冲压发动机补燃室内绝热层传热烧蚀特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体冲压发动机系统结构简单、使用方便、比冲较高、工作可靠,具有广阔的应用前景。在固冲发动机工作过程中,补燃室内要进行富燃燃气的二次燃烧,所以补燃室内壁处于大量高温高压燃气的包围之中,燃气和室壁之间存在着十分强烈的热量传递,同时冲压发动机补燃室内又处于富氧状态。由于高能推进剂和高强度材料被广泛采用,热强度问题也由于传热量的增加和壳体的减薄而变得更加的突出。若热防护技术不过关,将导致发动机补燃室烧穿而失败,必须给予高度的重视,并加以重点解决。因此,开展固体冲压发动机补燃室内绝热层传热烧蚀特性研究,就显得非常有意义。本文以某冲压增程弹冲压发动机补燃室内绝热层为研究对象,采用数值模拟与试验相结合的手段,对冲压发动机补燃室内绝热层的传热与烧蚀特性进行了研究。主要研究内容为:
     (1)建立了冲压发动机补燃室内纯气相带化学反应流场的物理模型,采用含κ-ε双方程模型的湍流时均方程组,给定方程组的边界条件,对补燃室内化学反应流场进行了数值模拟,给出了补燃室内燃气参数值,如温度、速度、压力等,根据燃气参数并进一步计算出了燃气与壁面之间的换热系数,为后续冲压发动机补燃室内传热烧蚀计算提供准确的热载荷边界条件。
     (2)建立了冲压发动机补燃室内绝热层传热烧蚀物理模型,提出了针对该模型的计算处理方法和定解条件,研究了绝热层材料内部具有热解反应的传热特性与富氧燃气环境下含热化学反应和气流剥蚀得绝热层材料烧蚀特性。通过数值计算,得到了冲压发动机补燃室内绝热层温度分布以及烧蚀率。
     (3)对绝热层材料进行了热重分析试验、燃气发生器试验和冲压联管试验,分析得到了绝热层材料在冲压发动机补燃室内的传热烧蚀机理,测试了不同燃气参数对绝热层传热烧蚀的影响。并提出低导热系数材料的背面温度的测试方法和修正方法,在试验过程中对绝热层的背面温度进行了测量,对试验后的绝热层进行烧蚀量的测量,对烧蚀后的试样做扫描电镜微观分析和元素成分分析,为绝热层的传热烧蚀模型的建立、计算及验证提供试验数据。
     通过本文研究,建立了冲压发动机补燃室内绝热层传热烧蚀数学物理模型,以及针对该模型准确有效的计算程序,得到了冲压发动机补燃室内绝热层传热烧蚀特性,以及燃气参数对传热烧蚀特性的影响规律。本文的研究工作对冲压发动机补燃室内绝热层的设计和应用具有指导意义,同时为后续开展该类绝热层的传热烧蚀机理研究提供了理论参考依据。
Because of the advantages such as simple structure, convenient usage, high specific impulse and reliable working performance of solid rocket ramjet, it will have a wide application for the solid rocket ramjet. During the working time, the oxygen-poor fuel gas from the generator and the air from the inlet mixed with each other first, and then combusted again in the second combustion chamber, so the inner wall of second combustion chamber is surrounded by the fuel gas with high pressure and high temperature. There is strong heat transfer between the fuel gas and the inner wall. And it is oxygen-rich in the inner environment of chamber. Because of the use of the high energy propellant and the high strength material, along with the more heat transfer and the reduction of ramjet shell, the hot strength will be more serious. The unfitted thermal protection system will result in the burn through of the chamber and the failure of the ramjet. So, it must be pay more attention. Therefore, it is very important and necessary to specially research the heat transfer and ablation properties of insulation in ramjet chamber. Aiming at above problems, in this thesis, heat transfer and ablation properties of insulation in ramjet chamber are studied by using the numerical simulation method and tests. The main researches are as follows:
     (1) Based on k-εtwo equations, the physical model of pure gas phase flow fields with reacting in the ramjet chamber and the relevant boundary conditions and numerical method are given. By the numerical simulation, the flow field structures and the fuel gas properties such as temperature velocity and pressure in the ramjet chamber are obtained. According to the fuel gas properties, the heat transfer coefficient between the fuel gas and the inner wall of chamber can be computed. These data is helpful for the researching on the numerical simulation of heat transfer and ablation of insulation as the heat load.
