超早强水泥基修补材料作用机理及应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速增长,交通与建筑行业取得了前所未有的发展,水泥混凝土材料以其优异的性能及相对低廉的价格被广泛使用。然而,由于我国地质条件复杂,自然灾害频发,灾后抢通抢修工作变得十分重要。实践表明,灾后快速恢复交通,对保护人民生命财产安全和国防建设具有重大的现实意义。基于此,本文参考混凝土相关规范,对超早强修补材料的工作性、力学性和耐久性进行了系统研究;采用DTA和SEM从微观角度分析了超早强修补材料作用机理;通过工程实体应用研究了超早强修补材料施工工艺。本文取得的主要成果如下:
     系统研究了矿物掺合料与聚合物的种类及掺量等对超早强修补砂浆的影响规律。矿物掺合料的掺入可延长超早强修补砂浆可操作时间,但砂浆的流动性、抗折强度、抗压强度和粘结强度随着矿物掺合料的掺入有所降低;聚合物的掺入可以延长砂浆可操作时间,改善其流动性,提高砂浆的后期粘结强度,但却降低材料的抗折强度、抗压强度和早期粘结强度。矿物掺合料和聚合物的掺入可优化砂浆的内部结构,改善超早强修补砂浆的抗渗性、干缩性能和抗硫酸盐侵蚀性能等耐久性。
     研究了超早强修补混凝土的工作性、力学性和耐久性,结果表明:超早强修补混凝土具有良好的工作性能;具有早期强度高后期强度不倒缩的力学性能;具有抗渗等级高、抗疲劳性能好、高强耐磨等优异的耐久性能。在延安二十里铺机场等实体工程中得到成功应用,施工现场的跟踪调查表明超早强修补混凝土具有优异的工作性、力学性和耐久性,据此提出了超早强修补材料的施工工艺。
     微观测试结果显示:超早强修补材料早期生成了大量水化产物,并且随着龄期的增长,云雾状胶凝体增多,使内部结构更为密实,从而表现出早期强度高、后期强度不倒缩和良好的抗渗性、干缩性、抗疲劳性等耐久性能。
With the rapid development of the economy, transportation and construction industries achieved unprecedented development, cement and concrete materials are widely used for their superior performance and relatively low price. However, the post-disaster repair work has become very important, because China is located in geological hazard earthquake-prone area, and natural disasters happened increasingly. The practices showed that, recovering traffic with quickest speed after the disaster had great realistic significance in protecting people's life and property security and constructing national defense. Based on this, the workability, mechanical property and durability of super early strength repairing materials were studied systematically in this article. The paper also researched the mechanism of super early strength repairing materials by DTA and SEM, while studied the construction craft of the super early strength repairing materials through the engineering entity. The main achievements in this article are shown as follows:
     The influence regularity of the type and dosage of the mineral admixtures and the polymer to the super early strength repair mortar were studied in this article systematically. Mixed with mineral admixture could prolong the operating time of super early strength repairing mortar. However, it would reduce the fluidity, the flexural strength, the compressive strength and the bond strength; Mixed with polymer additive could prolong the operating time and improve fluidity and mortar'later bond strength of super early strength repairing mortar. But at the same time, it would bring down the flexural strength, the compressive strength and the early bond strength. The mineral admixtures and polymer additive could optimize the internal structure of the mortar, and improve its durability such as penetration-proof quality, shrinkage properties and corrosion resistance to sulfate.
     The results of research on workability, mechanical properties and durability of the super early strength repairing concrete indicated that, it has good workability, high early strength, sustainable late strength development, and high durability such as high anti-permeability rank, good anti-fatigue performance high strength abrasion resisting. The super early strength repairing concrete applied successfully in Yan' an airport. The follow-up survey of the case study showed that, the super early strength repairing concrete had good workability, mechanical properties and durability, and then a construction process for the super early strength repairing concrete was put forward.
     The microscopic test results of super early strength repairing materials showed that, there are mass hydration products in the early stage. And nebulous gel increased along with the growth of age, which made the internal structure more close-grained. So the super early strength repairing materials had great early strength, stable post strength and good durability such as penetration-proof quality, dry shrinkage and fatigue resistance.
引文
[1]刘爱文,夏珊,徐超.汉川地震交通系统震害及震后抢修[J].震灾防御技术.2008(13):243-250.
    [2]李炜光,陈栓发,李建平,孙已龙.水泥混凝土路面的快速修补[J].公路,2002(2):97-99.
    [3]李炜光,孙已龙,陈栓发.超早强修补水泥混凝土早强机理研究[J].公路交通科技,2004(6):31-34.
    [4]江光炫,田军.水泥混凝土路面快速修补技术综述[J].华东公路,2004:72-74.
    [5]冯乃谦.新实用混凝土大全[M].北京:科学出版社,2005.
    [6]何建杰.水泥混凝土路面快速修补材料与工艺研究[D].成都:西南交通大学,2006.
    [7]高丹盈,赵军.汤寄予.钢纤维高强混凝土劈拉强度尺寸效应试验研究[J].建筑材料学报,2004,7(3);295-299.
    [8]赵晶,蔡新华,焦贺军.混杂纤维对混凝土早期开裂性能的影响[J].哈尔滨工业大学学报.2007,39(2):232-234.
    [9]姚武.钢纤维高强混凝土的力学性能研究[J].新型建筑材料,1999(10):18-19.
    [10]丁一宁,董香军,王岳华.混杂纤维自密实混凝土的强度和抗弯韧性[J].建筑材料学报,2005.8(3):294-298.
    [11]LI V C.ECC-tailored composites through micromechanical modeling[A].Fiber Reinforced Concrete: Present and the Future edited by Banthia et al, CSCE[C],Montreal,1998,64-97.
