2000 : 391-399.
    [74] Chou L H, Lee M T, Huang C C, et al. Rubber tire particles in cement paste[J].中山大学学报(自然科学板),2003, 42(增刊): 99~103.
    [75] Benazzouk A, Mezreb K, Doyen G, et al. Effect of rubber aggregates on the physico-mechanical behaviour of cement-rubber composites-influence of the alveolar texture of rubber aggregates [J]. Cement and Concrete Composites, 2003, 25: 711-720.
    [76] Nadia S, Paulo J M, Garrison S. Surface characterization of recycled tire rubber to be used in cement paste matrix [J]. J. of Colloid and Interface Science, 2002, 248: 521-523.
    [77] Kyung H C, Young K H. Introductory Behavior of Rubber Concrete [J]. Journal of Applied Polymer Science, 1999, 72: 35-40
    [78] Piercea C E, Blackwell M C. Potential of scrap tire rubber as lightweight aggregate in flowable fill [J]. Waste Management, 2003, 23: 197-208.
    [79] Olivaresa F H, Barluengaa G, Bollatib M, et al. Static and dynamic behavior of recycled tyre rubber-filled concrete [J]. Cement and Concrete Research, 2002, 32: 1587-1596.
    [80] lker Bekir Topcu et al. The properties of rubberized concretes[J]. Cement and Concrete Research, 1995, 25(2): 304-310.
    [81] Toutanji H. A. The use of rubber tire particles in concrete to replace mineral aggregates [J]. Cement and Concrete Composites, 1996, 18:135-139.
    [82] Raghavan D., Huynh H. Workability, mechanical properties and chemical stability of recycled tyre rubber-filled cementations composite[J]. J of Materials Science, 1998, 33: 1745-1752.
    [83] Fattuhi N I and Clark L A. Cement-based materials containing shredded scrap truck tyre rubber [J]. Construction and Building Material, 1996, 10(4): 229-236
    [84] Lee, H.S., Lee, H., Moon, J.S., Jung, H.W. Development of tire added latex concrete [J]. ACI Materials Journal, 1998, 95 (4): 356–364.
    [85]宋少民,刘娟红,金树新.橡胶改性的高韧性混凝土研究[J].混凝土与水泥制品. 1997,1:10-12
    [86]王亚明,刘岚,傅伟文,罗远芳,贾德民,于利刚.废胶粉的改性及其在砂浆中的应用[J].化工进展, 2006, 25(7):280-285
    [87]杨志峰,李美江,王旭东.废旧橡胶粉在道路工程中的应用的历史和现状[J].公路交通科技,2005,22(7):19-22
    [88]罗妮.废橡胶粉在道路工程中的应用研究和发展[J],湖南交通科技,2008.3,32-34
    [89]孙长军,王旭东,李美江.废轮胎胶粉在公路工程中的应用及前景展望[J].橡胶科技市场, 2005, 12: 1-4
    [90]王佶.隧道路面新材料及复合式路面设计与应用研究[D].武汉理工大学博士论文,2007
    [91]吴绪浩,刘朝晖.公路隧道路面结构与材料技术研究[J].广西交通科技,2003,28(6): 31-33.
    [92]重庆交通科研设计院.隧道内路面铺装技术的研究(试验研究报告), 2001
    [93] Malek K. Batayneh, Iqbal Marie, Ibrahim Asi. Promoting the use of crumb rubber concrete in developing countries [J]. Waste Management,2008, 28 :2171–2176
    [94]龙广成,谢友均,李建.废旧橡胶颗粒改性水泥混凝土及其工程应用[J].粉煤灰,2005,(2): 3-4
    [95]李红燕.橡胶改性水泥基材料的性能研究[J].东南大学硕士论文,2004
    [96] Pieter J Hvan Beukering,Marco A Janssen. Trade and recycling of used tyres in Westem And Eastem Europe [J]. Resources Conservation and Recycling,2001, 33: 235-265.
    [97] Kamil E. Kaloush,George B.Way,Han Zhu. Properties of Crumb Rubber Concrete[R]. Submitted for Presentation and Publication at the 2005 Annual Meeting of the Transportation Research Board. 2004. 11.15.
    [98]夏和牛,王琪.纳米技术进展[J].高分子材料科学与工程,2001,17( 4):1-7
    [99]张立德,牟季美.纳米材料科学[M ].沈阳:辽宁出版社, 1994: 32~43
    [100] Eric Bescher, John D Mackenzie. Hybrid organic-inorganic sensors[J].Materials Science and Engineering, 1998, C6:145~154.