     (2) Establishing the physical model of the heat transfer and ablation of insulation in the combustion chamber, the corresponding boundary conditions are proposed and the numerical simulation is carried out. The heat transfer with pyrolysis and ablation under oxygen-rich environment are researched. The temperature contour in the insulation and the ablation rate can be obtained by the numerical simulation. The main influence factors of the material on the heat transfer and ablation and the relations between those factors are analyzed.
     (3) The thermal gravity test and gas generator test and connected pipe test for ramjet is used for the heat transfer and ablation test of insulation in chamber. The heat transfer and abalation mechanism are obtained. The methods of temperature measurring and temperature amending are presented. During the working time of the ramjet, the back-face temperature of the thermal protection material is measured. After test, the ablation rate of insulation is measured too and the scanning electron microscope of samples was investigated. So all of them can provide effective test data for the establishment and computation and validating of heat transfer and ablation of the chamber insulation.
     This paper researches the heat transfer and ablation properties of the insulation, and establishes the numerical and physical model of insulation, and forms the compute program of the insulation heat transfer and ablation model. And the influence on the heat transfer and ablation by the properties of combustion gas is obtained. These results are significant to the design and application of insulation in ramjet combustion chamber, and supply a fundament to the theory research of heat transfer and ablation mechanism of this kind of insulation.
引文
[1]崔平.现代炮弹增程技术综述.综述,2006,3:17-19
    [2]吴护林.炮弹增程技术的发展.专家论坛,2005,5:3-6
    [3]李臣明.发射武器增程技术概述.现代军事,2005,9:59-61
    [4]任加万,谭永华.冲压发动机燃烧室热防护技术.火箭推进,2006,32(4):38-42
    [5]姜贵庆,刘连员.高速气流传热与烧蚀热防护.北京:国防工业出版社.2003
    [6]袁海根,曾金芳,杨杰等.防热抗烧蚀复合材料研究进展.化学推进剂与高分子材料,2006,1:21-25
    [7]付东升,奚建明,李媛等.EPDM绝热材料耐烧蚀性能影响因素研究进展.化学推进剂与高分子材料,2007,5(5):12-15
    [8]赵晓莉,岳红,张兴航等.三元乙丙橡胶绝热层耐烧蚀性能的研究评述.材料科学与工程学报,2005,23(2):310-312
    [9]张新航,李强,赵荣.耐烧蚀、低密度三元乙丙橡胶绝热层的研制.宇航材料工艺,2005,1:39-41
    [10]S. P. Darby, D. B. Landrum. Experimental Uncertainty in Determining Kinetic Reaction Parameters for Polymeric Materials. AIAA 94-2088
    [11]F. Cauty, C. Erades, J. C. Godon, J. M. Deoclezian, P. L. Helley, N. Paulus. Experimental Study of the Degradation of an Internal Thermal Insulator. AIAA 2000-3329