    [12]LI V C. On Engineered Cementitious Composites(ECC) a review of the material and its applications[J].Adv Concr Technol,2003,1(3):215-230.
    [13]LI V C,WANG S,WU C. Tensile strain-hardening behavior of PVA-ECC[J].ACI Mater J,2001,98(6):483-492.
    [14]熊建平,申爱琴.聚合物水泥混凝土施工控制因素[J].交通运输工程学报,2008,8(1):42-53.
    [15]申爱琴,李柱龙,王小明.聚合物乳液改性水泥混凝土的微观结构[J].混凝土,2001,3:40-42.
    [16]韦灼彬,王铁成.水泥混凝土路(道)面快速修补技术的研究与应用[J].工程力学,2002,增刊:716-721.
    [17]缪昌文,孙光萍,薛建新,缪建华.JK系列混凝土快速修补剂的研制与应用[J].施工技术,1995,5:15-17.
    [18]彭勃,戴炜,单远铭.QTA-Ⅰ型混凝土路面快速修补剂[J].中南公路工程,1998,9:32-34.
    [19]陈栓发.超快速硬修补材料及其作用机理研究[D].西安:长安大学,2000.
    [20]职雨风.超早强水泥混凝土修补剂的研究[D].西安:长安大学,2000.
    [21]张明飞.聚合物改性硫铝酸盐水泥修补砂浆的研究[D].武汉:武汉理工大学,2006.
    [22]赵铁军.混凝土渗透性[M].北京:科学出版社,2005.
    [23]王新民,李颂.新型建筑砂浆干拌砂浆指南[M].北京:中国建筑工业出版社,2004.
    [24]郑旭.水泥基修补砂浆的研究[D].北京:北京工业大学,2008.
    [25]JCT 1083-2008,水泥与减水剂相容性试验方法[S].北京:中国建材工业出版社,2008.
    [26]申爱琴.水泥与水泥混凝土[M].北京:人民交通出版社,2000.
    [27]徐定华.混凝土材料学概论[M].中国标准出版社2002.
    [28]蒲心诚,王勇威.新效活性矿物掺合料与混凝土的高性能化[J].混凝土.2002,2:3-6.
    [29]石明霞,谢发均,刘宝举.水泥-粉煤灰复合胶凝材料的水化性能研究[J].建筑材料学报.2002,5(2):114-119.
    [30]熊建平.聚合物改性水泥混凝土路用性能研究[D].西安:长安大学,2005.
    [31]易成.混凝土抗渗性能研究的现状与进展[J].混凝土,2003(2),7-11.
    [32]吴敬龙.聚合物改性砂浆性能研究[D].哈尔滨:哈尔滨工业大学,2006.
    [33]Iehro ADACHI, Kunimitu SHIBUYA, Sadao KIMURA. Most suitable treatment of the existing concrete pavement. Journal of Chibe Institute of Technology,1991,25(37):64-73.
    [34]Shilstone Sr J M and Shilstone J r J M. Needed Paradigm Shift in the Techno logy for Normal Strength Concrete, in:Proceedings on Concrete Techno logy: Past, Present and future. Detro it,U. S. A: ACISP-144.1994.
    [35]黄士元,蒋家奋等.近代混凝土技术.西安:陕西科学技术出版社,1998.
    [36]Ramachandran V S, Feldman R F, Beaudo in J J.混凝土科学,黄士元,等译.北京:中国建筑工业出版社,1986.
    [37]田耀刚.高强混凝土阻尼功能设计及其研究[D].武汉:武汉理工大学,2008.
    [38]S P Shah, S H Ahmad. High performance concretes and applications. London: Edward Arnold.1994.
    [39]宋玉普编著.混凝士结构的疲劳性能及设计原理.北京:机械工业出版社,2006.
    [40]S P Singh, S K Kaushik. Flexural fatigue analysis of steel fiber-reinforced concrete. ACI Materials Journal,2001,98(4):306-312.
    [41]孙伟,严云.钢纤维高强水泥基复合材料的界面效应及其疲劳性能的研究.硅酸盐学报,1994,22(2):107-116.
    [42]ACI Committee 215.Considerations for Design of Concrete Structure Subjected to Fatigue Loading. ACI Manual of Concrete Practice,1990, Part Ⅰ, pp.1-25.
    [43]Raithby K D. Flexural fatigue behavior of plain concrete. Fatigue Engineering Materials and Structure,1979,2:269-278.
    [44]杨文武.海工混凝土抗冻性与抗氯离子渗透性综合评价[D].重庆:重庆大学,2009.
    [45]Sandberg P. Studies of chloride binding in concrete exposed marine environment [J]. Cement and Concrete Research,1999, (29):437-477.
    [46]Ann K Y, Ahn J H, Ryou J S. The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures[J].Construction and Building Materials,2009, (23): 239-245.
    [47]Mohammed T U, Hamada H. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research,2003, (33):1487-1490.
    [48]王绍东,王智.水泥组分对混凝土固化氯离了能力的影响[J].硅酸盐学报,2000,28(6):570-574.
    [49]苏祖平,欧阳华林.C50-C60海工耐久混凝土的试验研究[J].桥梁建设,2006(1):19-21.
    [50]杨楠如.无机非金属材料测试方法.武汉:武汉工业大学出版社,1990.
    [52]周曦亚,毕舒.无机显微结构分析.北京:化学工业出版社,2007.
    [53]周志朝.无机纤维分析(第二版).杭州:浙江大学出版社,2006.
    [54]唐敏.高速公路桥梁的修补与加固[J].国外建筑科学,1995,4:15-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700