    [101] Christian Guizard, Alain Bac, Mihail Barboiu, et al. Hybrid organic-inorganic membranes with specific transport properties: Applications in separation and sensors technologies [J]. Separation and Purification Technology, 2001, 25:167-180
    [102]夏和生,王琪.聚合物纳米材料研究进展Ⅱ--聚合物-无机纳米复合材料[J ] .化学研究与应用, 2002,14(2) :127-132
    [103] Kumagal A J. Sol-Gel preparated nano-SnO2 [J]. J. Am Ceram Soc, 1985, 68(9): 500-510
    [104]薛更生,张军利,杨永珍等.溶胶-凝胶法制备纳米粉体[J].机械管理开发, 2001增刊, 2:81-82
    [105]章永化,龚克成. Sol-Gel法制备有机/无机纳米复合材料的进展[J].高分子材料科学与工程, 1997, 13(4):14-18
    [106]宋伟明,周惠良.铟锡氧化物纳米晶的溶胶凝胶法合成[J].宁夏大学学报(自然科版), 2000,21 (4):339-341
    [107] Benedicte Lepoittevin, Nadege Pantoustier, Myriam Devalckenaer. Polycaprola- ctone/Clay Nanocompisites by in-situ intercalative polymerization Catalyzed by Dibutyltin Dimethoxide [J]. Macromolecules, 2002, (35):8385-8390
    [108]漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践[M]北京:化学工业出版社,2002:3-11
    [109] W.Ahmed, C.A.Rego, R.Cherry. CVD diamond: controlling structure and morphology [J].Vacuum, 2000, 56:153-158
    [110] Ikeda Y, Tanaka A, Kohjiya S. Reinforcement of styrene-butadiene rubbervulcanizate by in-situ silica prepared by the sol-gel reaction of tetraethoxysilane [J]. Journal of Materials Chemistry, 1997, 7(8): 1497-1501
    [111] Iler R K. Chemistry of Silica[M]. New York:Wiley, 1979: 32-43
    [112]林健.催化剂对正硅酸乙酯的水解-聚合机理的影响[J ] .无机材料学报. 1997,12(3):363-369
    [113] Assink R A, Kay B D. Sol-gel kinetics I. functional group kinetics [J]. J Non-cryst Solids, 1988, 99 (2-3): 359-370
    [114] Brinker C J, Schere G W. Sol-gel Science, the Physics and Chemistry of Sol-gel Processing [M]. San Diego: Academic Press, 1990
    [115]胡小娟.有机改性纳米SiO2超疏水膜的制备、结构与性能研究[D].广州:华南理工学硕士学位论文,2010
    [116] Ying J Y, Benziger J B, Navrotsky A. The structural evolution of alkoxide silica gels to glass: effect of catalyst pH [J]. J Am CeramSoc, 1993, 76(10):2571-2582
    [117]林健.催化剂对正硅酸乙酯水解-聚合机理的影响[J].无机材料学报, 1997, 12 (3) : 67-71
    [118] Brinker C. J. Sol-Gel Science [M]. New York: Academic Press, INC, 1990
    [119] WANG Xi-gui, ZHAO Hui, ZHANG Qiang, et al. Research progress of hydrolysis of TEOS [J]. Petrochemical Industry of the Inner Mongol.2001, 27: 17-18
    [120]霍玉秋,翟玉春,童华南. 3种共溶剂对正硅酸乙酯水解的影响[J].东北大学学报(自然科学版), 2004, 25 (2):133-135
    [121]周斌,王珏,沈军等.丙酮为溶剂制备SiO2气凝胶[J].无机材料学报, 1996, 11(3):520-524.
    [122] Lenza R F S, Vasconcelos W L. Study of the influence of some DCCAs on the structure of sol silica membranes [J]. J. Non-crystSolids, 2003, 330(13): 216~225
    [123] Rao AVRao, SakhareH M, TamhankarAK, et al. Influence of N, Ndimethyl-formamide additive on the physical properties of citric acid catalyzed TEOS silica aerogels [J]. Mater Chem Phys, 1999, 60(3) :268-273.
    [124]段先健.溶胶-凝胶法原位生成纳米SiO2粒子增强橡胶及EPDM补强机理的初步研究[D ],北京:北京化工大学, 2001.