    [12]B. B. McWhorter, M. E. Ewing. Real-time Inhibitor Recession Measurements in the Space Shuttle Reusable Solid Rocket Motors. AIAA 2001-3280
    [13]Tae-ToLee. Experimental Study of the Surface Regression Rate to the Heat Transfer. AIAA 2004-3388
    [14]J. F. Maw, R. C. Lui, P. D. Totman. Verification of RSRM Nozzle Thermal Models with ETM-3 Aft Exit Cone In-depth Temperature Measurements. AIAA 2004-3897
    [15]B. McWhorter, M. Ewing, K. Albrechtsen, T. Noble. Real-time Measurements of Aft Dome Insulation Erosion on Space Shuttle Reusable Solid Rocket Motor. AIAA 2004-3896
    [16]T. Suzuki, K. Sawada, T. Yamada, Y. Inatani. Experimental and Numerical Study of Pyrolysis Gas Pressure in Ablating Test Piece. Journal of Thermophysics and Heat Transfer,2005,19(3):266-272
    [17]K. Skokova, B. Laub. Experimental Evaluation of Thermal Protection Materials for Titan Aerocapture. AIAA-2005-4108
    [18]C. Carmicino, A. R. Sorge. Role of Injection in Hybrid Rockets Regression Rate Behavior. Journal of Propulsion and Power,2005,21(4):606-612
    [19]S. K. Kumar, S. Krishnamoorthy, S. V. S. Rao. Thermophysical Properties Evaluation of High Temperature Resistant Materials by Hot Wire Method. AIAA 2006-3138
    [20]W. H. Ng, P. P. Friedmann, A. M. Waas, J. J. McNamara. Thermomechanical Behavior of a Thermal Protection System with Different Levels of Damage-Experiments and Simulation. AIAA 2007-2272
    [21]WEI Xiang-geng, HE Guo-qiang, LI Jiang. Experimental Rocket Motor Applied in Evaluate the Ablation Performance of Ablation Resistance Materials. AIAA 2008-4887
    [22]黄祖萌.燃气参数及材料缺陷对绝热层烧蚀率影响的试验研究.固体火箭技术,1995,18(2):70-76
    [23]田维平等.飞行加速度对固体火箭发动机前封头绝热层烧蚀特性影响研究推进技术,1998,19(2):7-10
    [24]冯志海,余瑞莲,姚承照等.四种防热材料的烧蚀侵蚀试验研究.宇航材料工艺,2001,6:10-13
    [25]李岩芳,陈林泉,严利民等.固体火箭冲压发动机补燃室绝热层烧蚀试验研究.固体火箭技术,2003,26(4):68-69
    [26]刘德英,王岳广,张友华等.碳/酚醛复合材料烧蚀性能的实验研究.宇航材料工艺,2004,1:59-61
    [27]张劲松,凌玲,何勇祝等.试验条件对EPDM绝热层耐烧蚀性能的影响.固体火箭技术,2004,27(2):121-122
    [28]杜新.飞行加速度对固体发动机前封头绝热层烧蚀的影响.固体火箭技术,1996,19(3):7-11
    [29]张明信.飞行加速度条件下绝热层烧蚀实验研究.固体火箭技术,1999,22(2):28-32
    [30]王书贤,陈林泉,刘霓生.飞行加速度对固体发动机后封头绝热层烧蚀的影响.固体火箭技术,2003,26(2):17-19
    [31]李江,何国强,秦飞等.高过载条件下绝热层烧蚀实验方法研究——(Ⅰ)方案论证及数值模拟.推进技术,2003,24(4):315-318
    [32]李江,何国强,陈剑等.高过载条件下绝热层烧蚀实验方法研究Ⅱ收缩管聚集法.推进技术,2004,25(3):196-198
    [33]余晓京.富氧环境下绝热层烧蚀模型研究.西北工业大学硕士学位论文.2004
    [34]高龄松.固体火箭冲压发动机补燃室内性能研究.西北工业大学硕士论文.2005
    [35]娄永春.高温稠密两相流冲刷条件下绝热层烧蚀实验研究.西北工业大学硕士学位论文.2005
    [36]王希亮,何国强,李江等.基于RTR技术的绝热层烧蚀实时测量试验.固体火箭技术,2006,29(5):384-387
    [37]李江,刘洋,娄永春等.颗粒冲刷对绝热层烧蚀影响的实验研究.推进剂技术,2006,27(1):71-73
    [38]李江,刘佩进,陈剑等.冲蚀条件下碳布橡胶绝热层烧蚀实验与计算.固体火箭技术,2006,29(2):110-112
    [39]J. A. Keenan. Thermo-chemical Ablation of Heat Shields under Earth Re-entry Conditions. UMI.1994:1-77
    [40]Y.-K. Chen and F. S. Milos. Ablation and Thermal Response Program for Spacecraft Heatshield Analysis. AlAA 98-0273
    [41]Y.-K. Chen, F. S. Milos. Two-Dimensional Implicit Thermal Response and Ablation Program for Charring Materials on Hypersonic Space Vehicles. AIAA 2000-0206
    [42]Y.-K. Chen, F. S. Milos. Three-dimensional Ablation and Thermal Response Simulation System. AIAA 2005-5064
    [43]F. S. Molis, Y.-K. Chen. Comprehensive Model for Multicomponent Ablation Thermochemistry. AIAA 97-0141
    [44]S. D. Williams, D. M. Curry, D. C. Chao, V. T. Pham. Ablation Analysis of the Shuttle Orbiter Oxidation Protected Reinforced Carbon-carbon. AIAA 94-2084
    [45]Fabrizi, G. L. Motta. Thermo-ablative and Fluid Dynamic Analyses for the Design of the Thermal Protection for Solid Propellant Rocket Motors. AIAA 92-3054
    [46]Y.FABIGNON. Ablation Rate Calculation of Thermal Insulations in Segmented Solid Propellant Rocket Motor. AIAA 93-1884
    [47]V. Jones, K. N. Shukla. In-depth Response of Charring Ablators to High Temperature Environment. AIAA 99-3462
    [48]Bizot. Turbulent Boundary Layer with Mass Transfer and Pressure Gradient in Solid Propellant Rocket Motors. AIAA 95-2708
    [49]B. C. Yang, F. B. Cheung, J. H. Koo. Prediction of Thermo-mechanical Erosion of High-temperature Ablatives in the SSRM Facility. AIAA 95-0254
    [50]P.Baiocco, P. Bellomi. A Coupled Thermo-ablative and Fluid Dynamic Analysis for Numerical Application to Solid Propellant Rockets. AIAA 96-1811
    [51]R. A. Ahmad. Internal Flow Simulation of Enhanced Performance Solid Rocket Booster for the Space Transportation System. AIAA 2001-5236
    [52]F. M. Najjar, J. P. Ferry, S. Balachandar. Simulations of Solid-Propellant Rockets Effects of Aluminum Droplet Size Distribution. Journal of Spacecraft and Rockets,2006, 43(6):1258-1270
    [53]T. F. Zien. Thermal Effects of Particles on Hypersonic Ablation. AIAA 2001-2833
    [54]G. W. Russell. Analytic Modeling and Experimental Validation of Intumescent Behavior of Charring Heatshield Materials.2002. UMI Number:3043336
    [55]G. W. Russell, F. Strobel. Modeling Approach for Intumescing Charring Heatshield Materials. Journal of Spacecraft and Rockets,2006,43(4):739-749
    [56]M. S. Yu, J. W. Lee, H. H. Cho. Numerical Study on a Thermal Response of the Jet Vane System in a Rocket Nozzle. AIAA 2004-997
    [57]M. S. Yu, H. H. Cho, K. Y. Hwang, J. C. Bae. A Study on a Surface Ablation of the Jet Vane System in a Rocket Nozzle. AIAA 2004-2276.