    [125] Gera rd J F, Kaddami H, Pa scault J P. Nanocomposites prepared by sol-gel process:In-situ synthesis of silica particles in polyurethanes[C] . Ext Abstr– Eurofillers 97 , Int Conf Filled Polymer Filler s , London : British Plast Fend , 1997:407-410
    [126] Bokobzaa L, Chauvinb J P1Reinforcement of natural rubber: Use of in situ generated silicas and nanofibres of sep iolite [ J ]. Polymer, 2005, 46 (12) : 4144-4151
    [127] Yuan Q W, Mark J E.Reinforcement of poly (dimethylsiloxane) network by blended in-situ generated silica fillers having various size, size distributions, and modified surfaces [J]. Macromolecular Chemistry and Physics,1999 ,20(1):206-210
    [128] Tanahashi H., Osanai S, Shigekuni M ,et al. Reinforcement of acrylonitrile-butadiene rubber by silica generated in situ[J]. Rubber Chemistry and Technology ,1998,71(1) :38-45
    [129]洪洋,王静媛,于晓强等.溶胶-凝胶法合成聚(甲基丙烯酸乙酯-甲基丙烯酸环氧丙酯)/SiO2杂化聚合物材料[J].高分子学报, 2000, 4: 402-406
    [130] Ikeda Y, Ko hjiya S. In situ formed silica particle in rubber vulcanizate by the sol-gel method [J] . Polymer, 1997, 38(17) : 4417-4423
    [131] Duan Xianjian, Wu Shemao, Zhong Rongdong, et al1 In-situ silica reinforcing EPDM by sol-2gel method[J].合成橡胶工业, 2001, 24 (4) : 41
    [132]李昂.含胶率测定方法[J].特种橡胶制品,1994, 4,47-50
    [133]刘岚,贾德民,罗远芳,于利刚等.一种改性胶粉纳米复合材料及其制备方法[ P].中国发明专利,200710029124.2
    [134]刘岚,于利刚,余其俊等.以硅酸钠为硅源的改性胶粉纳米复合材料及其制备方法[ P].中国发明专利, 200710032515.X
    [135]郑永林,粉体表面改性[M].北京:中国建材工业出版社,2004:60-72
    [136]曾幸荣,吴振耀,侯友军,刘岚.高分子近代测试分析技术[M].广州:华南理工大学出版社,2007: 108—163
    [137]曹诚,刘家彬.聚丙烯纤维对混凝土动力学特性的影响研究[J].混凝土,2000,5: 43-45
    [138]周春英.蒸压加气混凝土的结构与性能研究[D].广州:华南理工大学硕士论文,2007
    [139] Powers ,T.C.,Rev. Material. Construct [J](Paris). 1961, 545: 79-85
    [140]西德尼·明德斯,J·弗朗西斯·杨,戴维·达尔文(吴科如等译).混凝土[ M].北京:化学工业出版社, 2005, 1: 375—376
    [141]钟祥璋.建筑吸声材料与隔声材料[M].北京:化学工业出版社,2005: 47-52
    [142]朱赢豹.保温材料在建筑节能墙体材料中的应用[M].北京:中国建材工业出版社. 2003: 117-120
    [143]陈瑞军.橡胶吸声材料及其应用[J].橡胶工业, 2008,55(2):102-125
    [144]张雄.建筑功能材料[M].北京:中国建筑工业出版社, 2000:86-90
    [145] NYAME B Y, ILISTON J M. Capillary pore structure and peame ability of hardened cement paste [A] Proc 7 lntl Cong ChemCement [C].Paris.[sn],1980 181—185
    [146] MEHTA P K,MANMOHAN D.Pore size distribution and penne ability of hardened cement pastes[A].Proc 7 lntl Cong ChemCement [C].Paris:[sn], 1980.1—5
    [147]陈立军,王永平尹新生张丹.混凝土孔径尺寸对其抗渗性的影响[ J ].硅酸盐学报, 2005,4 :500—505
    [148]丁达,刘洪来,牟伯中,刘大红.选择性渗透水泥石作用机理[J].华东理工大学学报自然科学版,2005, 31(4): 528-531
    [149] BECHHOI D.N.Kolloidstudien mit der Filtration method [A].IIIEI~IKHH A E.水泥混凝土的结构与性能[C].北京:中国建筑工业出版社, 1984: 17—19
    [150]汪澜.水泥工程师手册[ M ].北京::中国建材工业出版社, 1998: 170-173
    [151]汪澜.水泥混凝土组成性能应用[M].北京:中国建材工业出版社, 2005, 1: 15-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700