    [58]Y. C. Shih, F. B. Cheungt, J. H. Koo, B. C. Yang. Numerical Study of Transient Thermal Ablation of High-Temperature Insulation Materials. Journal of Thermophysics and Heat transfer,2003,17(1):53-61
    [59]B. Dubroca, G. Duffa, B. Leroy. Heterogeneous Reactions on TPS Surfaces:General Derivation and Equilibrium Limit. AIAA 2005-3374
    [60]R. Palaninathan, S. Bindut. Modeling of Mechanical Ablation in Thermal Protection Systems. Journal of Spacecraft and Rocket,2005,42(6):971-979
    [61]T. Suzuki, T. Sakai, T. Yamada. Calculation of Thermal Response of Ablator under Arcjet Flow Condition. Journal of Thermophysicx and Heat transfer,2007,21(2): 257-266
    [62]Ragini. Acharya, Kenneth. K. Kuo. Effect of Pressure and Propellant Composition on Graphite Rocket Nozzle Erosion Rate. Journal of Propulsion and Power,2007,23(6): 1242-1254
    [63]何洪庆.固体火箭喷管烧蚀和传热的基本问题.推进技术,1993,3:22-28
    [64]何洪庆.EPDM的烧蚀模型.推进技术,1999,20(4):36-39
    [65]余贞勇.固体火箭发动机喉部烧蚀的计算机模拟.固体火箭技术,1994,(03):21-25
    [66]余贞勇,田维平,任全彬.固体发动机前封头绝热层在加速度下烧蚀计算.固体火箭技术,1997,20(3):29-35
    [67]王伟,王德升.喷管扩张段绝热层的烧蚀计算.固体火箭技术,1999,22(3):16-19
    [68]崔红,苏君明,李瑞珍等.添加难熔金属碳化物提高CC复合材料抗烧蚀性能的研究.西北工业大学学报,2000,18(4):669-673
    [69]方丁酉,夏智勋,姜春林.C/C喉衬稳态烧蚀的工程计算.固体火箭技术,2000,23(2):24-27
    [70]刘建军,苏君明,陈长乐.炭/炭复合材料烧蚀性能影响因素分析.碳素,2003,2:15-19
    [71]孙冰,林小树,刘小勇.硅基材料烧蚀模型研究.宇航学报,2003,24(3):282-286
    [72]宋学智.酚醛树脂烧蚀性能进展.工程塑料应用,2003,31(7):69-71
    [73]陈林泉,王书贤,张胜勇等.石墨渗铜喉衬材料烧蚀机理分析.固体火箭技术,2004,27(1):57-59
    [74]苏君明,陈林泉,王书贤等.石墨渗铜喉衬的烧蚀特性.固体火箭技术,2004,27(1):69-72
    [75]白湘云,王立峰,吴福迪.耐烧蚀填料对三元乙丙橡胶内绝热材料性能的影响.宇航材料工艺,2004,4:25-28
    [76]张新航,李强,赵荣.耐烧蚀、低密度三元乙丙橡胶绝热层的研制.宇航材料工艺,2005,1:39-41
    [77]赵晓莉,岳红,张兴航.三元乙丙橡胶绝热层耐烧蚀性能的研究评述.材料科学与工程学报,2005,23(2):310-312
    [78]何国强,王国辉,蔡体敏.高过载条件下固体发动机内流场及绝热层冲蚀研究.固体火箭技术,2001,24(4):33-35
    [79]易法军,梁军,孟松鹤等.防热复合材料的烧蚀机理与模型研究.固体火箭技术,2000,20(4):48-56
    [80]梁军,易法军.防热材料高温烧蚀-相变特性的细观研究.复合材料学报,2002,19(2):108-112
    [81]易法军,孟松鹤,梁军等.防热复合材料高温体积烧蚀模型.哈尔滨工业大学学报,2001,33(6):725-728
    [82]孙冰,刘小勇,林小树等.固体火箭冲压发动机燃烧室热防护层烧蚀计算.推进技术,2002,23(5):375-378
    [83]吕德生,宋桂明,周玉等.航天飞行器防热部件烧蚀行为的数值模拟.固体火箭技术,2002,25(2):67-69
    [84]徐善玮,侯晓,张宏安.固体火箭发动机内绝热层烧蚀质量损失计算.固体火箭技术,2003,26(3):28-31
    [85]王安岭,桂业伟,贺立新.炭化烧蚀材料热解膨胀和线膨胀对内部温度场影响研究.工程热物理学报,2004,25(4):631-633
    [86]乐发仁,冯喜平,武渊等.高过载条件下固体火箭发动机绝热层失效研究.固体火箭技术,2005,28(1):33-35
    [87]郑亚,陈军,鞠玉涛等.固体火箭发动机传热学.北京:北京航空航天大学出版社.2006
    [88]I. S. Awan. Ablation Analysis of Composites for High Temperature Aerospace Application.北京航空航天大学硕士论文.2003
    [89]T. Suzuki, T. Sakai, T. Yamada. Calculation of Thermal Response of Ablator under Arcjet Flow Condition. Journal of Thermophysics and Heat Transfer,2007,21(2): 257-266
    [90]顾炎武.整体式固体火箭冲压发动机飞行试验.推进技术,2008,29(1):75-77
    [91]赵春宇.环向进气固体火箭冲压发动机补燃室流场数值模拟.弹箭与制导学报,2008,28(2):136-138
    [92]M. N. Sarisin, H. T. Tinaztepe, A. Ulas, K. Albayrak. Conceptual Design of a Connected Pipe Test Facility for Ramjet Applications. AIAA 2006-4446
    [93]J. H. Kool, D. W. H. Ho, M. C. Bruns, O. A. Ezekoye. A Review of Numerical and Experimental Characterization of Thermal Protection Materials-Part Ⅱ. Properties Characterization. AIAA 2007-2131
    [94]D. W. K.Ho, J. H. Koo, M. C. Bruns, O. A. Ezekoye. A Review of Numerical and Experimental Characterization of Thermal Protection Materials-Part Ⅲ. Experimental Testing. AIAA 2007-5773
    [95]G. R. S. Thangadurai, B. S. S. Chandran, V. Babu, T. Sundararajan. Numerical Investigation on Effect of Air/Fuel Ratio on Ramjet Dump Combustor Performance. AIAA 2006-4615
    [96]A. Antoniou, K. M. Akyuzlu. A Physic Based Comprehensive Mathematical Model to Predict Motor Performance in Hybrid Rocket Propulsion Systems. AIAA 2005-3541
    [97]A. Ishihara, K. C. Tang, M. Q. Brewster. Temperature Measurement of a Burning Surface by a Thermocouple Ⅱ. AIAA 2005-3576
    [98]李莉,谭志诚,孟霜鹤.烧蚀材料的热分解动力学研究.空间科学学报,1999,19(3):247-252
    [99]蔡正千.热分析.北京:高等教育出版社,1993
    [100]苏志明.固体火箭发动机传热学.南京:华东工学院,1987
    [101]秦永烈.表面温度测量.北京:中国计量出版社,1989
    [102]304所.热电偶.北京:国防工业出版社,1978
    [103]Ishihara, Okabe. An Evaluation in Temperature Measurement of the Burning Surface by a Thermocouple. AIAA 2001-3587.
    [104]W.M.凯斯,M.E.克拉福特.对流换热与传质.北京:科学出版社,1986
    [105]E.R.G埃克特.传热与传质分析.北京:科学出版社,1983
    [106]、王启杰.对流传热传质分析.西安:西安交通大学出版社,1991
    [107]韩占忠等.Fluent流体工程仿真计算.北京:北京理工大学出版社,2004
    [108]王福军.计算流体动力学分析.北京:清华大学出版社,2004
    [109]张涵信,沈孟育.计算流体力学——差分方法的原理和应用.北京:国防工业出版社,2003
    [110]S.V.帕坦卡.传热与流体流动的数值计算.北京:科学出版社,1984
    [111]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科技大学出版社,1992
    [112]何洪庆,严红.EPDM的烧蚀模型.推进技术,1999,20(4):36-39
    [113]F. S. Milos, J. Marschall. Thermochemical Ablation Model for TPS Materials with Multiple Surface Constituents. AIAA 94-2042
    [114]G. Duffa. Ablation of Carbon-based Materials:Investigation of Roughness Set-up from Heterogeneous Reactions. International Journal of Heat and Mass Transfer 48, 2005:3387-3401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700